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ABSTRACT

In this paper, a novel non-redundant complex wavelet trans-
form (NRCWT) for real-valued signals is proposed. For this
purpose, an orthogonal complex filter bank is developed to
implement this NRCWT. We show how to choose the two
complex filters from classical real-valued wavelet filters in
such a way that the filterbank is always orthogonal. Using
fractional B-spline filters, a pair of exact Hilbert wavelets are
constructed, which can separate the positive frequencies from
the negative frequencies.

Index Terms— Non-redundant, complex wavelet trans-
form, multiresolution analysis

1. INTRODUCTION

Due to the approximate Hilbert-transform pair of the real part
and imaginary part of the wavelet transform coefficients, the
dual-tree complex wavelet transform (DTCWT) provides two
remarkable advantages over the real wavelet tranform [1, 2]:
1) near shift invariance for one-dimensional signals; and 2)
angular sensitivity for two-dimensional images. However,
this transform is redundant and hence, may not be suitable
for such applications as image/video compression where a
critically signal representation is required. In order to achieve
the non-redundancy for a real-valued signal while having
the ability to distinguish positive frequencies from negative
frequencies, Spaendonck et.al. [3] developed a new non-
redundant complex wavelet transform (NRCWT) based on
a three-band orthogonal filter bank where the lowpass filter
is real and decimated by “2” and the highpass filters con-
sisting of a common real highphass filter followed by an
approximated Hilbert transform filter are decimated by “4”.
However, only the ideal sinc filters can successfully eliminate
the spurious interferences between low and high frequencies.
Another NRCWT approach using a triband filter bank [4]
might be able to mitigate this issue, but this solution results
in a much coarser discrete wavelet decomposition compared
to dyadic decompositions.
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In this paper, we propose a new non-redundant complex
wavelet transform for real-valued input signals based on the
structure shown in Fig. 1. Our objective is to show how
to choose the complex filters {H,G}, such that: 1) the fil-
ter bank is orthogonal, and 2) it generates an exact Hilbert
wavelet, i.e., the frequency response of the wavelet is only
supported on either positive frequencies or negative frequen-
cies. For any filter h[n] whose z-tranform corresponds to
H(z) =

∑
n h[n] z

−n (here, z = ejω is on the unit circle),
H∗(z) =

∑
n h
∗[n] z−n where [·]∗ denotes the conjugation.

2. NRCWT ORTHOGONAL FILTERBANK

2.1. Filterbank structure

The filterbank in Fig. 1 is the foundation of our non-redundant
complex wavelet tranform (NRCWT). Observing the analysis
filter bank, the top branche, which correspond to the lowpass
channels and consist of two complex lowpass filtersH(z) and
H∗(z) followed by two complex orthonormal filters U(z)
and U∗(z) and some downsampling/upsampling operators,
are summed together to form a real-valued output y[n]. This
band is a typical multifilter bank branch [5]. The bottom
branch corresponds to the highpass channel. The complex
wavelet transform is obtained by iterating over the lowpass
output. The non-redundancy is obvious: assume x[n] is real
and contains N real numbers, then the lowpass output y[n]
has N

2 real numbers, and the wavelet coefficients v[n] con-
tains N

4 complex numbers, so the total storage is N .
Here, U(z) and U∗(z) are orthonormal filters derived

from the Haar filter by frequency shifting,

U(z) =
1 + j z−1√

2
, U∗(z) =

1− j z−1√
2

. (1)

The purpose of {U(z), U∗(z)} is to rearrange the output sig-
nals from the “↓ 4” operators, such that the lowpass output
y[n] is real.

2.2. Complex multiresolution analysis

Notably, different from other NRCWTs which involve only
one scaling function and two wavelets [3, 4], our filterbank
structure generates two scaling functions {φ1(t), φ2(t)}
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H(z) ↓ 4 ↑ 2 U(z)

y[n]

H∗(z) ↓ 4 ↑ 2 U∗(z)

x[n]

G(z) ↓ 4 v[n]

(a) Analysis filter bank

U∗(z−1) ↓ 2 ↑ 4 H∗(z−1)

y[n]

U(z−1) ↓ 2 ↑ 4 H(z−1)

<{·} x[n]

v[n] ↑ 4 G∗(z−1)

(b) Synthesis filter bank

Fig. 1. Analysis and synthesis orthconjugate filter bank for the non-redundant complex wavelet transform implementation
(NRCWT). y[n] is to be iterated for the implementation of CWT. <{·} is the operator to choose the real part of the summation.

Wj

W ∗
j

Vj

Vj+1

Fig. 2. Geometrical structure of our proposal for the non-
redundant complex wavelet multiresolution analysis. Vj and
Wj designate “real” multiresolution spaces, while W ∗

j desig-
nates complex multiresolution space.

and two complex conjugate wavelets {ψ(t), ψ∗(t)}. Both
{φ1(t), φ2(t)} and {ψ(t), ψ∗(t)} form a multiresolution
analysis (MRA) that can be understood from multiwavelet
framework. Define the scaling space Vj and wavelet spaces
Wj and W ∗

j (j ∈ Z) as

Vj = Spann∈Z{φ1(2jt− 2n), φ2(2
jt− 2n)}, (2a)

Wj = Spann∈Z{ψ(2jt− 2n)}, (2b)

W ∗
j = Spann∈Z{ψ∗(2jt− 2n)}. (2c)

Hence, there exist:

Vj ⊂ L2(R), Vj ⊂ Vj+1,

Vj ⊕Wj ⊕W ∗
j = Vj+1,

∀f(t) ∈ Vj ⇐⇒ f(2−jt) ∈ V0,

where “⊕” denotes the direct sum. Fig. 2 is the embeddedness
graph of the MRA spaces.

Given an input x[n], the lowpass output y[n] can be ex-
pressed as

y[n] =
∑
k,l

2<{u[2k − n]h[l − 4k]}x[l], (3)

where <{·} denotes the real-part operator, u[n] =
√
2
2 (1, j),

h[n] and h[n]∗ are the impulse responses of filters U , H and

H∗, respectively. The highpass output v[n] can be expressed
as

v[n] =
∑
k

g[k − 4n]x[k], (4)

where g[n] is the impulse response of G(z).
Define φ2m(t) = φ1(

t
2 − m) and φ2m+1(t) = φ2(

t
2 −

m). Then for any square integral function x(t) ∈ V0, its
expansion coefficients x[n] can be expressed as x[m] =∫
x(t)φm(t) and y[m] =

√
2
2

∫
x(t)φm

(
t
2

)
for m ∈ Z.

Hence, substituting them into (3), we have

φm

(
t

2

)
=
∑
k,l

2<{u[2k −m]h[l − 4k]}φl(t) (5)

Similarly, for the wavelets, we have

ψn

(
t

2

)
=

√
2

2

∑
k

g[k − 4n]φk(t). (6)

In this paper, we aim to design the complex filters {H,G},
such that the complex conjugate wavelet ψ(t) has only one-
side frequency support, which can separate the negative fre-
quencies from the positive frequencies and therefore, com-
pletely eliminate spurious interferences between low and high
frequencies for practical applications.

2.3. Orthogonal complex conjugate filters

In the following, two complex filters are provided such that
our proposed filter bank is always orthogonal. The proof will
be given in a forthcoming paper.

Theorem 2.1. Assume {Hi, Gi} for i = 0, 1 consist of a clas-
sical standard perfect reconstruction orthogonal two-band fil-
ter bank withHi lowpass filter andGi highpass filter, i.e., they
must satisfy

Hi(z)Hi(z
−1) +Gi(z)Gi(z

−1) = 2, (7a)

Hi(−z)Hi(z
−1) +Gi(−z)Gi(z−1) = 0, (7b)

Gi(z) = −z−1H(−z−1). (7c)
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Hence, by choosing

H(z) =

√
2

2

[
H0(z

2)− j z−1H1(z
2)
]
, (8a)

H∗(z) =

√
2

2

[
H0(z

2) + j z−1H1(z
2)
]
, (8b)

G(z) =

√
2

2

[
G0(z

2)− j z−1G1(z
2)
]
, (8c)

then {H(z), G(z)} forms a perfect reconstruction orthogonal
filter bank for the filterbank structure as shown in Fig. 1.

Our objective is now to construct a wavelet which is only
supported either on positive frequencies or negative frequen-
cies. Using wavelet theory, it is equivalent to construct a high-
pass filter whose frequency support is one-sided. Currently,
Selesnick [6] has developed a procedure to design an ap-
proximate Hilbert transform pairs of wavelet bases based on
spectral factorization. Chaudhury and Unser [7] constructed
another Hilbert transform pairs of wavelet bases based on
fractional B-spline functions [8]. In this paper, we use the
orthonormal fractional (α, τ)-spline filters to construct our
Hilbert wavelets ψ(t) and ψ∗(t) .

According to Theorem 2.1, we choose

H0(z) = Hα
0,⊥(z), H1(z) = Hα

1/2,⊥(z), (9)

where Hα
τ,⊥ is the orthonormal fractional (α, τ)-spline filters

with degree α > − 1
2 and shift τ ,

Hα
τ,⊥(e

j ω2 ) = Hα
τ (e

j ω2 )

√
Aα
(
ej

ω
2

)
Aα(ejω)

,

Hα
τ (e

jω) = 2−(α+1) (1 + ejω)
α+1
2 −τ (1 + e−jω)

α+1
2 +τ ,

Aα(ejω) =
∑
k

|β̂α0 (ω + 2kπ)|2,

β̂ατ (ω) =

(
1− e−jω

jω

)α+1
2 +τ (

ejω − 1

jω

)α+1
2 −τ

,

where Aα(ejω) is the autocorrelation function of the frac-
tional B-spline functions β̂ατ (ω). Because τ only affects the
phase of the filter, hence, |Hα

0,⊥(e
jω)| = |Hα

1/2,⊥(e
jω)| for

any α > 1
2 . Fig. 3 depicts the magnitudes of the Fourier re-

sponses of the filters {H(ejω), G(ejω)} obtained using The-
orem 2.1. Obviously, |G(ejω)}| is only supported on the neg-
ative frequencies, which implies |G∗(ejω| is only supported
on the positive frequencies. We will see that the associated
wavelets also have a one-sided frequency support.

Given the special filters H0(z) and H1(z) (9), accord-
ing to Theorem 2.1, we get H and G. Then substituting H
into (5),we solve the scaling functions which in the frequency
domain can be expressed as

φ̂1(ω) = β̂α0,⊥(ω), φ̂2(ω) = β̂α1/2,⊥(ω), (10)
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ω/(2π)
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0
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3

|G(ejω)|

ω/(2π)

Fig. 3. The magnitudes of Fourier responses {H,G} when
the fractional B-spline filters for α = 4.5 are used.

where the orthonormalized fractional B-spline functions

β̂ατ,⊥(ω) =
β̂ατ (ω)√
Aα(ejω)

. Fig. 4 displays the orthonormal-

ized fractional B-spline functions βατ,⊥(t) for α = 4.5 and
τ = 0, 1/2, respectively. It is clear that: 1) βατ,⊥(t) is well
localized, and 2) β4.5

0,⊥(t) and β4.5
1/2,⊥(t) have the same wave-

form except the shift difference, which again demonstrates τ
only affects the phase.
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Fig. 4. Plots of βατ,⊥(t) for α = 4.5 and τ = 0, 1/2.

Substituting G into (6) and using the two-scale relation of
the orthonormalized fractional B-spline functions,

β̂ατ,⊥(ω) =

√
2

2
Hα
τ,⊥(e

jω) β̂ατ,⊥
(ω
2

)
. (11)

the wavelets can be expressed as

ψ̂(ω) =
1

2
β̂α0,⊥

(ω
2

)
Gα0,⊥(e

j ω2 ) [1− sgn(ω)] , (12a)

ψ̂∗(−ω) =
√
2

4
β̂α0,⊥

(ω
2

)
Gα0,⊥(e

j ω2 ) [1 + sgn(ω)] ,

(12b)
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whereGα0,⊥(e
jω) = e−jωHα

0,⊥(−e−jω). It is also easy to de-
duce that the wavelets are not orthogonal themselves and also
not orthogonal to the scaling functions. Surprisingly, our con-
struction leads to a orthonormal multifilter bank, but the MRA
is made of function space that are not orthogonal. Fig. 5 plots
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|φ0(ω)|=|φ1(ω)|, α=4.5
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|ψ(ω)| , α=4.5

Fig. 5. The magnitudes of the scaling function φ̂1,2(ω) and
the wavelet ψ̂1(ω) when the fractional B-spline filters for α =
4.5 are used. In this figure, the real parts and imaginary parts
of φ̂1,2(ω) are also plotted.

the magnitude of the Fourier responses of the scaling func-
tion φ̂1(ω) and the wavelet ψ̂1(ω). The figure shows that: 1)
|φ̂1(ω)| is symmetric, 2) the frequency support of |φ̂1,2(ω)|
is greater than [−π, π], which implies that the filters are not
ideal, and 3) the wavelet is supported on the negative frequen-
cies.
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Fig. 6. The magnitudes of Fourier responses of the scaling
functions and the wavelets at different scales when the frac-
tional B-spline filters for α = 4.5 are used.

Fig. 6 plots the magnitudes of Fourier responses for scal-
ing functions in V0 and wavelets in W0 and W1 when the

fractional B-spline filters are used. The middle one is the scal-
ing function, and the left and right are the wavelets. It is clear
that supports of the wavelets and scaling functions are over-
lapped. Hence, the wavelets are not orthogonal to the scaling
functions.

3. CONCLUSION

In this paper, we proposed a new non-redundant complex
wavelet transform by using an orthogonal two-band mul-
tifilter bank, and constructed a pair of Hilbert wavelets by
using fractional spline filters. Our future work is to apply our
framework in image denoising and compression.
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