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Abstract

We propose a complex generalization of Schoenberg’s cardinal splines. To this end, we go back to the Fourier domain definition
of the B-splines and extend it to complex-valued degrees. We show that the resulting complex B-splines are piecewise modulated
polynomials, and that they retain most of the important properties of the classical ones: smoothness, recurrence, and two-scale
relations, Riesz basis generator, explicit formulae for derivatives, including fractional orders, etc. We also show that they generate
multiresolution analyses of L2(R) and that they can yield wavelet bases. We characterize the decay of these functions which are no-
longer compactly supported when the degree is not an integer. Finally, we prove that the complex B-splines converge to modulated
Gaussians as their degree increases, and that they are asymptotically optimally localized in the time–frequency plane in the sense
of Heisenberg’s uncertainty principle.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Splines are very useful functions for mathematical analysis as well as for signal- and image processing, analysis,
and representation, for computer graphics and many more [1–4]. The basis functions for I.J. Schoenberg’s polynomial
splines with uniform knots [5,6] are

βn(t) = 1
n!

n+1∑

k=0

(−1)k
(

n + 1
k

)
(t − k)n+, n ∈ N.

Splines had their second breakthrough as G. Battle [7] and P.-G. Lemarié [8] discovered that B-splines generate
multiresolution analyses and wavelets. Their simple form and compact support, in particular, was convenient for
designing multiresolution algorithms and fast implementations. In [9], T. Blu and M. Unser gave an extension of
B-splines to fractional orders. They showed that all the desirable properties of cardinal B-splines carry over to the
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fractional case. Moreover, fractional splines can be designed to have an arbitrary order of smoothness. They generate
multiresolution analyses, and the FFT-based algorithm provides a fast method for signal analysis [10].

In this paper, we propose an analytical extension of the fractional B-spline approach that yields complex-valued
functions. We perform this by complexifying the exponent; i.e., the order of the B-splines. In this way, we construct
complex B-splines, which retain many properties of the classical real-valued B-splines; in particular, recurrence rela-
tions, smoothness and decay properties and multiresolution embeddings.

In the literature, various approaches have been proposed to extend polynomial splines to a complex setting. De-
pending on the method of construction, they can be classified into (1) complex curve splines and (2) planar splines.

J.H. Ahlberg, E.N. Nilson, and J.L. Walsh [11] were among the first to construct complex curve splines. They
considered knots t1, . . . , tN on a rectifiable Jordan curve K , and interpolated a function f :K → C with complex
cubics

q∆(t) = a(tj − t)3 + b(t − tj+1)
3 + c(tj − t) + d(t − tj+1)

for t on the arc Kj connecting tj−1 and tj , such that f (tj ) = q∆(tj ) and q ′
∆(tj ) = q ′

∆(tj+1). They also introduced an
extension to the bounded domain interior of K via the Cauchy integral formula. However, extensions to higher degree,
uniqueness and existence results for complex interpolating splines with equidistant and non-equidistant knots needed
several decades of research to be completely settled. For references on results, we refer to [12, Ch. 1, §1. 7, Note 3].

H. Chen [12] considered the Torus K = T and defined complex B-splines via divided differences

Nj,n(z) = (zj+n+1 − zj )[zj , . . . , zj+n+1]s(s − z)n+,

where (s − z)l+ describes a polynomial of order l over some interval of T. These splines satisfy a recursion formula
and reproduce polynomials of degree n. Within this framework, Chen also defined complex harmonic splines via
the Poisson integral formula. However, since these are periodic functions in L2(T), they cannot be seen as a direct
extension of B-splines which live in L2(R).

G. Opfer and M.L. Puri [13] defined complex planar splines of the form p(z) = ∑N
j,k=0 aj,kz

j zk , aj,k ∈ C, on
triangulations of the complex plane. The monograph of G. Walz [14] gives an overview of complex splines on curves in
the complex plane and of planar splines. Complex planar splines are of special relevance for the analysis of conformal
mappings.

All these approaches and their approximation properties strongly depend on the choice of underlying bounded
domains, meshes or rectifiable Jordan curves. Moreover, these complex splines have only been specified for integer
degrees so far.

In this paper, we propose a natural extension of B-splines to complex splines on R, which does not depend on the
choice of certain curves or domains, and which is possible for all degrees α ∈ R+. Similar to their real counterparts,
our complex splines generate multiresolution analyses for L2(R). Moreover, the simple form of the scaling function
in the Fourier domain allows the direct use of the Mallat algorithm [15] for wavelet analysis. This makes them easily
accessible for applications.

This paper is organized as follows: We start with a short motivation for our construction. In fact, our complex B-
splines are a generalization of fractional ones [9] to complex degrees. In the next section, we give a proper definition
in Fourier domain and show that this construction is well defined. Section 4 is concerned with the time-domain
representation, whereas Section 5 concentrates on B-spline properties, such as smoothness and decay, recurrence
relations, and differential properties. We show that all those properties carry over smoothly from the fractional case.

In Section 6 we show that our construction of complex B-splines generates multiresolution analyses of L2(R). The
respective refinement filters have a closed form and allow a fast implementation in Fourier domain.

In Section 7 and 8, we investigate the asymptotic behavior of complex B-splines. We show that they converge to Ga-
bor functions as their degree increases and give an order of convergence. Moreover, we show that they approximately
satisfy the lower bound of the Heisenberg uncertainty principle and thus converge to optimally time–frequency local-
ized functions. Interestingly, the same results apply for cardinal B-splines and their fractional generalization. With our
explicit order of convergence, we also contribute to the theory on those function families.
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2. Turning classical B-splines to complex B-splines

Cardinal B-splines βn(x), here given in their Fourier domain representation

β̂n(ω) =
(

1 − e−iω

iω

)n+1

, n ∈ N,

have proved to be appropriate bases for many theoretical problems [3] as well as applications, including the life sci-
ences [16,17]. However, they are piecewise polynomial functions and thus their order of smoothness—or, equivalently,
their order of approximation—cannot be adjusted continuously. This problem was considered by T. Blu and M. Unser
in [9] and solved by introducing fractional splines with a fractional exponent α ∈ R. They defined two versions of
fractional B-splines: The causal one, βα

+,

β̂α
+(ω) =

(
1 − e−iω

iω

)α+1

,

and the symmetric one, βα
∗ , given by

β̂α
∗ (ω) =

(
1 − e−iω

iω

) α+1
2

(
1 − eiω

−iω

) α+1
2

.

Both types are in L1(R) if α > −1 and in L2(R) if α > − 1
2 . Later they introduced a further parameter τ ∈ R describing

shifts in the time domain [18,19]:

β̂α
τ (ω) =

(
1 − e−iω

iω

) α+1
2 −τ(1 − eiω

−iω

) α+1
2 +τ

.

The B-splines are all scaling functions and can be used to specify dyadic multiresolution analyses of L2(R). However,
they are real-valued. To define complex splines, we extend the construction one step further by considering complex-
valued exponents instead of real ones.

3. Definition of complex B-splines

Given two complex numbers z,w &= 0, we define the exponentiation operation as

wz := ez(ln |w|+i argw), (1)

where the representation w = |w|ei argw , with argw ∈ [−π,π[, is unique. This means that we only consider the
principal branch of the complex exponential function. As usual 0z = 0 and w0 = 1.

Definition 1. Suppose z = α + iγ ∈ C, α > − 1
2 , γ ∈ R. The complex B-spline βz of complex degree z is defined in

L2(R) via its Plancherel transform

β̂z(ω) =
(

1 − e−iω

iω

)z+1

.

The shifted variant βz
y is defined in L2(R) by

β̂z
y(ω) = β̂

α+iγ
τ+iη (ω) =

(
1 − e−iω

iω

) z+1
2 −y(1 − eiω

−iω

) z+1
2 +y

,

where z = α + iγ , y = τ + iη with parameters α > − 1
2 , γ , τ,η ∈ R.

Theorem 2. The complex B-splines βz and βz
y are both well-defined, uniformly continuous, and elements of L2(R).

Proof. Consider the function Ω(ω) = 1−e−iω

iω . Obviously, f has a continuation Ω(0) = 1 and zeros at the points
ω ∈ 2πZ \ {0}. The values of the function Ω never touches the negative real axis (see Fig. 1): Im Ω(ω) = 1−cos ω

iω = 0
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Fig. 1. The function Ω(ω) = 1−e−iω

iω describes a curve in the complex plane, which never touches the negative real axis.

Fig. 2. The parameter η in the definition of the complex B-splines causes a one-sided enhancement of the frequency response of βz
y . This appears

as a shift of the functions’ spectrum. Left: Symmetric fractional B-spline for α = 3 and τ = y = 0. Center and right: The complex shift y = τ + iη

is increased to η = 0.25 and η = 0.5.

if and only if ω ∈ 2πZ, and Re Ω(ω) = sinω
ω is either zero or one at these points. We can always stick to the main

branch when considering the complex exponents or complex logarithms. Thus (Ω(ω))z is uniquely defined according
to (1). Hence β̂z and β̂z

y are well defined.
By exploiting the L2(R) inclusions of fractional B-splines [9], we get the following estimate:

∥∥β̂z
∥∥2

2 =
∫

R

∣∣∣∣

(
1 − e−iω

iω

)α+1

e−iγ ln |Ω(ω)|eγ argΩ(ω)

∣∣∣∣
2

dω ! e2γ π

∫

R

∣∣∣∣

(
1 − e−iω

iω

)α+1∣∣∣∣
2

dω = e2γ π
∥∥β̂α

+
∥∥2

2 < ∞.

Analogously,

∥∥β̂z
y

∥∥2
2 =

∫

R

∣∣β̂α
τ (ω)e2η arg Ω(ω)

∣∣2 dω ! e2ηπ
∥∥β̂α

τ

∥∥2
2 < ∞.

Thus, both functions belong to L2(R) and their Plancherel inverses exist. Hence βz,βz
y ∈ L2(R).

In the same way, one can show that β̂z and β̂z
y are both elements of L1(R) for Re z > −1. Hence, βz and βz

y are
uniformly continuous. !

When compared to real-valued fractional B-splines βα
+ and βα

τ , the imaginary part Im z = γ of the complex expo-
nent z and the complex shift y have the following effects:

For β̂z(ω) = β̂α
+(ω)e−iγ ln |Ω(ω)|eγ argΩ(ω), the parameter γ introduces a phase and a scaling factor. In fact, the

frequency components on the negative and positive real axis are enhanced with different sign, since argΩ(ω) " 0 for
ω ! 0 and argΩ(ω) ! 0 otherwise. This has the effect of shifting the frequency spectrum towards the negative or
positive frequency side, depending on the sign of γ .

For the shifted complex B-spline β̂z
y(ω) = β̂α

τ (ω)eiγ ln |Ω(ω)|e2η argΩ(ω), the complex exponent γ also introduces
a phase factor. The scaling factor here involves η, which influences the enhancement of positive (resp., negative)
frequency components analogously. Figure 2 illustrates this effect. Note that β̂α

iη is a real-valued function for all
η ∈ R.
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Fig. 3. Complex truncated power function xz
+ for z = 1 + iγ , γ ∈ [0,2]. The straight line in the background represents the power function x+ .

4. Time domain representation

It is well known that B-splines and fractional B-splines can be represented as a series of truncated power functions.
The same can be proved for complex B-splines.

4.1. Time domain representation for βz

Let xz
+ denote the truncated power function of complex degree z with knot zero:

xz
+ =

{
xz = ez·lnx = xRe zei Im z lnx for x > 0,

0 elsewhere.

For an example, see Fig. 3. Obviously |xz
+| = xRe z

+ . The imaginary part introduces a phase factor.
For Re z > 0, Re z /∈ N and Im z &= 0, we have with the following distributional Fourier transform [20]

(
xz
+
)ˆ

(ω) = 1
(iω)z+1 *(z + 1),

where the last but one equation can be derived using Cauchy’s integral theorem for holomorphic functions. If n is a
positive integer, we have

(
xn
+
)ˆ

(ω) = *(n + 1)

(iω)n+1 + inπδ(n)(ω).

Here * denotes Euler’s Gamma function, which is defined on the set C \ {0,−1,−2,−3, . . .}.
The truncated power function xz

+ and their integer shifts (x − k)z+, k ∈ Z, are the basic atoms for the time domain
representation of βz.

Theorem 3. The time domain representation of the complex B-spline βz is

βz(x) = 1
*(z + 1)

∑

k!0

(−1)k
(

z + 1
k

)
(x − k)z+. (2)

This equation is valid pointwise for all x ∈ R and also in the L2(R)-sense.
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Before proving this theorem, we have a closer look at the differences on the right-hand side of (2).
For fixed z ∈ C this is a causal complex difference operator

Cc(R) → Cc(R), f (→ ∆zf =
∑

k!0

(−1)k
(

z

k

)
f (• − k).

It satisfies ∆z(xf (x)) = (x − z)∆zf (x) + z∆z−1f (x), and for all z,w ∈ C and for compactly supported continuous
functions f,g ∈ Cc(R), ∆z+w(f ∗ g) = ∆zf ∗ ∆wg, and thus extends the real-valued version in [9].

Proof of Theorem 3. For Re z > 0, we consider the pointwise-defined function

1
*(z + 1)

∆z+1xz
+ := 1

*(z + 1)

∑

k!0

(−1)k
(

z + 1
k

)
(x − k)z+.

For z /∈ N, its Fourier transform in the sense of tempered distributions is given by

1
*(z + 1)

(
∆z+1xz

+
)ˆ

(ω) = 1
*(z + 1)

∑

k!0

(−1)k
(

z + 1
k

)∫

R

(x − k)z+e−iωx dx

= 1
*(z + 1)

∑

k!0

(−1)k
(

z + 1
k

)∫

R

xz
+e−iω(x+k) dx =

∑

k!0

(−1)k
(

z + 1
k

)
e−iωk

(iω)z+1

= 1
(iω)z+1

(
1 − e−iω

)z+1 = β̂z(ω).

Here, we used the dominated convergence theorem together with the fact that
∑

k!0

∣∣(z+1
k

)∣∣ < ∞. This can be seen
from

(
z + 1

k

)
= *(z + 2)

*(k + 1)*(z + 2 − k)
= 1

*(k + 1)
zk

(
1 +O(1/z)

)

for z → ∞, along any curve joining z = 0 and z = ∞, since there zb−a*(z+a)/*(z+b) = 1+O(1/z), for a, b > 0.
Thus,

∑

k!0

∣∣∣∣

(
z + 1

k

)∣∣∣∣ =
∑

k!0

∣∣∣∣
1

*(k + 1)
zk

(
1 +O(1/z)

)∣∣∣∣ ! const e|z|.

Hence, the Fourier transform of 1
*(z+1)∆

z+1xz
+ is the function β̂z. From a density argument, we deduce the same

for L2(R)- and L1(R)-topology. Thus βz(x) = 1
*(z+1)∆

z+1xz
+ is the time-domain representation of the complex

B-spline, and converges pointwise.
For z = N ∈ N, we recover Schoenberg’s polynomial B-splines

βN(x) = 1
*(N + 1)

∆N+1xN
+ = 1

*(N + 1)

N+1∑

k=0

(−1)k
(

N + 1
k

)
(x − k)N+

and

β̂N(ω) =
(

1 − e−iω

iω

)N+1

.

This concludes the proof. !

This theorem shows that complex B-splines can be derived—as in the classical and in the fractional case—by
applying a difference operator on the function x (→ xz

+, Re z > 0. Figure 4 gives some examples of this new spline
family.
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Fig. 4. Complex B-splines βz for z = 2 + ik0.1, k = 0, . . . ,10. Left: Real parts. Middle: Imaginary parts. Right: 3D view. The dashed lines show
the Gaussian envelope.

4.2. Time domain representation of βz
y

The same type of considerations also apply to βz
y . In the following, our aim is to define an appropriate difference

operator ∆z
y and find a function ρz

y such that βz
y = ∆z

yρz
y .

Formally, we can factor β̂z
y into a product of a 2π -periodic and a decaying component:

β̂z
y(ω) =

[(
1 − e−iω

) z+1
2 −y(1 − eiω

) z+1
2 +y

]
·
[
(iω)−

z+1
2 +y(−iω)−

z+1
2 −y

]
. (3)

The 2π -periodic part corresponds to the difference operator, while the right-hand factor will yield the function ρz
y . We

first consider the periodic part:

Lemma 4. Suppose Reu,Rev > 0. Then

(1 + z)u
(
1 + z−1)v =

∑

n∈Z

(
u + v

u − n

)
zn,

where the right-hand side converges absolutely. It also converges in L2(T), provided that Reu + Rev > − 1
2 .

Proof. For Reu > 0, the series

(1 + z)u =
∞∑

n=0

(
u

n

)
zn

converges absolutely for all |z| ! 1. Thus, for Rev > 0

(
1 + z−1)v =

∞∑

n=0

(
v

n

)
z−n

converges absolutely for all |z| " 1 [21, Satz 247, p. 440]. Hence their product converges absolutely for |z| = 1, and
we can sum up using any ordering:

(1 + z)u
(
1 + z−1)v =

∞∑

n=0

(
u

n

)
zn ·

∞∑

n=0

(
v

n

)
z−n =

∞∑

n=0

∞∑

k=0

(
u

k + n

)(
v

k

)
zn +

∞∑

n=1

∞∑

k=0

(
u

k

)(
v

k + n

)
z−n. (4)

It is shown in [22, Theorems 2 and 8] that, for x, y with Re(x),Re(y),Re(x + y) > −1 and a ∈ C, there holds a
generalized Vandermonde–Chu convolution formula

∞∑

k=0

(
x

k

)(
y

a − k

)
=

(
x + y

a

)
. (5)

The latter series is uniformly convergent on compact subsets with respect to a. This yields
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(1 + z)u
(
1 + z−1)v =

∞∑

n=0

∞∑

k=0

(
u

u − n − k

)(
v

k

)
zn +

∞∑

n=1

∞∑

k=0

(
u

k

)(
v

v − k − n

)
z−n

=
∞∑

n=0

(
u + v

u − n

)
zn +

∞∑

n=1

(
u + v

v − n

)
z−n

=
∞∑

n=0

(
u + v

u − n

)
zn +

∞∑

n=1

(
u + v

u + n

)
z−n =

∑

n∈Z

(
u + v

u − n

)
zn.

For Reu,Rev > −1, and Reu + Rev > − 1
2 , the formula is true in the L2-sense, since the monomials {zn, n ∈ Z}

form an orthonormal basis of L2(T) and thus allow unconditional summation. !

Note 1. This formula was proved in [19] for real u,v using Cauchy’s integral formula and a recurrence relation for(u+v
u−n

)
.

Now, we are able to define the difference operator ∆z
y = ∆

α+iγ
τ+iη by its Fourier or Plancherel transform as

(
∆z

yf
)ˆ

(ω) =
(
1 − eiω

) z
2 −y(1 − e−iω

) z
2 +y

f̂ (ω) =
∑

n∈Z

(
z

z
2 − y − n

)
(−1)neiωnf̂ (ω) (6)

for f ∈ L2(R), or in the sense of tempered distributions, for f ∈ S ′(R). Let
∣∣∣∣

z

k − y

∣∣∣∣ :=
(

z
z
2 + k − y

)

denote the modified binomial coefficient. Then

∆z
yf =

∑

k∈Z
(−1)k

∣∣∣∣
z

k − y

∣∣∣∣f (• − k) (7)

for f ∈ S ′, Re z > 0 and y ∈ C.
For bandlimited functions f with supp f̂ ∈ [0,2π], (6) simplifies to

(
∆z

yf
)ˆ

(ω) =
(

−iei ω
2 2 sin

ω

2

) z
2 −y(

ie−i ω
2 2 sin

ω

2

) z
2 +y

f̂ (ω) =
∣∣∣∣sin

ω

2

∣∣∣∣
iγ

e−iτ (ω+π)eηωe−ηπ
(
∆z

0f
)ˆ

(ω)

for ω ∈ [0,2π], since sin ω
2 " 0. Likewise, for f such that supp f̂ ∈ [−2π,0], we get (∆z

yf )ˆ(ω) = |sin ω
2 |iγ e−iτωeiτπ ×

eηωeηπ (∆α
0 f )̂(ω). This yields the following interpretation: Frequency parts in [0,2π]+4πZ are enhanced by a factor

e−ηπ , whereas frequency parts in [−2π,0] + 4πZ are enhanced by a factor eηπ . Thus, the global effect is that of a
fractional difference with an enhancement (respectively attenuation) of the positive frequency components by e−ηπ

and an attenuation of the negative components by eηπ .
Note that, for γ = 0, in time-domain ∆α

yf (t) = e−iyπ∆α
0 f (t + y) for f with supp f̂ ∈ [0,2π], and similarly,

∆α
yf (t) = e−iyπ∆α

0 f (t + y) for f with supp f̂ ∈ [−2π,0]. Thus, the parameter y acts as a combination of shift into
the complex plane and modulation within the complex plane.

Considering (3), we now have to determine the inverse Fourier transform of

ρ̂z
y(ω) = (−iω)−

z+1
2 −y(iω)−

z+1
2 +y,

which will then finally yield the time-domain formula for βz
y .

Theorem 5. The complex B-spline βz
y has the time domain representation

βz
y(x) = ∆z

yρz
y(x) =

∑

k∈Z
(−1)k

∣∣∣∣
z + 1
k − y

∣∣∣∣ρ
z
y(x − k), (8)
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with

ρz
y(t) = c1(z)

cosπy

*(z + 1)
|t |z + c2(z)

sinπy

*(z + 1)
|t |z sign t,

where c1 = c1(z) = − 1
2 sin π

2 z
and c2 = c2(z) = − 1

2 cos π
2 z

for z /∈ N0.
If z ∈ N0, we have to take into account an supplementary logarithmic factor ln |t |. In fact,

c1(2n, t) = (−1)n+1 1
π

ln |t | = c2(2n + 1, t) and c2(2n) = (−1)n+1 1
2

= c1(2n + 1),

for n ∈ N0.
For Re z > 0, the series (8) converges in S ′(R).

Note 2. The translation-invariant space generated by shifted complex-valued B-splines βz
iη is included in the one

generated by two real-shifted B-splines:

βz
iη ∈ span

{
βz

0(• − k),βz
1/2(• − k); k ∈ Z

}
L2(R).

This can be seen from the fact that

ρz
iη = cosh(η)ρz

0 − i sinh(η)ρz
1/2,

and from the estimates
∣∣ z+1
k−iτ

∣∣ =
∣∣ z+1

k

∣∣ 2
z2 (1 +O(1/z)) and

∣∣ z+1
k−iτ

∣∣ =
∣∣ z+1
k+ 1

2

∣∣ 2
z2 (1 +O(1/z)) for z → ∞.

Proof. For almost all ω ∈ R, a ∈ R, and b ∈ C, the following is true:

(−iω)
a
2 −b(iω)

a
2 +b = cos(πb)|ω|a + sin(πb)i|ω|a sign(ω).

Substituting a by −(z + 1) and b by y yields

β̂z
y(ω) =

∑

n∈Z

(
z + 1

z+1
2 + y − n

)
(−1)neinωρ̂z

y(ω)

=
∑

n∈Z

(
z + 1

z+1
2 + y − n

)
(−1)neinω

(
cos(πy)|ω|−(z+1) + sin(πy)i|ω|−(z+1) signω

)
.

Using the Fourier relations for generalized functions [20]

F−1
(

1
| • |z+1

)
(t) =





− |t |z

2*(z+1) sin π
2 z

if Re z > −1 and z /∈ 2N,

(−1)
z
2 +1 tz ln |t |

π*(z+1) if z ∈ 2N,
(9)

and

F−1
(

i
sign•
| • |z+1

)
(t) =






− |t |z sign t
2*(z+1) cos π

2 z
if Re z > −1 and z /∈ 2N − 1,

(−1)
z−1

2 tz ln |t |
π*(z+1) if z ∈ 2N − 1,

(10)

yields the explicit formula

βz
y(x) = ∆z+1

y ρz
y(x) =

∑

k∈Z
(−1)k

∣∣∣∣
z + 1
k − y

∣∣∣∣ρ
z
y(x − k),

with ρz
y as above. !

This proves that the representation given in [19] for real exponents α extends to the complex case as well. Moreover,
for non-integer α, the function ρz is selfsimilar; i.e.,

ρz
y(λx) = λzρz

y(x)
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Fig. 5. Central basic function ρz
y for z = α = 0.5, y = iη, η ∈ [0,0.5].

for positive λ. Thus ρz
y is a complex extension of the admissible central basis functions defined in [23], and βz

y(x) is
the localization of the complex central basis function ρz

y .
From the same viewpoint, βz is the localization of the self-similar central basis function xz

+, since for all λ > 0 it
is (λx)z+ = λzxz

+.
Examples of the complex splines βz

∗ are given in Fig. 6. Note that for z = α ∈ R+ the real part is an even function
and the imaginary part odd. This is due to the fact that β̂α

y is real-valued.

5. Basic properties

5.1. Continuity and decay

Since β̂z and β̂z
y are both elements of L2(R) for α > − 1

2 , continuous, and decaying like O
( 1

|ω|α+1

)
as |ω| → ∞,

we deduce that the complex B-splines belong to the following Sobolev spaces:

βz,βz
y ∈ Wr

2 (R) for r < α + 1
2
.

The order of zeros at the points ω = 2πk, k &= 0, is α + 1, which can be seen from

β̂z
y(ω + 2πk) = β̂z

y(ω)

(
ω

ω + 2πk

) z+1
2 −y( ω

ω + 2πk

) z+1
2 +y

= β̂z
y(ω)O

(
‖ω‖z+1) for ω → 0.

The same is true for β̂z. Thus, Dmβ̂z is continuous for m < α + 1 and Dmβ̂z ∈ Lp(R) for 1 ! p ! ∞ and p(α + 1 −
m) > −1; i.e., m < α + 1 + 1

p .
Considering p = 1, xmβz is uniformly continuous for m < α + 2 and vanishing at infinity. Thus βz(x) = O(xm)

for |x| → ∞ and m < α + 2. The same reasoning applies for βz
y .

Note 3. The complex B-spline regularity as well as the decay only depend on the real part Re z = α of the complex ex-
ponent z. On the other hand, the imaginary part Im z = γ influences the damping (resp., enhancement) of frequencies
(cf. Section 3).
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Fig. 6. The splines βz
y for z = α = 1 and y = iη, η = 0,0.1, . . . ,1. (a) Real part, (b) imaginary part, (c) absolute value. (d) shows the splines in a

3D view with respect to real and imaginary part. The thicker triangles in (a), (c) and (d) correspond to the real-valued piecewise linear B-spline β1.

5.2. Recurrence relations and differential properties

The classical B-splines satisfy some well-known recurrence relations, such as iterative construction by a recursion
formula, and convolution equations. In [9], it is shown that these carry over to fractional splines. The same is true for
complex splines:

Proposition 6. The complex fractional B-spline βz, Re z = α > 0, satisfies

(i) βz(x) = x
z βz−1(x) + z+1−x

z βz−1(x − 1).

(ii) βz1 ∗ βz2 = βz1+z2+1.
(iii) Dz1βz = ∆

z1
+ βz−z1 for all Re z1 > Re z. Here, the differential operator Dz1 is defined on S(R) via its Fourier

transform (Dz1f )̂(ω) = (iω)z1 f̂ (ω).

Proof. The proofs in [9] can be directly adapted for complex exponents, since both Gamma and Beta function have
analytic continuations to the complex halfplane Re z > 0. !

The complex B-splines βz
y satisfy a recurrence formula relating the B-splines of degree z and z − 2. This is due

their Definition 1, where the complex degree z splits in z + 1/2. Moreover, the corresponding difference operator ∆z
y

behaves as a weighted sum of fractional derivatives:
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Proposition 7. (i) The shifted complex B-spline βz
y = β

α+iγ
τ+iη satisfies the following recurrence relation:

βz
y(x) =

(
x − y + z+1

2

)2

z(z − 1)
βz−2

y (x + 1) − 2

(
(x − y)2 + 1−z2

4

)

z(z − 1)
βz−2

y (x) +
(
x − y − z+1

2

)2

z(z − 1)
βz−2

y (x − 1) (11)

for all Re z = α > 1 and all y ∈ C.
(ii) β

z1
y1 ∗ β

z2
y2 (t) = β

z1+z2+1
y1+y2

(t).

(iii) Explicit differentiation formula:

∆z
yβz1

y1
= ∂z

yβ
z1+z
y1+y, (12)

where ∂z
y is a fractional differential operator, defined in the sense of tempered distributions:

∂z
yf (t) = *(z + 1)

2π

(
κ(z, y)−∞Dz

t f (t) + κ(z,−y)−∞Dz
−t f (−t)

)
,

with κ(z, y) = e−iyπe−i(z+1) π
2 + eiyπei(z+1) π

2 , and

−∞Dz
t f (t) =

t∫

−∞

f (s)

(t − s)z+1 ds. (13)

Proof. The proof of (i) is a direct extension of the one of [9, Proposition 2.6] for real-valued fractional B-splines.
From formula (6), we easily see that ∆

z1
y1∆

z2
y2f (x) = ∆

z1+z2
y1+y2

f (x). Taking the Fourier transform yields (ii).
In order to verify (iii), we consider the Fourier domain version of the right side of Eq. (12):

(
∆z

yβz1
y1

)ˆ
(ω) =

(
1 − eiω

) z
2 −y(1 − e−iω

) z
2 +y

β̂z1
y1

(ω)

= (−iω)
z
2 −y(iω)

z
2 +y

(
1 − e−iω

iω

) z1+z+1
2 −y1+y(1 − eiω

−iω

) z1+z+1
2 +y1−y

= (−iω)
z
2 −y(iω)

z
2 +y β̂

z1+z
y1−y. (14)

Next, we simplify the first two factors: (iω)
z
2 +y(−iω)

z
2 −y = |ω|zeiyπ sign(ω). We then calculate the generalized

inverse Fourier transform:

F−1(|ω|zeiyπ sign(ω)
)
(t) = e−iyπ

2π

∫

R

ωz
+e−iωt dω + eiyπ

2π

∫

R

ωz
+e−iω(−t) dω = *(z + 1)

2π

(
e−iyπ

(it)z+1 + eiyπ

(−it)z+1

)

= *(z + 1)

2π |t |z+1

(
e−iyπe−(z+1)i π

2 sign(t) + eiyπe(z+1)i π
2 sign(t)

)
,

which holds as long as Re z > 0 and z /∈ N. In the case z = n ∈ N, the term in

2 (eiyπδ(n)(−t) + e−iyπδ(n)(t)) has to be
added to the result.

Since multiplication in Fourier domain is a convolution in time domain, we get

∆z
yβz1

y1
(t) = *(z + 1)

2π

∫

R

β
z1+z
y1−y(s)

|t − s|z+1

(
e−iyπe−i(z+1) π

2 sign(t−s) + eiyπei(z+1) π
2 sign(t−s)

)
ds

= *(z + 1)

2π

(
κ(z, y)−∞Dz

t β
z1+z
y1−y(t) + κ(z,−y)−∞Dz

−tβ
z1+z
y1−y(−t)

)

with κ(z, y) and −∞Dz
t as given in the theorem. This concludes the proof. !

Note 4. Using integration by parts and Cauchy’s principle value [24, p. 41 f.], −∞Dα
t f (s), f ∈ D(R), can be reduced

to a variant of the Sturm–Liouville or the Caputo fractional derivative. In fact, for n − 1 < α < n,
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−∞Dα
t f (s) =

t∫

−∞

f (s)

(t − s)α+1 ds

= lim
ε→0

−f (t − ε)

εα · α
− f ′(t − ε)

εα−1 · α(α − 1)
− · · · − f (n−1)(t − ε)

εα+1−n · α(α + 1) · · · (α + 1 − n)

+
t∫

−∞

f (n)(s)

(t − s)α+1−n · α(α + 1) · · · (α + 1 − n)
ds.

The last term is a scaled version of Caputo fractional derivative (see [25])

C
a Dα

t f (t) = 1
*(α + n)

t∫

a

f (n)(s)

(t − s)α+1−n
ds (0 ! n − 1 < α < n), (15)

which for α = −∞ is equivalent to the Sturm–Liouville fractional derivative. These operators provide an interpolation
between integer–order derivatives. Indeed, if a function f has n + 1 continuous and bounded derivatives in ]−∞, t],
which vanish at −∞, then limα→n

C
−∞Dα

t f (t) = f (n)(t).

The real-valued version of the Caputo fractional differential operator is used for the analysis of steady state
processes; e.g., fractional order dynamic systems with periodic input signals, wave propagation in viscoelastic mate-
rials, etc. [25].

6. Multiresolution analyses with complex B-splines

As their real-valued cousins, the complex B-splines generate dyadic multiresolution analyses; i.e., they generate a
sequence of spaces

{0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2(R)

with the following properties:

(i)
⋂

j Vj = {0} and
⋃

j Vj = L2(R),
(ii) f ∈ Vj if and only if f (2−j•) ∈ V0,

(iii) f ∈ V0 if and only if f (• − k) ∈ V0 for all m ∈ Z, and
(iv) there exists a function ϕ ∈ V0, called a scaling function, such that {ϕ(• − k)}k∈Z forms an orthonormal basis

of V0.

The key property of a multiresolution analysis is a two-scale relation. It relates the spaces Vj and Vj+1 by a dilation
of their generators (here, the complex B-splines).

Proposition 8. The complex B-splines βz and βz
y satisfy the following two-scale relations:

βz(x) = 2−z
∑

k!0

(
z + 1

k

)
βz(2x − k)

and

βz
y(x) = 2−z

∑

k∈Z

∣∣∣∣
z + 1
y + k

∣∣∣∣β
z
y(2x − k),

for Re z > 0 and y ∈ C and almost all x ∈ R.

Proof. If there exists a two-scale relation βz = ∑
k∈Z hkβ

z(2 • −k), then the (hk)k∈Z are the Fourier coefficients of
the following frequency response of the refinement filter:
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Hz(ω) = 2
β̂z(2ω)

β̂z(ω)
= 2 · (iω)z+1

(2iω)z+1

(1 − e−2iω)z+1

(1 − e−iω)z+1 = 2
2z+1

(
1 + e−iω

)z+1 = 1
2z

∑

k!0

(
z + 1

k

)
e−iωk (16)

almost everywhere. This function is clearly 2π -periodic, and thus corresponds to a digital convolution operator, the
refinement filter.

For βz
y we get

Hz
y (ω) = 2

β̂z
y(2ω)

β̂z
y(ω)

= 2

( 1−e−i2ω

i2ω

) z+1
2 −y

( 1−e−iω

iω

) z+1
2 −y

( 1−ei2ω

−i2ω

) z+1
2 +y

( 1−eiω

−iω

) z+1
2 +y

= 2−z
(
1 + e−iω

) z+1
2 −y(1 + eiω

) z+1
2 +y

= Hz
y (ω + 2π) almost everywhere. (17)

To deduce the Fourier coefficients of Hz
y , we use the Cauchy product formula with the generalized Vandermonde–

Chu convolution formula and derive as in (5)

Hz
y (ω) = 2−z

∑

k!0

( z+1
2 − y

k

)
e−ikω

∑

l!0

( z+1
2 + y

l

)
eilω

= 2−z
∑

n∈Z

(
z + 1

z+1
2 − y − n

)
e−iωn = 2−z

∑

n∈Z

∣∣∣∣

(
z + 1
y + n

)∣∣∣∣ e
−iωn.

This concludes the proof. !

Theorem 9. Let Re z > 0. Then the spaces

Vj = span
{

βz

(
x − 2j k

2j

)
: k ∈ Z

}
L2(R), j ∈ Z,

resp.

Vj,∗ = span
{

βz
y

(
x − 2j k

2j

)
: k ∈ Z

}
L2(R), j ∈ Z,

form dyadic multiresolution analyses with scaling function βz, resp. βz
y .

Proof. To prove that βz generates a multiresolution analysis, we have to check the following three conditions [26,
Theorem 2.13]: (i) {βz(• − k)}k∈Z is a Riesz sequence in L2(R), (ii) the existence of two-scale relation, which was
already shown in Proposition 8, and (iii) that β̂z is continuous at the origin and β̂z(0) = 0. From (i) we can deduce
that

⋂
j∈Z Vj = {0}; (i) and (iii) give the density of

⋃
j∈Z Vj in L2(R).

We first show that {βz(x − k)}k∈Z forms a Riesz basis of V0. It is enough to show the existence of constants A and
B such that

0 < A !
∑

k∈Z

∣∣β̂z(ω − 2πk)
∣∣2 ! B < 0 almost everywhere.

The central part can be rewritten as:
∑

k∈Z

∣∣β̂z(ω + 2πk)
∣∣2 =

∑

k∈Z

∣∣β̂α
+(ω + 2πk)

∣∣2∣∣e−iγ ln |Ω(ω+2πk)|∣∣2∣∣eγ arg Ω(ω+2πk)
∣∣2

. (18)

For the fractional B-splines βα
+, it is known [9, Proposition 3.3] that there are positive constants A,B such that

A ! ∑
k∈Z |β̂α

+(ω + 2πk)|2 ! B for almost all ω ∈ R. Since e−2π |γ | ! |eγ arg Ω(ω+2πk)|2 ! e2π |γ |, we deduce that

{βz(• − k)}k∈Z is a Riesz basis in V0. Moreover, ϕ̂z = β̂z/

√∑
k∈Z |β̂z(• + 2πk)|2 generates an orthonormal basis

of V0.
The remaining step is to prove (iii), which is obvious from the definition of the complex B-spline. This concludes

the proof for βz. An analog argumentation is applicable as well for βz
y and V0,∗. !
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Using the fact that βz ∈ L1(R) ∩ L2(R), we can deduce from (9) that βz(2πk) = 0 for all k ∈ Z \ {0}. The Poisson
summation formula yields the partition of unity:

∑
k∈Z βz(x − k) = 1 almost everywhere (see also [27]).

To avoid exploding growth of the Riesz bounds in (18) it is advisable to keep γ reasonably small; say, γ ∈ [−1,1].

Note 5. Since the filter Hz
∗ has infinitely many non-vanishing Fourier coefficients, an implementation of the corre-

sponding multiresolution algorithm via filtering as given in [15] is inpractical. As we saw in (17), the filter can be
represented in an easily accessible closed form. This suggests an efficient implementation of the filtering algorithm in
Fourier domain, as proposed in [18].

7. Gaussian shape

The classical B-splines βn are known to converge to Gaussians [28]. In the following we examine to which extend
the same is true for the complex B-splines.

Theorem 10. Let z = α + iγ and y ∈ C. Then, for α → ∞, and fixed γ ∈ R the complex B-splines converge pointwise
in the Fourier domain to modulated and shifted Gaussians:

lim
α→∞ β̂z

(
ω√

α + 1

)/(
e− i

2
√

α+1ωe
−( ω

2
√

6
− γ

√
3√

2
√

α+1

)2

e
3γ 2

2(α+1)

)
= lim

α→∞ 1 +O
(

ω2

α + 1

)
= 1, (19)

resp.

lim
α→∞ β̂z

y

(
ω√

α + 1

)/(
e
iy ω√

α+1 e− ω2
24

)
= lim

α→∞ 1 +O
(

γ ω2

α + 1

)
= 1. (20)

From these estimates we see that the parameter γ (resp., y) act like a frequency shift in β̂z (resp., β̂z
y ). This

convergence process is illustrated in Fig. 7.

Proof. As ω → 0, we have that

1 − e−iω

iω
= e−i ω

2

(
sin ω

2
ω
2

)
= e−i ω

2 ·
∞∑

k=0

(−1)k
1

(2k + 1)!

(
ω

2

)2k

= e−i ω
2

(
1 − ω2

24
+ ω4

24 · 4! +O
(
ω6)

)
. (21)

Thus

ln
(

1 − e−iω

iω

)
= ln

(
e−i ω

2

(
1 − ω2

24
+ ω4

24 · 4! +O
(
ω6)

))
= −i

ω

2
+ ln

(
1 − ω2

24
+ ω4

384
+O

(
ω6)

)
. (22)

Now, we make use of the following expansion valid in a neighborhood of x = 1:

lnx = (x − 1) − (x − 1)2

2
+ (x − 1)3

3
+O

(
(x − 1)4).

Thus, for ω → 0, we have

ln
(

1 − ω2

24
+ ω4

384
+O

(
ω6)

)
= −ω2

24
+ 1

564
ω4 +O

(
ω6),

and together with (22)

ln
(

1 − e−iω

iω

)
= − i

2
ω − ω2

24
+ 1

564
ω4 +O

(
ω6).

This yields

β̂z

(
ω√

α + 1

)
= e− i

2
√

α+1ωe
−( ω

2
√

6
− γ

√
3√

α+1
√

2

)2+ γ 23
2(α+1) +O( ω2

α+1
)

,
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Fig. 7. Convergence of β̂α
3i (ω) to a Gaussian (dotted line) e−ω2/24 for α = 2,3, . . . ,6. Already for small α, the real part and absolute value tend to

a Gaussian, whereas the imaginary part tends to zero.

resp.

β̂z
y

(
ω√

α + 1

)
= e

iy ω√
α+1 e− ω2

24 +O( ω4
α+1

)
e

iγ
α+1

(− ω2
24 +O( ω4

α+1
))

for α → ∞, y ∈ C, pointwise for all ω ∈ R. Thus

β̂z

(
ω√

α + 1

)
e

i
2
√

α+1ωe
( ω

2
√

6
− γ

√
3√

α+1
√

2

)2− γ 23
2(α+1) = 1 +O

(
ω2

α + 1

)
,

resp.

β̂z
y

(
ω√

α + 1

)
e
−iy ω√

α+1
+ ω2

24 = 1 +O
(

iγ ω2

α + 1

)

for α → ∞. This gives assertions (19) and (20). !

Note 6. From the above calculations one deduces that

β̂z
y

(
ω√

α + 1

)
= e−ω2/24

(
1 + iyω√

α + 1
+ iγ

ω2

24(α + 1)
+O

(
ω4

α + 1

))

pointwise for α → ∞ and fixed y ∈ C. Thus, B-splines of fractional degree converge in order O(1/(α + 1)), whereas
the shifted splines converge in O(1/

√
α + 1).
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Theorem 11. The complex B-splines converge to modulated Gaussians in Lp(R) for 1 ! p ! ∞:
∥∥∥∥β̂z

( •√
α + 1

)
− e− i

2
√

α+1ωe
−( ω

2
√

6
− γ

√
3√

α+1
√

2

)2+ γ 23
2(α+1)

∥∥∥∥
p

→ 0

and
∥∥∥∥β̂z

y

( •√
α + 1

)
− e

iy ω√
α+1

− ω2
24

∥∥∥∥
p

→ 0

for α → ∞.
In time domain for 2 ! q ! ∞

∥∥∥∥
√

α + 1 βz(
√

α + 1•) −
√

6
π

e
3γ 2

2(α+1) e
i

6γ√
α+1

(•−
√

α+1
2

)
e−( 1

2

√
6
(•−

√
α+1
2

))2
∥∥∥∥

q

→ 0,

resp.
∥∥∥∥
√

α + 1 βz
y(

√
α + 1•) −

√
6
π

e− 6y2
α+1 e

−12 y√
α+1

•
e−6(•)2

∥∥∥∥
q

→ 0

for α → ∞.
The rate of convergence in all four cases is O(1/(α + 1)).
The limits in time domain are also true pointwise.

Proof. In [28] it is shown that
( sin πω√

α+1
πω√
α+1

)α+1

! e−ω2 + (1 − χ[−1,1])
(

ω

2

)
· 2
(πω)2

for all ω ∈ R and all α " 1. The function on the right-hand side is integrable, in Lp(R) for 1 ! p ! ∞, and indepen-
dent of α.

Thus we have
∣∣∣∣β̂

z

(
ω√

α + 1

)∣∣∣∣ !
∣∣∣∣β̂

α

(
ω√

α + 1

)∣∣∣∣ · e2π |γ | !
( sin ω

2
√

α+1
ω

2
√

α+1

)α+1

· e2π |γ |

!
(

e
− ω2

(4π2) + (1 − χ[−1,1])
(

ω

4π

)
· 2
(ω/2)2

)
· e2π |γ |, (23)

and an analog result is true for β̂z
y and β̂α

∗ . For the approximant we have

∣∣e(α+1+iγ )
(− i

2
ω√
α+1

− ω2
24(α+1)

)∣∣ =
∣∣e

γ
2

ω√
α+1 e− ω2

24
∣∣ =

∣∣e− 1
24

(
ω−12 γ√

α+1

)2+6 γ 2
α+1

∣∣ ! ce6γ 2
e− 1

24 ω2
. (24)

The majorants both in (23) and (24) are independent of α and, thus, by Lebesgue’s dominated convergence theorem,
we have convergence in Lp(R), 1 ! p < ∞:

∥∥∥∥β̂z

( •√
α + 1

)
− e− i

2
√

α+1•e
−( •

2
√

6
− γ

√
3√

α+1
√

2

)2+ γ 23
2(α+1)

∥∥∥∥
p

=
∥∥∥e

−( •
2
√

6
− γ

√
3√

α+1
√

2

)2+ γ 23
2(α+1)

(
eO

( (•)2
α+1

)
− 1

)∥∥∥
p

= O
(

1
α + 1

)
→ 0 (25)

and the same for
∥∥∥∥β̂z

y

( •√
α + 1

)
− e

iy •√
α+1

− (•)2
24

∥∥∥∥
p

= O
(

1
α + 1

)
→ 0

for α → ∞. Since both β̂z, β̂z
y ∈ L1(R)∩L2(R) we find by the Hausdorff–Young inequality [29] and Fourier inversion
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∥∥∥∥
√

α + 1βz(
√

α + 1•) −
√

6
π

e
3γ 2

2(α+1) e
i

6γ√
α+1

(•−
√

α+1
2

)
e−( 1

2

√
6
(•−

√
α+1
2

)2)
∥∥∥∥

q

! C

∥∥∥∥β̂z

( •√
α + 1

)
− e− i

2
√

α+1•e
−( •

2
√

6
− γ

√
3√

α+1
√

2

)2+ γ 23
2(α+1)

∥∥∥∥
p

= O
(

1
α + 1

)
→ 0

for α → ∞ and
∥∥∥∥
√

α + 1βz
y(

√
α + 1•) −

√
6
π

e− 6y2
α+1 e

−12 y√
α+1

•
e−6(•)2

∥∥∥∥
q

! C

∥∥∥∥β̂z
y

( •√
α + 1

)
− e

−iy •√
α+1

+ (•)2
24

∥∥∥∥
p

= O
(

1
α + 1

)
→ 0 for α → ∞,

for 1 ! p ! 2 and 1
p + 1

q = 1. In both cases, the constant C is positive and only depends on p.

Theorem 10 already gave the pointwise convergence in the Fourier domain. Since both β̂z and β̂z
y are elements of

L1(R), we deduce the corresponding pointwise convergence in time domain by Fourier inversion and the dominated
convergence theorem. !

8. The Heisenberg uncertainty bound for βz
y

The asymptotics of the previous sections give hope that the complex B-splines βz
y converge to optimally time–

frequency localized functions in the sense of Heisenberg; i.e.,

1
2π

∫

R

x2∣∣βz
y(x)

∣∣2 dx ·
∫

R

ω2∣∣β̂z
y(ω)

∣∣2 dω " 1
4

∥∥βz
y

∥∥4
2,

with equality as Re z = α → ∞.

Theorem 12. For Re z = α → ∞, the complex B-spline βz
y satisfies the lower bound of the Heisenberg uncertainty

principle:

1
2

!
‖(

√
α + 1•)βz

y(
√

α + 1•)‖2

‖βz
y(

√
α + 1•)‖2

·
∥∥( •√

α+1

)
β̂z

y

( •√
α+1

)∥∥
2∥∥β̂z

y

( •√
α+1

)∥∥
2

= 1
2

+O
(

y√
α + 1

)
+O

(
γ

α + 1

)
→ 1

2
for α → ∞. (26)

Proof. We show that βα
y is approximately optimally time–frequency-localized for α → ∞, i.e., its Heisenberg uncer-

tainty product converges to 1
2 . Therefore, we use the asymptotics for βz

y :

lim
α→∞ β̂z

y

(
ω√

α + 1

)
= e−ω2/24 =: Ĝ(ω),

lim
α→∞

√
α + 1βz

y(
√

α + 1x) =
√

6
π

e−6x2 = G(x). (27)

Applying the triangle inequality for α large enough, we get

1
2

!
‖(•)βz

y(
√

α + 1•)‖2

‖βz
y(

√
α + 1•)‖2

·
∥∥(•)β̂z

y

( •√
α+1

)∥∥
2∥∥β̂z

y

( •√
α+1

)∥∥
2

=
‖(•)(βz

y(
√

α + 1•) − G(•) + G(•))‖2

‖βz
y(

√
α + 1•) − G(•) + G(•)‖2

·
∥∥(•)

(
β̂z

y

( •√
α+1

)
− Ĝ + Ĝ

)∥∥
2∥∥β̂z

y

( •√
α+1

)
− Ĝ + Ĝ

∥∥
2
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!
‖(•)(βz

y(
√

α + 1•) − G)‖2 + ‖(•)G‖2

‖G‖2 − ‖βz
y(

√
α + 1•) − G‖2

∥∥(•)
(
β̂z

y

( •√
α+1

)
− Ĝ

)∥∥
2 + ‖(•)Ĝ‖2

‖Ĝ‖2 −
∥∥β̂z

y

( •√
α+1

)
− Ĝ

∥∥
2

.

Since we already know from the proof of Theorems 10 and 11 that

lim
α→∞

∥∥βz
y(

√
α + 1•) − G

∥∥
2 = lim

α→∞

∥∥∥∥β̂z
y

( •√
α + 1

)
− Ĝ

∥∥∥∥
2
= lim

α→∞O
(

y√
α + 1

)
+O

(
γ

α + 1

)
= 0,

and

‖(•)G‖2

‖G‖2
· ‖(•)Ĝ‖2

‖Ĝ‖2
= 1

2
,

it is sufficient to show

lim
α→∞

∥∥(•)
(
βz

y(
√

α + 1•) − G
)∥∥

2 = 0 (28)

and

lim
α→∞

∥∥∥∥(•)

(
β̂z

y

( •√
α + 1

)
− Ĝ

)∥∥∥∥
2
= 0. (29)

In fact, (29) can be deduced from (23) and (24) with Lebesgue’s theorem of dominated convergence, since the
multiplication with ω leaves the terms independent of α and does not brake L2(R) integrability for α large enough.
Moreover, (29) converges at the rate O(y/

√
α + 1) +O(γ /(α + 1)).

To verify (28), we note that

Ĝ′(ω) = − ω

12
e−ω2/24,

and that it is equivalent to show that

lim
α→∞

∥∥∥∥
(
β̂z

y

)′
( •√

α + 1

)
1√

α + 1
− Ĝ′

∥∥∥∥
2
= 0, (30)

since multiplication with polynomials corresponds to differentiation in Fourier domain. We first prove pointwise
convergence, and then find a majorant independent of α.

For (β̂z
y)

′, we have

(
β̂z

y

)′
(ω) = β̂z−2

y (ω)
4 sin

(
ω
2

)(
z+1

2 ω cos
(

ω
2

)
− (z + 1) sin

(
ω
2

)
+ iyω sin

(
ω
2

))

ω3

= β̂z−2
y (ω)

(
−z + 1

12
ω + (z + 1)O

(
ω3) + iy − iyO

(
ω2)

)
for ω → 0. (31)

Now, we consider 1√
α+1

(β̂z
y)

′( ω√
α+1

)
as needed in (30).

1√
α + 1

(
β̂z

y

)′
(

ω√
α + 1

)
= 1√

α + 1
β̂z−2

y

(
ω√

α + 1

)

×
(

−z + 1
12

ω√
α + 1

+ z + 1
√

α + 1
3O

(
ω3) + iy − iy

α + 1
O

(
ω2)

)

= β̂z−2
y

(
ω√

α + 1

)(
− ω

12
− iγ ω

12(α + 1)
+O

(
ω3

α + 1

)
+ iy√

α + 1
− iyO

(
ω2

√
α + 1

3

))

= − ω

12
e− ω2

24 +O
(

y√
α + 1

)
+O

(
γ

α + 1

)
for α → ∞

and all fixed ω ∈ R. Here, we used (27) for the convergence of β̂z−2
y .

We show that the function (31) has an integrable majorant, which is independent of α. In the first step, we consider
the influence of y. Then we estimate the remaining terms.
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Step 1. Clearly,
∣∣(β̂z

y

)′
(ω)

∣∣ !
∣∣β̂z−2

y (ω)
∣∣ ·

∣∣f̃ (ω)
∣∣ !

∣∣β̂α−2
∗ (ω)

∣∣ ·
∣∣f̃ (ω)

∣∣ · e2π |η|,

where

f̃ (ω) = 4 sin
(

ω
2

)(
z+1

2 ω cos
(

ω
2

)
− (z + 1) sin

(
ω
2

)
+ iyω sin

(
ω
2

))

ω3 = f (ω) + 4iy
sin2(ω

2

)

ω2 . (32)

Thus,
∣∣∣∣

1√
α + 1

(
β̂z

y

)′
(

ω√
α + 1

)∣∣∣∣ !
∣∣∣∣β̂

α−2
∗

(
ω√

α + 1

)∣∣∣∣ ·
∣∣∣∣

1√
α + 1

f̃

(
ω√

α + 1

)∣∣∣∣ · e2π |η|.

We estimate the y-dependent part in (32):
∣∣∣∣

4y√
α + 1

sin2( ω
2
√

α+1

)

(
ω√
α+1

)2

∣∣∣∣ =
∣∣∣∣

y√
α + 1

sin2( ω
2
√

α+1

)

(
ω

2
√

α+1

)2

∣∣∣∣ ! |y|√
α + 1

! 1

for α large enough, and for all ω ∈ R. To estimate the function β̂α−2
∗ , we follow [28].

∣∣∣∣β̂
α−2
∗

(
ω√

α + 1

)∣∣∣∣ !
∣∣∣∣

√
α + 1
ω
2

∣∣∣∣
α−1

=
(√

α − 1
ω
2

)α−1

·
(√

α + 1√
α − 1

)α−1

=
∣∣∣∣

√
α − 1
ω
2

∣∣∣∣
α−1

·
(

1 + 2
α − 1

) α−1
2

! 8e

ω2

for all ω "
√

α + 1. For ω ∈ [0,2
√

α + 1], we make use of the fact that

∣∣β̂α−2
∗ (ω)

∣∣ =
∣∣∣∣
sin ω

2
ω
2

∣∣∣∣
α−1

!
(

1 −
(

ω

2π

)2)α−1

for all ω ∈ [0,2π]. Thus
∣∣∣∣β̂

α−2
∗

(
ω√

α + 1

)∣∣∣∣ !
(

1 − ω2

(2π)2(α + 1)

)α−1

!
(

1 − ω2

4π2(α + 1)

)α+1 1
(
1 − ω2

4π2(α+1)

)2

! e
− ω2

4π2
1

(
1 − 1

π2

)2 for ω ∈ [0,2
√

α + 1]. (33)

Step 2. We first find an integrable majorant for the part

β̂α−2
∗

(
ω√

α + 1

)
· 1√

α + 1
f

(
ω√

α + 1

)
. (34)

As we have seen before, |β̂z−2
y (ω)| ! |β̂α−2

∗ (ω)| · e2|η|π . Note that it is enough to consider ω > 0, since (β̂α
∗ )′(−ω) =

−(β̂α
∗ )′(ω).

First case: ω " 2
√

α + 1

We have |f (ω)| ! 4|z + 1| 1
ω3 (ω

2 + 1). Thus

1√
α + 1

∣∣∣∣f
(

ω√
α + 1

)∣∣∣∣ ! 4|z + 1|(α + 1)
1
ω3

(
ω

2
√

α + 1
+ 1

)
! 4|z + 1|(α + 1)

(
1

2
√

α + 1
3 + 1

√
α + 1

3

)

! 6
√

α + 1 + γ 2.

For the fractional splines, we get
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∣∣∣∣β̂
α−2
∗

(
ω√

α + 1

)∣∣∣∣ !
∣∣∣∣
2
√

α + 1
ω

∣∣∣∣
α−1

=
∣∣∣∣

√
α + 1
ω
2

∣∣∣∣
α−1(√

α + 1√
α − 1

)α−1

! 3
√

3
(

ω
2

)3 ·
(

1 − 2
α − 1

) α−1
2

! 3
√

3 · e
(

ω
2

)3

for α " 4 and ω " 2
√

α + 1, since
(√

s
x

)s ! 3
√

3
x3 for all x >

√
s and s " 3. The complete term thus can be estimated

with
∣∣∣∣β̂

z−2
y

(
ω√

α + 1

)
· 1√

α + 1
f

(
ω√

α + 1

)∣∣∣∣ ! 3
√

3e
(

ω
2

)3 · 6
√

α + 1 + γ 2e2|η|π ! 18
√

3e
(

ω
2

)2

√
1 + γ 2e2|η|π ,

for ω " 2
√

α + 1 and α " 4.

Second case: ω < 2
√

α + 1

The factor |β̂z−2
y (ω)| ! |β̂α−2

∗ (ω)|e2|η|π in (34) is estimated as in (33).
For the second factor, we have

f (ω) = sin
(

ω
2

)

ω
2

· z + 1
2

·
ω
2 cos

(
ω
2

)
− sin

(
ω
2

)

(
ω
2

)2 .

For x ∈ [0,2], sinx − x cosx ! x3, since both sides vanish at zero and the left-hand side increases slower than the
right-hand side in this interval. Thus for all ω ∈ [0,2

√
α + 1]

∣∣∣∣
1√

α + 1
f

(
ω√

α + 1

)∣∣∣∣ ! 1√
α + 1

· |z + 1|
2

· ω√
α + 1

! ω

2

√
1 + γ 2

for α large enough. Together, we find
∣∣∣∣

1√
α + 1

f

(
ω√

α + 1

)∣∣∣∣ ! 1

2
(
1 −

√
1+γ 2

π2

)2
e
− ω2

4π2 ω !
√

1 + γ 2

2
(
1 − 1

π2

)2 e
− ω2

8π2 ,

since 0 ! e
− ω2

8π2 (1 − ωe
− ω2

8π2 ) is true for all ω > 0.
Combining the first and second step, we find that for α large enough

max
(

1

2
(
1 − 1

π2

)2 e
− ω2

8π2 ,18
√

3e
1

(
ω
2

)2

(
1 − χ[−1,1](ω)

))
· e2π |η|

√
1 + γ 2

is an integrable majorant for
∣∣ 1√

α+1
(β̂z

∗)
′( ω√

α+1

)∣∣ which is independent of α. This concludes the proof. !

Note 7. The order of convergence of the Heisenberg product to 1/2 is O(1/
√

α + 1) for complex B-splines β̂z
y , and

O(1/α + 1) for the fractional ones. Again, the shift in the frequency domain caused by the complex exponent results
in a slower rate of convergence.

9. Conclusions

Complex B-splines appear to be a natural extension of the classical Schoenberg B-splines as well as fractional
B-splines to a complex-valued setting. They satisfy all the properties of a scaling function and generate multiresolution
analyses. The corresponding refinement filters are infinite impulse response filters, but due to the closed form of their
frequency response, they are well suited for a Fourier domain implementation of the respective discrete wavelet
transform. The complex B-splines are well localized in time as well as frequency domain, and converge to optimally
time–frequency localized functions in the sense of Heisenberg. This and the four adjustable parameters, which allow
to tune smoothness, modulation, and frequency enhancement, might be interesting for signal and image analysis
applications.
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