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ABSTRACT

Our goal is to detect and localize areas of activation
in the brain from sequences of fMRI images. The
standard approach for reducing the noise contained in
the fMRI images is to apply a spatial Gaussian filter
which entails some loss of details. Here instead, we
consider a wavelet solution to the problem, which has
the advantage of retaining high-frequency information.
We use fractional-spline orthogonal wavelets with a
continuously-varying order parameter «; by adjusting
a, we can balance spatial resolution against frequency
localization. The activation pattern is detected by
performing multiple (Bonferroni-corrected) t-tests in
the wavelet domain. This pattern is then localized by
inverse wavelet transform of a thresholded coefficient
map.

In order to compare transforms and to select the best
a, we devise a simulation study for the detection
of a known activation pattern. We also apply our
methodology to the analysis of acquired fMRI data for
a motor task.

1 INTRODUCTION

Motor and cognitive tasks induce neuronal activation in
specific locations in the brain. This neuronal activation
involves local changes in the cerebral blood oxygena-
tion which can be measured by a scanner, through a
spin resonance technique. This non-invasive detection of
blood-oxygenation-level-dependent contrast (BOLD) by
fMRI offers new possibilities for neurophysiologists and
gives better insights into the functionality of the human
brain [1]. Images taken under different conditions are
processed in order to find the activation loci. The prac-
tical difficulty is that the signal changes are very small
and the noise is relatively high. This noise has two dis-
tinct origins: noise due to physiological activities (e.g.,
cardiac [2], respiratory motions, task/stimulus related
motions), [3, 4] and noise of the measurement instru-
ment (e.g., scanner) [5].

Head motion cannot be completely avoided either. Mo-
tion may produce signal changes of the same order of
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magnitude as the fMRI BOLD effects [6]. This calls for
the use of accurate image-registration algorithms in a
preprocessing stage [7].

The standard technique for performing the analysis of
fMRI data is SPM (Statistical Parameter Mapping) [8].
This software package is available freely and is widely
used by researchers in the field. SPM, however, has
some limitations [9]. It applies a spatial Gaussian fil-
ter to the data which entails a loss of resolution. This
filtering correlates the data, which makes the statistical
analysis intricate; pixels no longer remain independent.
Finally, the statistical inference in SPM is based on the
theory of continuous Gaussian random fields [10, 11]; it
1s mathematically complex and not entirely adequate,
because the data to which it is applied is discrete while
the theory is continuous.

Here, we consider using a wavelet transform approach
as proposed in [12]. The advantages are twofold. First,
we don’t loose any signal details. Second, we don’t in-
troduce any correlations, provided that we use an or-
thogonal transform. We apply the wavelet transform to
the difference images Ip_(z,y) = Ia,(z,y) — Ip.(z,y),
where the symbols A and B correspond to the two
distinct experimental conditions (block paradigm), and
where 7 is the time index (sequence of realizations).

Because of the noise present in the data, it is almost
impossible to detect any activation without resorting to
statistical analysis. This analysis requires a modelisa-
tion of noise [13]; here, we assume that Ip_(z,y) fol-
lows a spatio-temporal Gaussian distribution. Thanks
to the wavelet transform, we can apply simple statistics,
which makes the analysis fast. The present study pro-
poses two improvements to the method of Ruttimann
et al. [12]: (i) Tt uses t-statistics instead of z-scores and
thus does not require the hypothesis of stationary noise
made previously, (ii) It uses a new class of fractional-
spline wavelets, which allows for a finer tuning of the
transform (continuously-varying order parameter).

The paper is organized as follows: In Section 2, we
present the algorithm and describe our new wavelet
transform. In Section 2.2, we present our statistical
analysis method which detects the activation area in the



wavelet domain. In Section 2.4.1, we shortly describe
the fMRI-data. In Section 2.4, we present our evalu-
ation and comparison procedure. Finally, in Section 3,
we present experimental results with both simulated and

real fMRI data.

2 Algorithm Proposal

Due to their high level of noise, the fMRI images must
be processed in the space domain prior to averaging.
Here, we want to avoid the standard smoothing tech-
nique because it would suppress fine-resolution details.
Thus, we apply a Discrete Wavelet Transform (DWT)
to Ip.(z,y) (spatial data) to get the decomposed fMRI-
data Iy, (z,y) (W-data, where “W” stands for “Wavelet
Domain”), as described below. Note that the Gaussian
hypothesis for the noise is preserved in the W-domain.
Then, we apply a classical statistical testing on the W-
data (see Subsection 2.2). Based on the outcome of
the local t-test, we apply an adaptive threshold in the
wavelet domain. This yields the W-estimated activation
Ist w(z,y) (WEA). We apply the inverse DWT on the
WEA, and subsequently quantize the resulting image
(see Subsection 2.3). Finally, we obtain the estimated
activation in the space domain I (2, y) (SEA) by iden-
tifying the pixel values above the residual noise level.

2.1 Structure Proposal: Wavelet Transform

We propose to transform the data using an iterated or-
thogonal filterbank, whose analysis version is depicted
in Figure 1 and whose synthesis version is depicted in
Figure 2. In Figure 1, due to orthogonality, we have that
H(z) = H(1) and that G(z) = G(2). More specifically,
we are going to use filters that generate fractional-spline
scaling functions and wavelets.

Figure 1: Analysis part of the wavelet transform
(DWT), where the input z is one line of Ip .

Figure 2: Synthesis part of the wavelet transform

(IDWT)

2.1.1 The Fractional-Spline Transform

B¢ is the causal fractional-spline of degree «, which
is a linear combination of the one-sided power func-
tion (z — n)§. In +tlhe frequency domain we get
~ —jw\ ¥ . .
B (w) = (1_;—wj) . The symmetric fractional-
spline () is a linear combination of |2 —n|], if «
is not an even integer. If a is an even integer, 52
is a linear combination of |z —n|{ log|z —n|. In the
.o+l
1—e 7%

frequency domain, we obtain [B’f‘(w) = =

The autocorrelation filter of a B-spline of degree «
. . 2

is given by A%(e?¥) = 3 ‘[)’f‘(u—k?nﬂ) We de-

note the Fourier transform of the orthogonalized sym-

metric fractional-spline by [;’f‘ortho(w) = % [14].

The corresponding lowpass filter is given by HZ(z) =

a4l
V2 % ¥ 1/ %’ZZ—}), and the highpass filter is given
by G¥(z) = 1H¥(-1). For the causal case we
get HY(z) = ﬂ(%)aH %ﬁ% and G%(z) =
%Hi (—%), where z = &%,

Since for a > —% the fractional-splines satisfy all the
requirements for a multiresolution analysis of L2, they
can be used to build families of wavelet bases with a
continuously-varying order parameter [15]. By varying
a, we can trade spatial localization (small «) for fre-
quency localization (large a). As @ — 400, the wavelets
tend to ideal filters (Shannon wavelets) which are maxi-
mally localized in frequency but have poor spatial decay.
Note that ﬂg_oﬁho is equivalent to the Haar function,

while 82 ., is not.

2.2 Activation Detection by Statistical Testing
on WDC

The subsequent analysis is done at the coefficient level,
where Iyy_(z,y) denotes any wavelet-coefficient at a cer-
tain time 7.

2.2.1 Hypothesis testing

To decide which coefficient is activated, we use hypoth-
esis testing. We denote the null hypothesis—the pixel
under consideration is not activated—by Hy. Under
this hypothesis, E{Iw (z,y)} = 0, where Iy (z,y) =
%Zt I, (z,y) (n is the total number of realizations),
and the distribution for the mean value of each coef-
ficient relative to its standard deviation is known (t-
distribution), see 2.2.2. If a coefficient exceeds some
expected bound for Iy, the null hypothesis is rejected
and the alternative hypothesis H; is accepted; we con-
clude that the pixel is activated. The decision is made
by setting a threshold.

Given some probability value o/, we compute the
threshold T such that the probability that a normal-
ized version (t-value) of Iy (z,y) exceeds T is less than
or equal to o/, assuming that Hg is true. In other words,



o’ is the probability of observing values higher than T
by chance, given that the null hypothesis is true. This
probability o' is called the level of significance of the
test. When a coefficient exceeds this threshold, we re-
ject the null hypothesis and accept the alternative hy-
pothesis Hi.

1. Null hypothesis Ho: E{lw(z,y)} = 0 (no activa-
tion);

2. Alternative hypothesis Hy: E{Iw (z,y)} # 0 trans-
lates into Iy (z,y) > T, where T is a significance
threshold as explained in Section 2.2.3.

2.2.2 Choosing the Test Statistic

The p-value is the probability of obtaining a test statis-
tic at least as extreme as the one we observed, given that
the null hypothesis is true. The smaller the p-value, the
stronger the evidence against Hy.

The test on the distribution has to be adapted to the
set of data, which transforms the wavelet values into
p-values.

In a previous work [13], we found the noise variance
to vary over space, contrary to what has often been as-
sumed in the literature [12].

Since the variance 02 changes over space, we can renor-
malize the noise by computing the test statistic

Iw (z,
tooy) = DY) (1)
N
where sy (z,y)? = anlE:.l:l(IWT(x,y) — Iw(z,y))*
This t-value is now voxel-independent and follows Stu-
dent’s t-distribution. Its realizations can thus be tested
using Student’s t-test.

2.2.83 Determining Significance Levels

When we consider all wavelet coefficients jointly, we
have to correct for multiple testing. Since we don’t want
to have globally more than o'% of wrong activation de-
cisions, we have to divide o’ by the total number of
coefficients. This is known as the Bonferroni-correction
for multiple testing: ' = o'/N, where N is the num-
ber of wavelet coefficients in the image. This corrected
value is known to be conservative; it can eventually be
decreased if there is correlation in the data. In our case,
however, we are keeping correlation low by working in
the wavelet domain, in contrast with Gaussian smooth-
ing which introduces significant dependencies.

2.3 Quantization

The original fMRI data are always quantized. We thus
quantize the estimated activation les:(z,y) using the
same quantization levels. This localizes the fractional-
spline filters which are, in general, of infinite length.
Also, due to the amount of noise that is present in
the data, it is necessary to threshold the data pro-
portionaly to the noise level. More specifically, if the

noise on every realization has a standard deviation of
o, we choose a threshold level of o1/2/n, which corre-

sponds to the noise level of the average image Ip (z,y) =

22 Ip, (z,y).

2.4 Quality measurements
2.4.1 Description of our fMRI-Data

In this study, we investigate simple fMRI block
paradigms. This set of fMRI data consists of 8 repe-
titions of alternating blocks, according to distinct ex-
perimental conditions: brain volume with activation,
left-hand finger tapping, and brain volume in the rest
state. Each block contains 3 acquisitions. In our case,
a full volume of 30 slices of 128 x 128 pixels each was
acquired every 6 seconds.

The expected activation is roughly an ellipse in a well-
defined part of the right hemisphere of the brain (motor
cortex).

2.4.2 Test image

To optimize the structural wavelet parameters (degree
« and depth of decomposition J) we used different test
images I(z,y), where we knew the activated area A, de-
fined as {(z, y)|I(z,y) # 0}. The complementary region
A¢ is defined by {(z,y)|7(z,y) = 0}. We used thresh-
olded ellipse-shaped Gaussian activation patterns. The
test-data were generated by adding white Gaussian noise
(20 realizations for the activated state, and 20 noise-only
realizations for the resting state). We changed several
parameters such as the scale and ellipticity of the ellipse,
its orientation and position, the amplitude of the noise.

2.4.83 Quality measure E

We counted the number of false detections (i.e., er-
rors type I (El) defined by EF1 = Card({(z,y) €
A Isi(z,y) # 0})) and the number of missed detec-
tions (i.e., errors type II (E2), E2 = Card({(z,y) €
Allest (z,y) = 0}) pixels). We defined the quality mea-
sure ¥ = E1 + E2. This measurement controles the
estimation of the activation zone, but does not take the
amplitude into account. For the optimization, we min-
imized F with respect to the structure parameter («

and J).

3 Results

The first example presented in Figure 3 is the statisti-
cal average of a simulation experiment using an elliptic
shape approximating the expected activation pattern in
the motor task described in Subsection 2.4.1. We chose
an SNR of -1.7 dB corresponding to the noise on our real
fMRI data. We optimized the wavelet transform for the
following parameters in the case of the fractional-spline
transform: degree a € [-0.2,...,6], type symmetric or
causal, iteration depth J = 1,2,3; and in the case of
Daubechies wavelets: order 1 to 7, iteration depth J =
1,2, 3. We observe that, in this specific experiment, the



symmetric fractional-spline transform yields the best re-
sults (i.e., the smallest error F). The minimum, which is
attained for & = 1.2 and J = 1, is quite pronounced (see
Figure 3 left). In comparison, the Daubechies transform
yields results that are twice worse. More specifically, we
find that min(E). < min(E)4+ < min(E)paubechies -

We then used this optimal «a to detect activation in
one slice of real data (see Figure 3 right): the detected
shape 1s in good agreement with the anatomy. More-
over, we found our optimized wavelet approach to yield
significantly fewer false activations than the other meth-
ods (correlation methods, SPM Gaussian filter). We also
tested our algorithm on other fMRI data, generated by
a visual task, performed by various volunteers; the ob-
tained results were quite encouraging as well.
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Figure 3: Simulated data (left): plot of the average de-
tection error F/, as a function of the symmetric spline de-
gree a (plain line), and as a function of the Daubechies
filter order (stars); Real data (right): detection of the
activation (black pixels) found in one transverse fMRI
slice for the experiment described in Subsection 2.4.1.

4 Conclusion

We described a wavelet based algorithm for detecting
activation in fMRI data. For this purpose, we applied
a new wavelet transform: the fractional-spline trans-
form. We showed that it was possible to optimize the
transform with respect to its continuous parameter, the
degree a of the spline. We tested our algorithm on sim-
ulated data, as well as on real fMRI images.

With our method we can detect different shapes with
different sizes and we observe that this technique is very
robust with respect to noise. The optimization of the
structure parameters in our algorithm improves the ac-
curacy of the detection. Future work will concentrate
on optimizing the wavelet structure parameters when
the activation pattern is not known a priori. Also, this
2-D method can be straightforwardly extended to 3-D,
in order to take into account the volumic structure of

fMRI data.
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