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ANALYTIC SENSING: NONITERATIVE RETRIEVAL OF POINT
SOURCES FROM BOUNDARY MEASUREMENTS∗

D. KANDASWAMY† , T. BLU‡ , AND D. VAN DE VILLE†

Abstract. We consider the problem of locating point sources in the planar domain from overde-
termined boundary measurements of solutions of Poisson’s equation. In this paper, we propose a
novel technique, termed “analytic sensing,” which combines the application of Green’s theorem to
functions with vanishing Laplacian—known as the “reciprocity gap” principle—with the careful se-
lection of analytic functions that “sense” the manifestation of the sources in order to determine their
positions and intensities. Using this formalism we express the problem at hand as a generalized
sampling problem, where the signal to be reconstructed is the source distribution. To determine
the positions of the sources, which is a nonlinear problem, we extend the annihilating-filter method,
which reduces the problem to solving a linear system of equations for a polynomial whose roots are
the positions of the point sources. Once these positions are found, resolving the according intensities
boils down to solving a linear system of equations. We demonstrate the performance of our tech-
nique in the presence of noise by comparing the achieved accuracy with the theoretical lower bound
provided by Cramér–Rao theory.

Key words. Cauchy boundary problem, analytic functions, annihilating filter, nonlinear esti-
mation polynomial

AMS subject classifications. 15A29, 31A25, 31A30

DOI. 10.1137/080712829

1. Introduction. Source imaging from boundary Cauchy data satisfying the
Laplace equation is a classical inverse problem that is of high interest to many fields
in engineering. Unfortunately, the problem is ill-posed and additional assumptions
about the source configuration are needed to make the solution unique. Typically,
one can restrict the class of source distributions by imposing smoothness properties
(e.g., Tikhonov regularization [19]) or by imposing a parametric source model.

It is when the source configurations are expected to be “sparse” that paramet-
ric solutions may prove very useful. This situation is particularly attractive in the
electromagnetic setting for applications such as electroencephalography (EEG); e.g.,
the localization of some type of epileptic foci can be reasonably modeled by pointwise
(dipolar) sources [15]. Almost all known techniques rely on the forward model; i.e.,
computing the boundary data for a given source configuration and iteratively fitting
its parameters by least-squares optimization [16]. The corresponding cost function has
many local minima and makes the solution very sensitive to the initial guess. There-
fore, successful recovery of the parametric sources is often limited to single-dipole
models.

Despite the practical difficulties in identifying parametric source models, the
mathematical uniqueness of the solution has been proven [7], and stability results are
available for the case of dipolar and point sources in 2D [5, 16] and 3D [20]. Instead
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of relying on the computation of the forward model, several other approaches have
been proposed based on the properties of functional analysis in the complex plane.
These methods are planar by their nature, but they can be extended to 3D; e.g., for
the axisymmetric setting or by combining the results of multiple cross-sections. In
particular, Baratchart et al. [2, 3] have chosen to approximate the known boundary
data for monopolar and dipolar sources by a meromorphic function which, under the
source model hypothesis, has poles that can be related to the sources’ positions.

Another interesting approach uses a ubiquitous tool in electromagnetism, known
as the “reciprocity gap” concept by Andrieux and Ben Abda [1] who applied it to
the inverse planar crack problem. This tool is essentially an application of Green’s
theorem, which provides a way to transform a scalar product between the source
distribution and a function with vanishing Laplacian into a boundary integral. El
Badia et al. have shown that the application of this tool to powers of x + iy leads to
an algorithm that solves the localization problem [6, 7]. Unfortunately, the practical
efficiency of their approach to multipole sources retrieval is severely hindered by the
numerical instability of higher degree monomials.

In this work, we develop a new algorithmic framework that allows us to iden-
tify parametric source models. We term our method “analytic sensing” because it
relies heavily on a careful choice of analytic test functions—sensors [10, 11, 12]. Our
contributions are twofold:

• We apply the reciprocity gap concept to test functions that are not analytic
outside the domain of interest; i.e., unlike the polynomials considered in [7],
these “analytic sensors” have a spatial localization that allows one to “sense”
the influence of nearby pointwise sources.

• We solve the associated nonlinear problem for the source localization by
adapting the generalized annihilation technique developed for sampling sig-
nals that have a finite rate of innovation [21, 4].

The approach brings together several attractive features: (1) the nonlinear (the lo-
calization) and linear (determining the intensities) estimation steps are decoupled;
(2) the nonlinear estimation is direct (noniterative) and fast; (3) the solution to the
forward problem is not needed; (4) the method can be spatially selective to only in-
corporate the influence of sources in a desired region-of-interest. We also investigate
the accuracy and stability of the method under various noise conditions by evaluating
the Cramér–Rao bounds.

2. Problem setting. Let us consider a closed domain Ω with boundary ∂Ω in
2D. Moreover, consider a source distribution ρ in Ω. The source distribution induces
an electrical potential V such that [9]:

− div(σ∇V ) = ρ, within Ω,(1)
∇V · eΩ = 0, on ∂Ω,(2)

where σ expresses the conductivity profile of the environment Ω, and where eΩ is the
outward normal to ∂Ω as illustrated in Figure 1. When σ is constant, (1) is equivalent
to Laplace’s equation.

Many physical problems can be modeled using (1), and in particular electrostatic
problems. Here, the Von Neumann condition on the boundary (2) specifies that no
current can flow out of Ω [9]. Usually, in addition to (1) and (2), one has access
to direct measurements of V on ∂Ω. This means that the system is overdetermined
since, in theory, given ρ and V |∂Ω (1) has a unique solution V in Ω, known as the
Dirichlet problem [17].
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∂Ω

σ

ρ

eΩ

Ω

Fig. 1. A homogeneous 2D conductor Ω with boundary ∂Ω, source distribution ρ, constant
conductivity σ, and outward surface normal eΩ.

However, the problem at hand does not assume the source distribution ρ to be
known. On the contrary, the goal is to determine the sources responsible for the
electric potential V

∣∣
∂Ω

measured on the boundary ∂Ω. Thus, the problem here is the
following:

P : Knowing V
∣∣
∂Ω

, find ρ enclosed by ∂Ω, such that (1) and (2) are satisfied.
This problem is not well-posed as there are many possible source fields that solve P
with the same measurements [2]. This can be seen by an example when Ω is a disk of
radius 1: consider a function V which satisfies1 V (x) = 0 and xT∇V (x) = 0 on the
boundary ‖x‖ = 1. Given our boundary measurements, we may reasonably infer that
ρ = 0 is the solution to P , but ρ = div(σ∇V ) is a solution as well. It will be thus
necessary to severely restrict the class of source fields to be retrieved.

3. Analytic sensing. We first develop our new framework in 2D. It uses “test”
functions ψ(x) such that

div(σ∇ψ) = 0, within Ω,(3)

to determine the manifestation of the source distribution in Ω. When σ is constant
in Ω, this reduces to the functions whose Laplacian is zero in Ω, a large subset of
which are Ω-analytic functions. The fundamental observation is that if V is known
on the boundary ∂Ω, then we can exactly calculate the scalar products 〈ψ, ρ〉 =∫
Ω ψ(x)ρ(x) d2x for such test functions, as shown by the following theorem.

Theorem 1. Let V be the steady-state potential induced by some source distri-
bution, ρ, according to (1) and (2). Moreover, suppose that we know V (x) on the
boundary x ∈ ∂Ω. Then, if we choose ψ according to (3), the scalar product 〈ψ, ρ〉
can be expressed as a line integral according to

〈ψ, ρ〉 = −
∫

∂Ω
σV ∇ψ · eΩ ds.(4)

The scalar products 〈ψ, ρ〉 can be seen as “generalized” samples of the unknown dis-
tribution ρ.

1For instance, we could choose V (x) = (‖x‖2 − 1)2.
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Proof. We have the following identity:

ψ div(σ∇V ) − V div(σ∇ψ) = div
(
σψ∇V − σV ∇ψ

)
.(5)

If we choose ψ to be a test function that satisfies (3), then, by applying (1), this
identity becomes

ψρ = div
(
σψ∇V − σV ∇ψ

)
.(6)

Integrating both sides over Ω and applying Green’s divergence theorem yields

〈ψ, ρ〉 =
∫

∂Ω
(σψ∇V − σV ∇ψ) · eΩ ds.(7)

The Von Neumann boundary condition (2) further simplifies the left-hand side to (4),
which proves the theorem.

It is potentially beneficial to describe ρ through a large collection of measurements
〈ψ, ρ〉. For instance, if we could compute these scalar products for any ψ ∈ D (Ω),
the set of infinitely differentiable functions in Ω, then the generalized samples 〈ψ, ρ〉
would represent ρ completely and uniquely in the sense of distributions.

Unfortunately, the test functions are here restricted to those that satisfy div(σ
∇ψ) = 0. These functions form a much more constrained class that is unable to
characterize the full generality of source fields; an issue that is a direct consequence of
the ill-posedness of problem P . Note that, a priori, we can choose any test function
that satisfies (3). These test functions form the link between the boundary measure-
ments on ∂Ω and the generalized samples 〈µ, ρ〉. In practice, an interpolation model
is needed to evaluate (4) for a limited number of boundary measurements.

3.1. Homogeneous medium. In this paper, we consider in detail only the case
where σ is constant in Ω. Nevertheless, it is possible to accommodate for varying σ
as explained briefly in 3.4.

Thanks to the homogeneity hypothesis, the set of test functions satisfying (3) is
made of Ω-harmonic functions, a large subset of which are functions that are analytic
in Ω, e.g., polynomials in z = x + iy, which were used [7]. We will opt for rational
functions of z that do not have any poles in Ω and coin the term “analytic sensors.”

Corollary 1. Let ψ be an analytic sensor. If we use the analytic formalism,
then we can compute the associated generalized sample, µ = 〈ψ, ρ〉, as follows:

µ = iσ

∫

∂Ω
V (x, y)ψ′ (z) dz,(8)

Proof. If ψ is an analytic function, i.e., a differentiable function of z = x+iy, then
∇ψ = ψ′(z)[1, i]T. Moreover, eΩ ds = [ dy,− dx]T which implies that ∇ψ · eΩ ds =
−iψ′(z) dz. By application of Theorem 1 this proves (8).

As said before, we need to further restrain ρ so that P becomes well-posed. Here,
we assume that ρ consists of pointwise sources. Hence, we parametrize ρ such that:

ρ (x) =
M∑

m=1

cmδ(x − xm),(9)

with cm ∈ R, M ∈ N, and xm ∈ R2. Furthermore, if we choose ψ(z) = 1 and use
Theorem 1, then it is clear that the following should hold:

M∑

m=1

cm = 0.(10)
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a0
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α
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Ω

aN−1

Fig. 2. The poles, a0 · · · aN−1, and their placement outside of Ω. For each pole there is a
corresponding analytic sensor ψan(z) = 1

z−an
.

This parametrization is typical for a “finite rate of innovation” setting [21]. We will
see that this setting ensures that P is well-posed—or at least, that if it has a solution,
this solution is unique [2]. Thus, the purpose of solving the inverse problem at hand
shifts towards the retrieval of the positions and the intensities of the pointwise sources.

3.2. Choice of the test functions. Now that the problem is well-formulated
and well-posed, we need to choose the sensors in a way that the corresponding gener-
alized samples allow us to determine algorithmically the positions and the intensities
of the pointwise sources. For that purpose, as it will become clear in the next section,
we choose the following family of test functions:

ψan(z) =
1

z − an
, an /∈ Ω.(11)

More specifically, we will restrict further our choice of an to the form an = a0einα,
where n ∈ [[0, N−1]]2 for some N > 2M and α ∈ ]0, 2π[. The radius |a0| is chosen such
that an /∈ Ω. This setup is depicted in Figure 2. Note that the angle α is completely
arbitrary; in particular, we do not need Nα to be equal to 2π. Actually, Nα could
even be close to 0, meaning that the poles of the analytic sensor would all be located
in the neighborhood of a0.

Another very interesting characteristic of these analytic sensors is that they are
“localized,” and this all the more as their poles are closer to ∂Ω. This means that it is
conceivable to compute a good approximation of the integral in (8) only with values
of the potential that are close to the pole of the sensor.

3.3. A note on missing data. In practice, V is not continuously known on the
boundary ∂Ω; i.e., we measure V (xn), n ∈ [[0, · · · , N − 1]], where xn ∈ ∂Ω. Hence, we
need an interpolation/approximation method to reconstruct the continuous-domain
representation of V

∣∣
∂Ω

. In order to give an insight of what actually happens, we
consider the (very) simplified case where ∂Ω is a circle with radius 1 and where V
is measured at the N uniform angles θn = 2nπ/N for n = [[0, N − 1]]. With limited

2[[a, b]] denotes the set of integers {a, a + 1, · · · , b}.
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ambiguity, we denote by V (θ) the measure of the electric potential at angle θ and by
Ṽ (θ) its interpolated version. More specifically, we assume N = 2K + 1 to be odd
and develop V and Ṽ in Fourier series:

V (θ) =
∑

m∈Z
cmeimθ, and Ṽ (θ) =

K∑

m=−K

c̃meimθ.(12)

The coefficients c̃m are obtained by solving a linear system of equations that expresses
the constraints of the measurements Ṽ (θn) = V (θn), n = [[0, N − 1]]:

V (θn) =
K∑

m=−K

c̃meimθn .(13)

Thanks to our specific choices, these coefficients can be expressed directly using a
discrete Fourier transform (DFT) of the measurements

c̃m =
1
N

K∑

n=−K

V (θn)e−imθn =
∑

n∈Z
cm+Nn,(14)

by replacing V (θn) with its Fourier expansion (12). The last identity implies that

K∑

m=−K

|c̃m − cm| ≤
∑

|m|>K

|cm|(15)

and in particular |Ṽ (θ)−V (θ)| ≤ 2
∑

|m|>K |cm|; not so surprisingly, the interpolation
error is bounded by (twice) the )1 norm of the “truncated” Fourier coefficients.

We now consider the generalized measures µn = 〈ψan , ρ〉 with N analytic sensors
located at an = a0eiθn . Using the Fourier representation (12) of V (θ) in (8), we have
that

µn = iσ

∫

∂Ω
V (θ)ψ′

an
(z) dz

= iσ
∑

m∈Z
cm

∫

Ω
ψ′

an
(z) eimθ dz

= iσ
∑

m∈Z
c−m

∫

Ω

ψ′
an

(z)
zm

dz.

(16)

Knowing that ψan is analytic in Ω and using Cauchy’s theorem we can deduce
the following:

µn = −2πσ
∞∑

m=1

c−m
ψ(m)

an (0)
(m − 1)!

= 2πσ
∞∑

m=1

mc−m

am+1
n

,

(17)

and finally

eiθnµn =
−1∑

m=−∞
−2πσ

mcm

a−m+1
0

eimθn .(18)
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Fig. 3. Magnitude of the frequency response of Ha0(m) that is the equivalent filter that links
the boundary measures to the generalized measures. Different magnitudes of the pole a0 are shown.

Similarly, if we replace V (θ) by its interpolation Ṽ (θ) in (8) and denote by µ̃n the
approximated generalized measure, we get

eiθn µ̃n =
−1∑

m=−K

−2πσ
mc̃m

a−m+1
0

eimθn .(19)

First, we can bound the error between the actual, computable, generalized measures
µ̃n and the inaccessible ones µn:

|µ̃n − µn| ≤ max
m≥1

2πσm

|a0|m+1

( −1∑

m=−K

|c̃m − cm| +
∑

m<−K

|cm|
)

︸ ︷︷ ︸
≤2

∑
|m|>K |cm|

.(20)

The computation error on the generalized measures is thus directly controlled by the
)1 norm of the out-of-band Fourier coefficients, which is typically small when the
function V (θ) is smooth.

Second, by bringing together (19) and (13), we conclude that the discrete sequence
eiθn µ̃n is a filtered version of V (θn), because the DFT coefficients of each sequence
are equal, up to a multiplication by

Ha0 (m) =
{

−2πσma−m−1
0 for − K ≤ m < 0,

0 for m ≥ 0 or m < −K.
(21)

The magnitude response |Han(m)| is shown in Figure 3 for different values of |a0|. It
is maximum for m ≈ −1/ ln |a0|. The filtering appears as a combination of a (flipped)
Hilbert transform and band-pass filtering. The bandwidth of the filter increases as
the pole’s position approaches the boundary. This behavior indicates that |a0| should
be chosen with respect to the noise characteristics of the measurements.
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3.4. A note on nonhomogeneous medium. In the case of a nonhomogeneous
medium, we only need to assume that σ is constant within the potential support
Ω0 ⊂ Ω of ρ. In that case, we may still choose ψ|Ω0 to be of the form (z − a)−1.
Then, ψ can be propagated into Ω\Ω0 in such a way as to satisfy div(σ∇ψ) = 0 using
numerical techniques such as finite element methods [13] or boundary element methods
(for domains with piecewise constant σ) [14]. The propagation of the test functions
up to the boundary ∂Ω implicitly encodes the information of the forward model in
more complex configurations. Consequently, the generalized samples also take into
account the presence of the nonhomogeneous medium. The localization method as
presented in the following section, however, remains identical. Within the context of
EEG, one well-known head model is the multilayer sphere [18]. The conductivity is
homogeneous in each spherical layer and the dipolar sources are assumed to be in the
“gray matter” compartment.

4. A noniterative solution to the localization problem. From now on we
shall identify xm with the complex plane, hence xm ⇔ zm = xm + iym. Now, we
define the polynomial, R(X), whose roots are the positions of the pointwise sources:

R (X) =
M∏

m=1

(X − zm) =
M∑

k=0

rkXk.(22)

Using (11) and the fact that an = a0einα, the following relationship exists between R
and the generalized samples µn = 〈ψan , ρ〉:

µn =
M∑

m=1

cmψan(zm) =
∑M−1

m=0 c′meimnα

R (an)
,(23)

where c′m are complex-valued coefficients that do not depend on n or α. We now see
that the generalized samples satisfy an “annihilating” equation.

Lemma 1. Consider the finite impulse response digital filter, h = {hk}k∈Z, which
has its zeros at eikα for k = 0, 1, . . . , M−1. It is characterized by the transfer function

H (z) =
∑

k∈Z
hkz−k =

M−1∏

k=0

(
1 − eikαz−1

)
.

Then, the filter h annihilates the sequence u = {un}n=0,...,N−1 whose coefficients are
defined by un = R (an)µn; i.e.,

h ∗ u = 0, for all n ∈ [[M, N − 1]].

Proof. Given an integer m in {0, M − 1}, consider the discrete convolution of
the sequence {eimnα}n∈{0,N−1} with h. For an output index n ∈ [[M, N − 1]], its nth
element is given by the summation:

M∑

k=0

hkeim(n−k)α = eimnαH
(
eimα

)
= 0.

On the other hand, by (23) we have un =
∑M−1

m=0 c′meimnα for n ∈ [[0, N − 1]]. We can
thus write, using the linearity of the discrete convolution, that

M∑

k=0

hkun−k = 0

for any output index n ∈ [[M, N − 1]], which proves our claim.
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Theorem 2. The coefficients rk of the polynomial R(X) defined by (22) satisfy
the following linear system of equations:

M∑

k=0

An,krk = 0, for n ∈ [[M, N − 1]],

where An,k =
N−1∑

n′=0

hn−n′ ak
n′µn′ .

(24)

In matrix form, this system can be expressed as AR = 0, if we define the matrix A by
[A]n,k = An,k for n ∈ [[M, N−1]] and k ∈ [[0, M ]], and the vector R = [r0, r1, . . . , rM ]T.
Note that we have rM = 1.

Proof. By combining Lemma 1 and (22), we deduce the following:

0 = {h ∗ u}n =
N−1∑

n′=0

hn−n′R (an′)µn′

=
N−1∑

n′=0

hn−n′

M∑

k=0

rkak
n′µn′

=
M∑

k=0

rk

N−1∑

n′=0

hn−n′ak
n′µn′

︸ ︷︷ ︸
An,k

for all n ∈ [[M, N − 1]], which proves the theorem.
Thus, combining Corollary 1 with Theorem 2 yields a noniterative algorithm

for localizing the pointwise sources given boundary measurements. That is, we first
obtain the generalized measurements µn = 〈ψan , ρ〉 from the observed boundary mea-
surements, V

∣∣
∂Ω

; then, by computing the polynomial, R(X), according to (24) we are
able to find the positions zm by taking its roots. Once the positions of the pointwise
sources are known, we need to determine their intensities, cm. The generalized sam-
ples µn depend linearly on the intensities cm as is clear from (23). Hence, determining
the intensities boils down to solving the following linear system of equations:

M∑

m=1

cm

zm − an
= µn, n ∈ [[0, N − 1]].

Figure 4 schematizes the complete retrieval algorithm.
The linear system in (24) with the additional constraint rM = 1 make up N −M

equations in total. On the other hand, there are M unknown polynomial coefficients
rk, k ∈ [[0, M − 1]]. Consequently, we do not need more than N = 2M generalized
measures µn to retrieve the coefficients rk. Note that when considering the complete
problem, the amplitudes cm and source positions zm make precisely 2M (complex)
unknowns for 2M (complex) nonlinear equations (23). For the noiseless case and for M
distinct source positions, it may be argued that rank(A) = M in general, and therefore
we find exactly and uniquely the M positions as the roots of the polynomial R(X).

4.1. Implementation notes. The structure of A can be simplified by perform-
ing the following factorization:

A = Hµa,(25)
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Analytic
sensor

V
∂Ω

...
ψa0 , ρ

ψaN−1 , ρ

Annihilating
Filter RootsR (X)

· · ·z1 zM

Intensities

· · ·
(z1, c1) (zM , cM )

ψa0 , ρ...
ψaN−1 , ρ

Fig. 4. A flow chart of the proposed algorithm to determine the positions of the pointwise
sources and their corresponding intensities.

where H is an (N−M)×N Toeplitz matrix representing the discrete filter h, µ is a di-
agonal N×N matrix with µn, for n ∈ [[0, N−1]], on the diagonal, and a is an N×(M+
1) Vandermonde matrix. More explicitly, the matrices H, µ, and a read as follows:

H =





hM · · · h0 0 · · · 0
0 hM · · · h0 · · · 0
...

. . . . . . · · ·
. . .

...
0 · · · 0 hM · · · h0




,

µ =




µ0 0

. . .
0 µN−1



 ,

and

a =




a0
0 · · · aM

0
...

. . .
...

a0
N−1 · · · aM

N−1



 .

Since H is a convolution matrix, it is in general not unitary, even if it usually
has maximal rank, and this may be detrimental to the computation of the polynomial
R(X) when the generalized measurements are not known with high enough accuracy.
However, we observe that if we perform a singular value decomposition of H according
to H = USH0, where U is an (N −M)× (N −M) unitary matrix, S is an (N −M)×
(N −M) diagonal matrix, and H0 is an (N −M)×N matrix satisfying H0H†

0 = Id,
then

AR = HµaR = 0 ⇔ A0R = H0µaR = 0(26)
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whenever H has maximal rank; i.e., whenever S is nonsingular. The right-hand side
linear system of equations is actually much better conditioned and this is the one that
we will consider for practical implementations.

4.2. Noise issues. The algorithm of the previous section assumes perfect data,
but a practical situation has to cope with noise that inevitably corrupts measured
data. Consequently, we implemented the method described above with a minor ad-
justment to compensate for the influence of noise.

In the presence of noise, the generalized measures are distorted in such a way that
the decomposition of A0, as stated ideally in (26), becomes

A0 = H0 (µ + b) a,

where b is a diagonal matrix representing the additive noise that we assume to have
zero mean. As a consequence, on the average we have the following:

E
{
‖A0R‖2

}
= ‖H0µaR‖2 + E

{
‖H0baR‖2

}
.(27)

Given that the localization parameters are obtained by finding any nontrivial vector
R of length M + 1, such that H0µaR = 0, we see from the above expression that, in
order to avoid a systematic bias due to the noise, it is advisable to solve the following
minimization problem:

min
R∈CM+1

‖A0R‖2 subject to E
{
‖H0baR‖2

}
= constant.(28)

This way, we actually minimize an expression that is close to ‖H0µaR‖2, which would
be the one that is set to zero in the noiseless annihilation problem. In order to perform
the optimization (28), we need to set a hypothesis on the covariance matrix of the
noise. If we assume this covariance to be σ2Id (white noise hypothesis), we have

E
{
‖H0baR‖2

}
= E

{
R†a†b†H†

0H0baR
}

= σ2R†a†diag{H†
0H0}aR.

(29)

The variance σ2 is completely determined by the signal-to-noise ratio (SNR) of the
generalized measures. Of course, in the absence of noise, (28) yields the exact position
parameters.

4.3. Accuracy of the retrieval. To evaluate the performance of the proposed
algorithm in the presence of noise, we compute the Cramér–Rao lower bounds for the
setting with the additive white Gaussian noise hypothesis [8]. Given noisy general-
ized measures, these bounds establish the minimal covariance matrix of any unbiased
estimate of the position and intensity parameters.

The signal model describing the noisy generalized samples, g (x; an), is the fol-
lowing:

g (θ; an) = f (θ; an) + vn + iwn,(30)

where we have defined

f (θ; an) = µn and θ = [Re(z), Im(z), Re(c), Im(c)]T

with z = [z1, z2, . . . , zM ] and c = [c1, c2, . . . , cM ] .
(31)
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Fig. 5. The source configuration with two pointwise sources located at (x1, y1) = (0.7,−0.3)

and (x2, y2) = (−0.5, 0.6). Moreover, the singularities of the analytic sensors, located at ein π
2 for

n ∈ [[0, 3]], are indicated as well.

Moreover, vn and wn are independent normally distributed random variables with
expected value 0 and variance σ2.

In order to compute these lower bounds, we determine the Fisher information
matrix, J = [Jk,l]k,l∈[[1,2M ]], corresponding to (30), which reads as follows:

J =
1
σ2

N−1∑

n=0

[
∇θRe(f (θ; an))
∇θIm(f (θ; an))

] [
∇θRe(f (θ; an))
∇θIm(f (θ; an))

]T

(32)

The Cramér–Rao bounds are the diagonal elements of J−1.

5. Results.

5.1. Simulation. In many application problems, the sources can be modeled
using unit dipoles. As a consequence, we performed simulations using such dipoles.
The localization is the most important aspect in many applications. Hence, when
simulating, we consider only the estimation of the position parameters.

We compared the obtained localization errors with the theoretical lower bounds
that we computed using (32) in a function of the signal-to-noise ratio (SNR = 10 log∑

n µ2
n∑

n |vn+iwn|2 ). Figures 5, 6(a), and 6(b) depict the setup, sample estimations, and
corresponding lower bounds.

We see that up to a certain SNR (around 15 dB) the algorithm performs well; i.e.,
it reaches the theoretical Cramér–Rao lower bound. We can thus say that the Cramér–
Rao bounds provide a good estimation of the performance of the localization. Further
increasing the amount of noise increases the bound and the experimental estimation
errors. Preliminary experiments indicate that even simple denoising techniques, such
as a moving average, can further improve the localization.
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(a) (b)

Fig. 6. 6(a) and 6(b) depict the lower bounds of any unbiased estimator (solid line) and some
sample estimations (grey circles) obtained through our technique for xi and yi, respectively, with
i ∈ {1, 2}. Moreover, we used the following four analytic sensors: ψan = 1

z−1.1e
i π
2 n , with n ∈ [[0, 3]].

(a) (b)

Fig. 7. 7(a) and 7(b) depict the lower bounds of any unbiased estimator (solid line) and some
sample estimations (grey circles) obtained through our technique for xi and yi, respectively, with
i ∈ [[1, 2]] using the following 50 analytic sensors: ψan = 1

z−1.1e
i π
25 n , with n ∈ [[0, 49]].

The number of analytic sensors is another parameter that influences the theo-
retical and experimental errors. Figures 7(a) and 7(b) show the lower bounds for
estimating xi and yi using 50 analytic sensors. Compared to Figures 6(a) and 6(b),
we note that the bounds are narrower and that the sample estimations are closer to
the true values of the estimated parameters for lower SNRs.

Another factor that influences the theoretical minimal and experimental errors is
the position of the dipole. Figures 8(a) and 8(b) show the sum of the Cramér–Rao
bounds, plotted as a gray-scale intensity in the resulting image, when shifting a dipole
through a unit-disk using a squared grid.

Figure 8(a) clearly depicts the local influence of the analytic sensors. That is, the
closer the dipole is located to a pole, an, the smaller the localization errors are. Thus,
the analytic sensors properly sense the dipole’s influence when the source and sink
are close to any of the poles. Hence, when the dipole approaches the center of the
disk, the localization errors increase, as depicted in Figures 8(a) and 8(b). Moreover,
when using more analytic sensors the estimation error decreases. This is indicated by
the fact that Figure 8(b) is darker than Figure 8(a).
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(a) (b)

Fig. 8. 8(a) and 8(b) depict the sum of the minimal estimation errors, indicated by the gray-
scale intensity, when shifting a dipole through a unit-disk using a squared grid with step 0.01. The
displacement of the point source with intensity −1 with respect to the point source with intensity
1 is (−0.05, 0.1) and the dipole’s intensity is 1. The noise is Gaussian with expected value 0 and

variance 0.06. The analytic sensors are, respectively, ψan = (z − 1.1ein π
4 )−1 with n ∈ [[0, 7]] and

ψ′
an

= (z − 1.1ein π
16 )−1 with n ∈ [[0, 31]].

(a) (b)

Fig. 9. 9(a) and 9(b) depict the localization of 3 and 7 point sources, respectively. The noise
added to the generalized measures is Gaussian with zero mean such that the localization is performed
at 15dB and 40dB, respectively. The analytic sensors are ψ′

an
= (z − 1.01ein π

16 )−1 with n ∈ [[0, 31]].

5.2. Multipoles. Until now we have located a dipole using the proposed method.
However, as schematically depicted in Figure 4, we can also use the algorithm to lo-
calize multipoles, that is, M > 2. Figures 9(a) and 9(b) are scatterplots of the
estimated positions of 3 and 8 point sources. The estimations are performed using
noisy generalized measures, which are generated using (30), and 32 analytic sensors.

We clearly see that the algorithm is able to identify the “active regions.” Sensi-
tivity to noise increases with the number of sources to estimate.

6. Extension to 3D. We have shown how to efficiently localize point sources
in the 2D case; we will show how we can adapt the proposed method for the 3D case.
Basically, we can account for a z-component using two approaches: a multiplanar
approach [11] and the use of a second set of test functions to reconstruct the missing
z-component. Here we exploit the second approach, because we find it more consistent
with our analytic sensing theory.
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First, we note that the computation of the generalized sample as stated in The-
orem 1 remains formally the same in the 3D case. However, the integral on the
right-hand side is now a surface integral.

Second, we consider two sets of analytic sensors. The first set {ψan}an /∈Ω contains
the same sensors3 as described in (11); that is, ψan(x, y, z) = 1

x+iy−an
. Next, we

apply the algorithm as schematized in Figure 4. This yields the projections on the
XY-plane of the position parameters, {(x1, y1) , · · · , (xM , yM )}, and the corresponding
intensities, {c1, . . . , cM}.

The second set {ψ′
an
} contains the following analytic—∆ψ′ = 0—sensors:

ψ′
an

(x, y, z) = zψan(x, y, z)

=
z

x + iy − an
.

(33)

The generalized samples, which are computed using Theorem 1 and (33), read as
follows:

〈
ψ′

an
, ρ

〉
=

M∑

m=1

cm
zm

xm + iym − an
.

Hence, these measures are linear in zm. Since we have access to the values of xm, ym,
and cm for m ∈ [[1, M ]], we can determine the corresponding z-coordinates by solving
the following system of linear equations:

〈
ψ′

an
, ρ

〉
=

M∑

m=1

cm
zm

xm + iym − an
, n ∈ [[0, N − 1]].

7. Conclusion. We proposed “analytic sensing” as a novel noniterative algo-
rithmic framework for identifying parametric source models from planar Cauchy mea-
surements. We extend the reciprocity gap concept by a particular choice of test
functions (sensors) that allow us to subsequently deploy annihilation filters to solve
the nonlinear problem associated with the localization problem.

We demonstrated the feasibility of the proposed algorithm by experimental sim-
ulations in a setup including noise degradation. The method reaches the theoretical
best performance as predicted by the Cramér–Rao bounds for a large range of SNR.
These results are reassuring as no other unbiased estimator can do better. An at-
tractive property of our algorithm is also that it provides a direct estimation even for
multipole configurations.
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