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ABSTRACT

Hex-splines are a novel family of bivariate splines, which
are well suited to handle hexagonally sampled data. Sim-
ilar to classical 1D B-splines, the spline coefficients need
to be computed by a prefilter. Unfortunately, the elegant
implementation of this prefilter by causal and anti-causal
recursive filtering is not applicable for the (non-separable)
hex-splines. Therefore, in this paper we introduce a novel
approach from the viewpoint of approximation theory. We
propose three different recursive filters and optimize their
parameters such that a desired order of approximation is ob-
tained. The results for third and fourth order hex-splines are
discussed. Although the proposed solutions provide only
quasi-interpolation, they tend to be very close to the inter-
polation prefilter.

1. INTRODUCTION

B-splines have shown to be of great importance for signal
and image processing. In particular, they provide an essen-
tial link between the discrete and the continuous domain
which is required for many fundamental operations such
as interpolation and resampling [1]. Recently, we intro-
duced a novel family of splines, called hex-splines. Derived
from the shape of the Voronoi cell of a hexagonal lattice,
they preserve the twelve-fold symmetry of the hexagon [2].
These bivariate splines, different from box-splines [3], ex-
hibit many properties similar to the B-splines.

An important operation in spline processing is the com-
putation of the spline coefficients, which projects a given
signal into the spline space. In practice, this requires pre-
filtering of the signal sample values. In this paper, we dis-
cuss this prefiltering step, sometimes also called the direct
spline transform, for the case of hex-splines. One way the
filter operation can be implemented is in the Fourier do-
main. Unfortunately, as opposed to separable B-splines,
there is no exact implementation in the spatial domain us-
ing recursive filtering. Nevertheless, we propose here to use
recursive filters anyway. Our method is inspired by the 1D
B-spline case and is optimized to approach the orthogonal
projection into the hex-spline space as close as possible.
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Fig. 1. (a) The regular hexagonal lattice of the second type
and its Voronoi cell. (b) The dual lattice.

2. SPLINES FOR HEXAGONAL LATTICES

2.1. Fundamental properties

A 2D periodic lattice is described by two vectors r1 and
r2. It is convenient to group these vectors in a lattice matrix
R = [r1|r2]. A well-known unique tiling cell is the Voronoi
cell, which contains all points closer to their lattice site than
to any other site. The reciprocal or dual lattice corresponds

to the matrix R̂ = [r̂1|r̂2] =
(
R
−1

)T
= R

−T. As an
example, Fig. 1 shows the regular hexagonal lattice of the
second type with lattice matrices:

R =

[ √

3
2 0
− 1

2 1

]

, R̂ =

[
2
√

3
3

√

3
3

0 1

]

. (1)

The areas colored in gray correspond to the Voronoi cells.
More details can be found in [4].

Hex-splines are now defined as follows. The first-order
hex-spline η1(x) is the indicator function of the Voronoi
cell. Higher order hex-splines are constructed by successive
convolutions:

ηp(x) =
η1 ⊗ ηp−1(x)

Ω
, p > 1, (2)

normalized by the surface area of the Voronoi cell Ω
�

|det(R)|. The signal space spanned by the hex-splines con-

III - 3010-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



tains all signals

s(x) =
∑

k

c(k)ηp(x−Rk); c(k) ∈ l2(
� 2). (3)

In general, the coefficients c(k) are determined as

c(k) =

∫

g(x)ϕ̃(x−Rk)dx, (4)

where ϕ̃ is the prefilter. The optimal choice, i.e., corre-
sponding to an orthogonal projection into the spline space,
is the dual filter ˆ̃ϕd = ϕ̂/âϕ. Here âϕ is the Fourier trans-
form of the sampled autocorrelation function. In particular
for the hex-splines, we have

aϕ(k) = 〈ηp(x), ηp(x−Rk)〉 = Ω η2p(Rk). (5)

Another popular choice for ϕ̃ is the interpolation prefilter,
which makes s(Rk) = g(Rk) at the sampling sites. For
the first and second order splines, this condition is trivially
satisfied by choosing c(k) = g(Rk). But for higher orders,
as in the classical case, one needs a prefilter (which only
uses sample values of the original signal) to obtain the cor-
rect values for c(k). In general, the interpolating condition
can be written as

g(Rl) =
∑

k

c(k)ηp(Rl−Rk)

=
∑

k

c(k)hp(l− k), (6)

where we introduce the discrete hex-spline as hp(k) = ηp(Rk).
In order to obtain c(k) out of Eq. (6), we need to filter the
sample values with the inverse filter h−1

p . To specify the
filter, we introduce the Z-transform

f̌(z) =
∑

k

z
−kf(Rk), (7)

where we use the notation z
k = zk1

1 zk2

2 . Then, the Fourier
transform of the sampled version f(Rk) is

f̂R(ωωω) = f̌(exp(jRTωωω)). (8)

As an example, the Z-transform of the third and fourth
order discrete hex-splines can be computed as (we make use
of z3 = z1z2)

ȟ3(z1, z2) = 42
72 + 5

72

(
z1 + z2 + z−1

1 + z−1
2 + z3 + z−1

3

)

ȟ4(z1, z2) =
37
81 + 29

324

(
z1 + z2 + z−1

1 + z−1
2 + z3 + z−1

3

)
+

1
972

(
z−1
1 z2 + z1z

−1
2 + z1z

2
2 + z−1

1 z−2
2 + z2

3 + z−2
3

)
.

Computing the spline coefficients is performed by filtering
the sample values by ϕ̃ = (hp)

−1. This particular filter is
called the interpolation prefilter.

2.2. Approximation theory

Approximation theory provides us with a convenient way
to quantify the approximation error by integration with an
error kernel E(ωωω) in the Fourier domain: [5]

||s(x)− g(x)||
2

=
1

4π2

∫

|ĝ(ωωω)|
2
E(ωωω)dωωω.

The error kernel [5] can be easily extended for a periodic
lattice with matrix R as

E(ωωω) = 1−
|ϕ̂(ωωω)|

2

âϕ(ωωω)
︸ ︷︷ ︸

Emin

+
âϕ(ωωω)

Ω

∣
∣
∣ ˆ̃ϕ(ωωω)− ˆ̃ϕd(ωωω)

∣
∣
∣

2

︸ ︷︷ ︸

Eres

,

where ϕ is the reconstruction function (in our case ϕ =
ηp), ϕ̃ is the prefilter, ϕ̃d is the optimal prefilter, and aϕ

the sampled autocorrelation function. In the case of using
the optimal prefilter, the kernel reduces to Emin. When the
sampling lattice is made finer by a scaling factor T , the error
decreases as

||s(x) − g(x)||
2
∝ T 2L, (9)

where L is the order of approximation. This behavior can
be analyzed by examining the error kernel E(ωωω) around 0.
Note that the hex-spline ηp has p-th order of approximation.

3. COMPUTATION OF THE SPLINE
COEFFICIENTS

For this paper we concentrate on the third (p = 3) and fourth
(p = 4) order hex-splines, which are relevant for most ap-
plications.

3.1. Interpolation prefilter

The interpolation prefilter cannot be implemented exactly
in the spatial domain since no decomposition in causal and
anti-causal filters is available. A viable solution is to filter
the sample values in the Fourier domain by the response
1/ĥ3(ωωω) or 1/ĥ4(ωωω). This can be done by adapting the FFT
algorithm for the hexagonal lattice [6, 7]. For more details
about this approach, see [8].

Figure 2 shows the error kernel corresponding to the in-
terpolation prefilter. We observe that the Nyquist area (i.e.,
the reciprocal Voronoi cell) appears. Inside, all frequency
components are well preserved. Outside, the error tends to
2, as can be expected [1, 5].

3.2. Recursive prefilter

For the 1D B-spline case, an elegant approach exists based
on causal and anti-causal recursive filtering [9]. Inspired by
the 1D case, we first define the following basic filter opera-
tion in the Z-domain: H(z) = 1/((1 + α0z)(1 + α0z

−1)).
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Fig. 2. The error kernel E(ωωω) corresponding to the fourth-
order interpolation prefilter.

Table 1. Recursive filter designs on the hexagonal lattice

Filter Directions p = 3 p = 4

h̃1

6
?

+��*��� +HHjHHY
ok —

h̃2

6
?

HHjHHY + 6
?��*��� +��*���HHjHHY

ok ok

h̃3

6
?��*���HHjHHY

ok ok

Next, we propose three plausible filter designs on the hexag-
onal lattice: (see Tab. 1)

ˇ̃h1(z) = α1(H(z1) + H(z2) + H(z3)),

ˇ̃
h2(z) = α1(H(z1)H(z2) + H(z1)B(z3) + H(z2)H(z3)),

ˇ̃
h3(z) = α1H(z1)H(z2)H(z3).

To find the best parameters α0 and α1 for each proposed
filter, we require the order of approximation to be the same
as for the optimal prefilter, i.e., 3 and 4. Considering the
error kernel, this can be done by putting a constraint on the
second term Eres:

ˆ̃ϕ(ωωω)− ˆ̃ϕd(ωωω) = O(||ωωω||4). (10)

By calculating the multivariate Taylor series, we obtain

η̂3,d(ωωω)

Ω
= 1 +

5

48
(ω2

1 + ω2
2) + O(||ωωω||4),

η̂4,d(ωωω)

Ω
= 1 +

5

36
(ω2

1 + ω2
2) + O(||ωωω||4),

and

ˆ̃
h1(ωωω) = 3α1

(1+α0)2 + 3α0α1

2(1+α0)4
(ω2

1 + ω2
2) + O(||ωωω||4),

ˆ̃h2(ωωω) = 3α1

(1+α0)4 + 3α0α1

(1+α0)6
(ω2

1 + ω2
2) + O(||ωωω||4),

ˆ̃
h3(ωωω) = α1

(1+α0)6 + 3α0α1

2(1+α0)8
(ω2

1 + ω2
2) + O(||ωωω||4).

Now we impose the order of approximation condition of
Eq. (10). For the third order (p = 3), we find a solution for
each proposed filter:

h̃1 : α0 = 7−2
√

6
5 , α1 = 56−16

√

6
25 ,

h̃2 : α0 = 19−4
√

21
5 , α1 = 535296−116736

√

21
625 ,

h̃3 : α0 = 31−6
√

26
5 , α1 = 43609923072−8552604672

√

26
15625 .

However, for the fourth order, the first filter has no solution:

h̃1 : no solution,

h̃2 : α0 = 1
5 , α1 = 432

625 ,

h̃3 : α0 = 22−3
√

5
5 , α1 = 6446891088−902741112

√

51
15625 .

Finally, the implementation of these filters is similar to
the 1D implementation of the H(z) filter for classical B-
splines [9]. Here, we also use mirror boundary conditions.

3.3. Results

One important remark about the proposed prefilters is that
they are only quasi-interpolants; i.e., they will generally not
yield an exact interpolation of the signal unless it is a poly-
nomial up to degree p − 1 in x1 or x2. Nevertheless, the
error kernel of each of these filters closely resembles by de-
sign the one of the orthogonal projection (i.e., of the optimal
prefilter ϕ̃d). In fact, the only differences are near the bor-
der and outside of the Nyquist area, where we observe small
fluctuations up to 10% (which have a minor influence on the
result).

Now we want to compare the asymptotic constants for
each of the filter solutions. These constants allow us to com-
pare the behavior of E(ωωω) for ωωω → 0 between different
solutions when the order of approximation is the same.

For the third order, the error kernel reduces to

E(ωωω) = O(||ωωω||6) + O(||ωωω||8). (11)

Therefore, the asymptotic behavior only depends on the re-
construction function (i.e., Emin(ωωω)) and not on the pro-
posed filters, as long as they satisfy the design constraint.

For the fourth order, both terms of E(ωωω) are of O(||ωωω||8).
After calculation, we obtain the following determining asymp-
totic behavior of Eres(ωωω):

h̃2 :
(
6 · 10−4(ω4

1 + ω4
2) + 10−2ω2

1ω
2
2

)2
,

h̃3 :
(
10−2(ω4

1 + ω4
2) + 2 · 10−2ω2

1ω
2
2

)2
.

This makes the second prefilter the best solution from an
approximation point of view. Figure 4 shows the impulse
response of this quasi-interpolant, i.e., prefilter and recon-
struction function together as they are conceptually applied
to the sampled data. The function value at 0 equals 0.883,
compared to 0.802 for the third proposed filter.
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(a) (b) (c) (d)

Fig. 3. The results of the test image “lena” for the fourth-order hex-spline using different prefilters. (a) Prefiltering in
the Fourier domain with the interpolation prefilter 1/ĥ3. (b) Prefiltering in the spatial domain with the recursive filter h̃2.
(c) Prefiltering in the spatial domain with h̃3. (d) Without prefilter.
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Fig. 4. Impulse response of the combined prefilter and re-
construction function for fourth order: (η4 ⊗ h̃2)(x).

Each of the proposed recursive filters has been imple-
mented in the spatial domain. We show the results for the
fourth-order hex-spline and the test image “lena”, which
was first resampled to the hexagonal lattice using cubic B-
spline interpolation. Figure 3 (a) shows the result after using
the interpolation prefilter with the Fourier method. In (b)
and (c), we show the images after spatial recursive filtering
by respectively h̃2 and h̃3. The right-hand side of the split
shows the difference with (a), multiplied by a factor 4 to in-
crease the visibility. In correspondence with the theoretical
results, we observe that the error at the edges is smaller for
the second prefilter. Finally, (d) shows the result of a naive
approach without prefiltering (i.e., c(k) = g(Rk)) which is
clearly not satisfying.

4. CONCLUSIONS

This paper proposes an original way to approximate the
non-separable prefilter of the hex-splines by different com-
binations of causal and anti-causal filters along the prefer-
ential directions of the hexagonal lattice. The design con-

straint is imposed using powerful results of approximation
theory. The obtained solutions are quasi-interpolants which
exhibit the desired order of approximation and can be im-
plemented completely in the spatial domain.
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