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ABSTRACT

We present an explicit formula for spline kernels; these are
defined as the convolution of several B-splines of variable
widths hi and degrees ni. The spline kernels are useful
for continuous signal processing algorithms that involve B-
spline inner-products or the convolution of several spline
basis functions. We apply our results to the derivation of
spline-based algorithms for two classes of problems. The
first is the resizing of images with arbitrary scaling factors.
The second is the computation of the Radon transform and
of its inverse; in particular, we present a new spline-based
version of the filtered backprojection algorithm for tomo-
graphic reconstruction. In both cases, our explicit kernel
formula allows for the use of high-degree splines; these offer
better approximation performance than the conventional
lower-order formulations (e.g., piecewise constant or piece-
wise linear models).

keywords: spline kernel, anti-aliasing, resizing, Radon
transform, filtered back-projection

1. INTRODUCTION

Continuous-space image processing deals with problems
that are specified in the continuous domain. In the Hilbert-
space formulation, images are represented as linear com-
binations of continuously-defined basis functions ϕk(x). A
convenient representation uses tensor-product basis func-
tions obtained by uniformly translating a single proto-
type: ϕk(x) = ϕ(x − k). If the continuous signal process-
ing operator T to be implemented is linear, we can dis-
cretize it by determining its effect on the basis functions:
T{ϕk}. The least-squares solution is obtained by project-
ing T{ϕk} onto the same discrete-continuous function space
V = span{ϕk}k∈Z [9]. In practice, the projection involves
the computation of inner products with a set of analysis
functions ϕ̃k that are the duals of ϕk. B-splines basis func-
tions are well suited for this kind of computation [7]. In
particular, they have been applied to the problems of im-
age resizing [2],[4],[8] and to tomographic reconstruction by
filtered back-projection [1],[3]. The main difficulty of the
above-mentioned algorithms is that they involve the com-
putation of inner products (or continuously-defined convo-
lutions) of B-splines of different widths. Until now, exact
formulas had only been available for relatively low order
models: n ≤ 1 for least-squares image resizing, and n = 0
for tomography. Higher-order solutions were considered for
image resizing but either they used a Gaussian approxi-
mation of B-spline convolutions [8], or they computed a
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Figure 1: Spline bi-kernels by convolution of two causal
(non-centered) B-splines βn

1 (x) ∗ βn
h (x) with n = {0, 1, 3}

and h ∈ [0, 1[. The kernels generate a smooth transition
between B-splines of degree n and degree 2n+1. For h = 0
and h = 1 the kernels are B-splines, as βn

1 (x) ∗ βn
h=0(x) =

βn
1 (x) and βn

1 (x) ∗ βn
h=1(x) = β2n+1

1 (x).

sub-optimal solution by oblique projection instead of an or-
thogonal one [4].

In this paper, we propose to develop an explicit solu-
tion applicable for higher-order splines. It is based on what
we call B-spline convolution kernels. To use these kernels,
both the input and the output signals have to be polyno-
mial splines. Moreover, the basis functions and analysis
functions have to be B-splines. This means that the in-
put signal has to be expressed in terms of B-splines, while
the output must be represented in terms of their duals (D-
spline) so that the optimal analysis functions ϕ̃k are B-
splines as well. Unser et al. described efficient routines to
change between the standard (cardinal) representation of a
signal in terms of its samples, its B-spline expansion, and
its representation in terms of dual splines [7].

2. B-SPLINE CONVOLUTION KERNELS

2.1. The B-spline function

Instead of the usual definition of a B-spline ((n + 1)-fold
convolution of a box function), we choose to express the
centered B-spline of degree n and width h as a sum of shifted
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and weighted one-sided power functions

βn
h (x) =

1

h
βn
(x
h

)
= ∆n+1

h ∗ (x)
n
+

n!
, (1)

where (x)n+ = max(0, x)n is the one-sided power function
and where ∆n+1

h is the centered finite-difference operator
at width h:

∆n+1
h =

n+1∑
k=0

(−1)k
(
n+ 1

k

)
δ(x+ h · (n+1

2
− k))

hn+1
. (2)

Thus we can write, the explicit form of the B-spline:

βn
h (x) =

n+1∑
k=0

(−1)k
(
n+ 1

k

)
(x+ h · (n+1

2
− k))n+

n! · hn+1
.

Its support is [−h(n+ 1)/2 , h(n+ 1)/2[ , its degree is n,

and its Fourier transform is β̂n
h (ω) = sinc

n+1(ω·h
2π
).

2.2. Convolution properties

We can show that the convolution of several one-sided
power functions of degrees n1, . . . , nm is again a one-sided
power function

xn1
+ ∗ . . . ∗ xnm

+ = x
m−1+

∑m
i=1 ni

+ = xNm
+ ; (3)

where the degree is Nm = m− 1 +∑m
i=1 ni.

The convolution of several difference operators
∆n1

h1
, ...,∆nm

hm
is written as

∆n1,...,nm
h1,...,hm

= ∆n1
h1

∗ . . . ∗∆nm
hm.

In the case where they all have the same width h, the
difference operator simplifies to

∆n1+1,...,nm+1
h,...,h = ∆

m+
∑m

i=1 ni

h = ∆Nm+1
h . (4)

By combining (3) and (4), we derive the well-known convo-
lution property of the B-splines:

βn1
h ∗ βn2

h (x) = ∆n1+n2+2
h ∗ xn1+n2+1

+

(n1 + n2 + 1)!
= βn1+n2+1

h (x).

2.3. The B-spline convolution kernel

The convolution of two B-splines of degrees n1, n2 and
widths h1, h2, called spline bi-kernel (Fig.1), is given by

β
n1,n2
h1,h2

(x) = βn1
h1

∗ βn2
h2
(x) = ∆n1+1,n2+1

h1,h2
∗ xn1+n2+1

+

(n1 + n2 + 1)!
.

(5)
In the same way, we define the spline m-kernel, which is

the convolution of a set ofm B-splines of degrees n1, · · · , nm

and widths h1, · · · , hm. It can be evaluated as follows:

βn1,...,nm
h1,...,hm

(x) = βn1
h1

∗ . . . ∗ βnm
hm
(x) = ∆n1+1,···,nm+1

h1,···,hm
∗ xNm

+

Nm!
.

(6)
Its support is

[−∑m
i=1 hi (ni + 1) /2,

∑m
i=1 hi (ni + 1) /2

[
.

The splinem-kernel is a non-uniform spline of degree Nm =
m − 1 +

∑m
i=1 ni. The spline m-kernel formula can be ex-

panded using (2) to obtain a closed-form expression.

3. RESIZING

We now use these kernels to obtain an exact implementa-
tion of the least-squares resizing method [8] for splines of
degree n > 1. The proposed algorithm is an alternative
to the standard interpolation which performs resizing by
interpolation and resampling. In the least-squares formula-
tion, the resampling step is replaced by projection using an
evaluation of inner products with the analysis functions ϕ̃k.
In essence, this is equivalent to applying an analog prefilter
prior to sampling. The advantage is a suppression of alias-
ing and a reduction of blocking artifacts. The algorithm,
which works for arbitrary scaling factors (enlargement or
reduction), is described next.

Since resizing is a separable procedure, we can describe
the method in 1D. The input is a discrete signal fk. The
first step is to construct a spline interpolant

f(x) =
∑

k

ckβ
n1(x− k) (7)

with coefficients ck = g ∗ fk. The change from cardinal
to B-spline representation is achieved by digital filtering;
the transfer function of the direct B-spline filter is G(z) =
1/
∑

k βn1
k z−k (see [7]). The coefficients ck can be retrieved

from the continuous function f(x) by the inner product

ck =
〈
f(x), β̃n1(x− k)

〉
.

We resize the image by the factor a and shift it by b. The
image is enlarged if a > 1 and shrunk if a < 1. The least-
squares approximation of the resized continuous image in

the space V ∈ span{β̃n2(x− l)} is

fa(x) =
∑
l∈Z

〈
f(

x− b

a
), βn2 (x− l)

〉
︸ ︷︷ ︸

dl

·β̃n2(x− l). (8)

As the scalar product is equivalent to a sampled convo-
lution, we have dl =

∑
k ck · 〈βn1(x−b

a
− k), βn2 (x− l)

〉
=∑

k ck · a · βn1,n2
a,1 (l − ak − b).

Finally, we resample the rescaled approximation fa(x);
this is achieved by simple digital filtering (conversion from
dual to cardinal representation).

We propose a fast implementation that takes advantage
of the short support of the bi-kernel and of the fact that the
sampled values βn1,n2

a,1 (l − ak − b) can be precomputed for
all relevant values of k and l. These values are then stored
in a lookup table that can be used repeatedly to resize the
rows (and columns) of the image.

4. RADON TRANSFORM AND FILTERED
BACK-PROJECTION

In this section, we recall some standard results on the
Radon transform and on its inverse [5]; these will be used
in the next section to obtain a discretization using splines.
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4.1. Radon transform

The Radon transform Rθ of an image f(�x), �x ∈ R2, is the

set of line integrals along the direction �θ at the distance t
from the origin

Rθ{f(�x)} = Rθf(t) =

∫
�x∈R2

f(�x)δ(t− �x� · �θ)d�x, (9)

where δ(t) is the Dirac impulse and �θ = (cos θ, sin θ)� ∈ S2
is a unit vector specifying the direction of the integration.

4.2. Filtered back-projection

The basis for the inverse Radon transform [3] is the well-
known identity

f(�x) = R∗KRθ{f(�x)} = R∗(q ∗ Rθ{f(�x)}), (10)

where K is a filter, in which each projection is convolved
with the 1D ramp filter q defined in Fourier by q̂(ω) = |ω|.
The backprojection operator R∗ is the adjoint of R:

(R∗p)(�x) =
∫ π

0

p(t, θ)dθ,

where t = �x� · �θ. The widely used filtered back-projection
(FBP) algorithm corresponds to the direct discretization of
the right-hand side of the inversion formula (R∗K).

5. SPLINE-BASED RADON TRANSFORM
AND FILTERED BACK-PROJECTION

Guédon et al. [1] have shown that the standard FBP could
be improved by using an explicit piecewise constant model
of the image with basis functions that are B-splines of de-
gree n = 0. Here, we will use our B-spline convolution
kernels to extend the approach to higher-order splines. We
also consider the direct problem which is the discretization
of the Radon transform. We use splines consistently to rep-
resent the image as well as the sinogram (i.e., the Radon
transform).

5.1. Radon transform of a B-spline

The image is represented using basis functions generated by
the 2D separable B-spline of degree n: βn

h (�x) = βn
h (x)β

n
h (y).

Using the Fourier slice theorem, we can determine the
Radon transform of the 2D B-spline by

Rθ{βn
h (�x)} = βn

h cos θ(t) ∗ βn
h sin θ(t) = βn,n

h cos θ,h sin θ(t), (11)

where t = �x��θ; it is precisely a B-spline bi-kernel whose
explicit form is given by (5). Also, note that, when the basis

function is shifted by h�k, �k = (k, l), its Radon transform

Rθ{βn
h (�x− h · �k)} = Rθβ

n
h (t − h�k��θ) is shifted by h�k��θ =

hk cos θ + hl sin θ.

5.2. Spline-based Radon transform

The basis functions in each of the following steps are
chosen to benefit from the spline kernel. The input
image f(�x) is approximated using B-splines fh(�x) =∑

k,l ck,lβ
n
h (�x − h�k), where ck,l = h2

〈
f(�x), β̃n

h (�x− h�k)
〉
.

Note the factor h2 from the biorthogonality condition

h2
〈
βn

h (�x), β̃
n
h (�x− h�k)

〉
= δ(�k). The Radon transform of

fh(t) is

gθ(t) = Rθfh(t) =
∑
k,l

ck,lRθβ
n
h (t− h�k��θ). (12)

The key quantity that needs to be determined is the least-
squares spline approximation of the Radon transform of the

2D basis function: Rθβ
n
h (t− h�k��θ). It is given by

Ps{Rθβ
n
h (t− h�k� · �θ)} =

=
∑

i

s · 〈Rθβ
n
h (t− h�k��θ), βn

s (t− is)〉 β̃n
s (t− is) =

=
∑

i

s · βn,n,n
h cos θ,h sin θ,s(h

�k��θ − is)︸ ︷︷ ︸
di,θ,k,l

β̃n
s (t− is) (13)

and can be calculated using our explicit formula (6) for the
B-spline tri-kernel. The width of βn

s is s. Finally we get

gθ,s(t) = Ps{gθ(t)} =
∑

i

∑
k,l

ck,l ·s·di,θ,k,l ·β̃n
s (t−is). (14)

5.3. Spline-based filtered back-projection

The first step is to filter the sinogram ĝθ,s(ω) in Fourier
with an ideal ramp filter (see section 4.2):

ĝq,θ(ω) = ĝθ,s(ω) · q̂(ω).
Next, in order to invert the Radon transform with the

spline kernel, the filtered signal is projected onto some
spline space and represented using B-spline basis functions:

gs,q,θ(t) = Psgq,θ(t) =
∑

i

cθ,i · βn
s (t− is),

where cθ,i = s · 〈β̃n
s (t− is), gq,θ(t)〉.

The next step is to calculate the back-projection
R∗

θgs,q,θ(t) and to approximate it in the image space, us-
ing dual B-spline basis functions

f̃h(�x) =
∑
k,l

c̃k,l · β̃n
h (�x− h�k), (15)

where c̃k,l = h2 ·∑θ〈R∗
θgs,q,θ(t), β

n
h (t− h�k��θ)〉.

Proposition 1: For any given angle θ, the following adjoint
relationship holds: 〈f,R∗

θg〉 = 〈Rθf, g〉.
Using Proposition 1, the coefficients c̃k,l are written as

c̃k,l =
∑
i,θ

cθ,i · h2 · 〈βn
s (t− is), Rθβ

n
h (t− h�k��θ)〉︸ ︷︷ ︸

di,θ,k,l

, (16)

where also di,θ,k,l = βn,n,n
h cos θ,h sin θ,s(h

�k��θ − is) is the same
spline kernel as in the spline-based Radon transform 13.
Again, the choice of spaces was guided by the spline kernel
usage. A fast algorithm to obtain di,θ,k,l consists of precal-
culating the B-spline tri-kernel at fine resolution so that we
can use a lookup table to calculate di,θ,k,l efficiently.
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Figure 2: Resizing: The images were shrunk by
√
3 and

then enlarged by the same factor. (e) original “Barbara”,
(a) standard resizing by cubic interpolation and sampling,
(b) resizing with spline kernel of degrees n1,2 = 3, (c) error
image of left side of (a), (d) error image of right side of (b).

6. EXPERIMENTS

In both experiments, we compare the standard approaches,
based on interpolation and sampling, with the least-squares
optimal spline procedure that uses our spline kernels.

Resizing: The test image “Barbara” with size 128×128
has been scaled down by a factor of

√
3 and then enlarged by

the same factor. Fig.2a shows the result for the standard al-
gorithm with cubic interpolation and sampling. The PSNR
is 22.48 dB. The result for resizing with the cubic spline tri-
kernel n1,2 = 3 is displayed in Fig.2b (PSNR=23.84 dB).
Improvements are due to the fact that the spline kernel acts
like an optimal anti-alias filter. The error images show that
the later method preserves more details (Fig.2d) than the
standard method (Fig.2c).

Filtered back-projection: The Shepp-Logan phantom
([6], Fig.3d) is of size 128 × 128. Its Radon transform was
computed over 256 equidistant angles with linear interpola-
tion. Fig.3a displays the reconstruction error for the stan-
dard algorithm (Shepp-Logan filter) with linear interpola-
tion for the back-projection. The PSNR is 26.89 dB. The
reconstruction error for the proposed FBP algorithm with
a spline tri-kernel of degrees ni = 0 is shown in Fig.3b
(PSNR=29.16). The best results (PSNR=29.34) were ob-
tained with linear spline tri-kernels (ni = 1) (Fig.3c);

7. CONCLUSION

Spline convolution kernels were first introduced in the con-
text of image resizing, but up to now no closed-form was
available beyond the degree n = 1. In this paper, we have
derived explicit formulas valid for all B-spline degrees n and
widths h. We have used these results to provide analytical
solutions for least-squares image resizing, computation of
image projections (Radon transform), and tomographic re-
construction by filtered back-projection using splines of any

Figure 3: Filtered back-projection: (d) original image,
(a) error of standard reconstruction with linear interpola-
tion (n = 1) and Shepp-Logan filter, (b) error of recon-
struction with spline tri-kernel of degrees ni = 0, (c) error
of reconstruction with spline tri-kernel of degrees ni = 1.

degree n. These are all examples of what we call continuous-
space image processing.
The presented least-squares algorithms outperform the

standard ones which use simple interpolation and are thus
sub-optimal. Moreover, we have shown that the results can
be improved even further by using higher-order splines. Of
course, the price to pay is an increase in the amount of
computation.
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