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ABSTRACT

We consider the problem of optimizing the parameters of
an arbitrary denoising algorithm by minimizing Stein’s
Unbiased Risk Estimate (SURE) which provides a means of
assessing the true mean-squared-error (MSE) purely from the
measured data assuming that it is corrupted by Gaussian noise.
To accomplish this, we propose a novel Monte-Carlo tech-
nique based on a black-box approach which enables the user
to compute SURE for an arbitrary denoising algorithm with
some speci c parameter setting. Our method only requires
the response of the denoising algorithm to additional input
noise and does not ask for any information about the func-
tional form of the corresponding denoising operator. This,
therefore, permits SURE-based optimization of a wide vari-
ety of denoising algorithms (global-iterative, pointwise, etc).
We present experimental results to justify our claims.

Index Terms— Stein’s unbiased risk estimate, Monte-
Carlo estimation, Total variation denoising, and wavelet soft-
thresholding.

1. INTRODUCTION

Denoising algorithms aim at eliminating noise frommeasured
data while trying to preserve the important signal features
(such as texture and edges) as much as possible. Any de-
noising algorithm can be interpreted as a mapping fλλλ (that
depends on some parametersλλλ) which takes as input the mea-
sured data y to yield the signal estimate x̃ = fλλλ(y). When ap-
plying a particular algorithm, the user is faced with the dif -
cult task of adjusting λλλ for best performance. To achieve this,
researchers usually resort to empirical alternatives or pose the
problem in a Bayesian framework. Bayesian and empirical
methods are popular in the context of variational denoising
where one of the key problems is the selection of the “best”
regularization parameter [1–4].
In the context of denoising, the mean-squared-error (MSE)

of the signal estimate is obviously the preferred measure of
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quality to optimize λλλ. Unfortunately, the MSE depends on
the noise-free signal which is generally unavailable or un-
known a priori. A practical approach, therefore, is to replace
the true MSE by an estimate in the scheme of things. For
Gaussian noise, Stein’s Unbiased Risk Estimate (SURE) pro-
vides a means for unbiased estimation of the true MSE solely
using the given data and some description of the rst order de-
pendence of the denoising operator with respect to the data;
speci cally, the divergence of fλλλ with respect to y [5]. The
computation of this divergence is analytically feasible only in
a few special cases such as when the signal estimate is ob-
tained by a linear transformation of the noisy data (linear l-
tering [2]), a pointwise non-linear mapping or a combination
of both (e.g., wavelet thresholding [6–8]). Especially chal-
lenging are the cases where the functional form of the denois-
ing operator is not known explicitly and the denoised output is
the result of an iterative optimization procedure. Since most
variational and Bayesian approaches fall into this latter cat-
egory, there is a large variety of algorithms for which the
analytical evaluation of the required divergence term is not
tractable mathematically nor even feasible numerically.

In this paper, we address this limitation by proposing a
practicable black-box approach for estimating SURE for a
general denoising scenario. Our method is based on Monte-
Carlo simulation: the denoising algorithm is probed with ad-
ditive noise and the response signal is used to estimate the
desired divergence—themethod completely relies on the out-
put of the operator and does not need any information about
its functional form.

In what follows, we brie y review the SURE formula-
tion and then present our Monte-Carlo method together with
a practicable algorithm. We then move on to validate the pro-
posed scheme by presenting experimental results for two non-
trivial problems: the optimization of the regularization pa-
rameter for total variational denoising (TVD) and the adjust-
ment of the threshold for redundant wavelet denoising (RWD)
by universal soft-thresholding. In particular, we demonstrate
that SURE computed using the newMonte-Carlo strategy clos-
ely mimics the behaviour of the trueMSE and correctly yields
the optimal regularization parameter for the cases considered.
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Fig. 1. Schematic of the denoising problem: x̃ is obtained
by the application of the denoising algorithm on the data y.
The MSE estimation box then computes an estimate of the
MSE of x̃ (i.e., SURE) as a function ofλλλ knowing only y and
fλλλ(y).

2. PROBLEM FORMULATION AND SURE
We adopt the standard vector formulation of a denoising prob-
lem: we measure noisy data y ∈ R

N given by,

y = x + b, (1)

where x ∈ R
N represents the vector containing the samples

of the unknown deterministic noise-free signal and b ∈ R
N

denotes the vector containing the zero-mean white Gaussian
noise of variance σ2, respectively. We are given a denoising
algorithm which is represented by the operator fλλλ : R

N →
R

N that maps the input data y on to the signal estimate x̃:

x̃ = fλλλ(y), (2)

where λλλ represents the set of parameters characterizing fλλλ;
these should be adjusted to yield the best estimate of the sig-
nal [see Figure 1]. Our primal aim in this work is to optimize
λλλ knowing only y and x̃ = fλλλ(y) as illustrated by the “MSE
estimation” box in Figure 1. To achieve this, we propose the
use of SURE as a reliable estimate of the true MSE.
In the sequel, we will assume that fλλλ is a bounded and

continuous operator (i.e., the input-output mapping is contin-
uous and a small perturbation of the input necessarily yields a
small perturbation in the output). In particular, we do require
that the divergence of fλλλ with respect to the data y given by

divy{fλλλ(y)} =
N∑

k=1

∂fλλλk(y)

∂yk

, (3)

where fλλλk(y) and yk are the kth component of the vectors
fλλλ(y) and y respectively, is well-de ned in the weak sense.
Then the SURE corresponding to x̃ = fλλλ(y) is a random
variable given by

η(fλλλ(y)) =
1

N
‖y− fλλλ(y)‖2 − σ2 +

2σ2

N
divy{fλλλ(y)}, (4)

where ‖ · ‖2 represents the Euclidean norm. The following
theorem, due to Stein, states that η is an unbiased estimate of
the true MSE given by

MSE(fλλλ(y)) =
1

N
‖x− fλλλ(y)‖2. (5)

Theorem 1 (cf. [5]) The random variable η(fλλλ(y)) is an un-
biased estimator of MSE(fλλλ(y)), that is,

Eb {MSE(fλλλ(y))} = Eb{η(fλλλ(y))}, (6)

where Eb{·} represents the expectation with respect to b.

3. MONTE-CARLO SURE
As noted in (4), the divergence term, divy{fλλλ(y)}, plays a
pivotal role in the computation of SURE. The divergence can
be calculated analytically and has a closed form expression
only in some special cases such as when fλλλ is linear or when
fλλλ is a pointwise operator in an orthogonal transform domain
[6–8]. For a general fλλλ, the evaluation of the divergence may
not be tractable analytically and worse, it may even be numer-
ically infeasible, especially if fλλλ is implemented in an itera-
tive fashion (as is the case with most variational or PDE-based
denoising methods). We circumvent this dif culty by propos-
ing a novel technique that is based on the following theorem
which allows us to estimate the required divergence (and thus
SURE) for an arbitrary fλλλ.

Theorem 2 Let fλλλ(z) be the output of fλλλ corresponding to
z = y+b′, where b′ is a zero-mean i.i.d random vector (that
is independent of y) with covariance ε2I. Then

divy{fλλλ(y)} = lim
ε→0

1

ε2
Eb′{b′T(fλλλ(z)− fλλλ(y))}, (7)

provided that fλλλ admits a well-de ned second order Taylor
expansion.

The proof of this theoremwill be presented elsewhere. This is
a powerful result since (7) does not require any knowledge of
the functional form of fλλλ, thus making it applicable for a wide
variety of algorithms. The important point is that fλλλ is treated
as a black-box, meaning that we only need the output of the
operator irrespective of how it is implemented. Equation (7)
forms the basis of our Monte-Carlo approach for computing
SURE for a general fλλλ. Since, in practice, the limit in equation
(7) cannot be implemented due to nite machine precision, we
propose to use the following approximation:

divy{fλλλ(y)} ≈
1

ε2
b′T(fλλλ(y + b′)− fλλλ(y)). (8)

The idea is to add a small amount of noise (of variance ε2)
to y and evaluate fλλλ(y + b′). The difference fλλλ(y + b′) −
fλλλ(y) is then used according to (8) to obtain an estimate of
the divergence. The schematics of implementing the rhs of
(8) is illustrated in Figure 2.
We will demonstrate numerically that the approximation

in (8) is quite reasonable and yields excellent numerical re-
sults. The validity of the approximation in (8) depends on
how small ε can be made. In practice, we must select ε small
enough to mimic the limit, but still large enough so as to avoid
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Fig. 2. The dotted box depicts the module which estimates
divy{fλλλ(y)} according to (8) using the realization b′

i
. The

dashed box represents the SURE module (depicted as the
MSE estimation box in Figure 1) which computes the SURE
according to equation (4) for a given λλλ.

numerical round-off errors in fλλλ(y + b′). It turns out that the
estimation procedure is remarkably robust with respect to ε
(cf. Section 4).
We now develop an algorithm based on (8) for estimating

divy{fλλλ(y)} for an arbitrary fλλλ. The algorithm assumes that
a suitable ε has been selected and that a set ofK independent
random vectors {b′

i
}K

i=1 where each b′
i
(independent of y) is

zero-mean i.i.d with variance ε2 has been generated.

Algorithm 1 Estimation of divy{fλλλ(y)} and computation of
SURE for a given λλλ = λλλ0 and xed ε:

Step 1: For λλλ = λλλ0, evaluate fλλλ(y); i = 1; div = 0
Step 2: Build z = y + b′

i
; Evaluate fλλλ(z) for λλλ = λλλ0

Step 3: div = div + 1
ε2 b′T

i
(fλλλ(z)− fλλλ(y)); i = i + 1

Step 4: If (i ≤ K) go to Step 2; otherwise evaluate sample
mean: div = div/K and compute SURE(λλλ0) using (4).

It is clear that our method needs onlyO(N) storage while
computationally it is K times as costly as the denoising al-
gorithm itself. It should also be noted that to estimate divy

{fλλλ(y)} for a given set of parameters λλλ = λλλ0, fλλλ(y) needs
to be evaluated only once, while fλλλ(z) may be repeated with
many realizations b′

i
|K
i=1 for computing the sample mean in

step 4. However, in practice, when N is large (especially im-
ages), it is usually suf cient to use a single realization (i.e.,
K = 1) of b′.
Let us now consider the special case of a linear denoising

operator whose generic form is

fλλλ(y) = Fλλλy, (9)

where Fλλλ is the matrix corresponding to the linear transfor-
mation. Then, the desired divergence is simply given by

divy{fλλλ(y)} = Trace{Fλλλ}, (10)

which may be explicitly evaluated if Fλλλ is known. There are
many scenarios, however, where the matrix is not known ex-
plicitly and where (9) is evaluated through a recursive pro-
cess, in which case the trace computation can turn out to be

dif cult (especially for large data sets). For such cases, we
can prove that Algorithm 1 yields an unbiased estimate of
Trace{Fλλλ} irrespective of the value of ε. This provides an-
other strong justi cation for dropping the limit in (7).

4. EXPERIMENTS
We illustrate the applicability of our Monte-Carlo method for
two popular denoising algorithms: total variation denoising
(TVD) [9] and redundant wavelet denoising (RWD) by uni-
versal soft-thresholdingwith the Haar transform. In both cases,
the SURE computation is known to be non-trivial and most
probably not feasible numerically. For our experiments, we
used K = 1 in Algorithm 1 with Gaussian random vectors.
Our observation was that any ε ∈ [10−12 , 1] yielded agree-
able results for both TVD and RWD. So we chose to be con-
servative with respect to round-off errors and selected ε =
0.1 in all experiments. The performance of the methods was
quanti ed by the signal-to-noise ratio (SNR) of the output
fλλλ(y) computed as SNR = 10 log10

(
‖x‖2

‖x−fλλλ(y)‖2

)
. In all

cases, the value of σ was set to achieve the desired input SNR
computed by replacing ‖x − fλλλ(y)‖2 with Nσ2. The noise
variance σ2 was assumed to be known (it can be reliably esti-
mated from y using the median estimator in [6]) for comput-
ing SURE in (4).
Figures 3 and 4 plot the trueMSE and SURE as a function

of λ for both TVD and RWD (for the Boats image, input SNR
= 4 dB). In the case of TVD, the parameter λ represents the
regularization parameter, while it denotes the soft-threshold
value for RWD. It is clearly seen that SURE computed using
our Monte-Carlo method approximates the true MSE curve
remarkably well over the entire range of λ in both cases. Also
signi cant is the fact that SURE yields correct values for the
optimal λ in all cases. We observed the same trend for all
test images and input SNRs which con rms the consistency
of our method.
Some further denoising results are summarized in Table 1.

The rst value in each cell gives the SNR obtained by choos-
ing λ based on the true MSE (oracle SNR), while the second
corresponds to the result obtained by Monte-Carlo SURE op-
timization. Again, the two SNR values are in near perfect
agreement for all the test images and noise levels. This con-
rms the validity of our choice of ε and K; it also demon-
strates the reliability and robustness of ourMonte-Carlo SURE
optimization procedure.

5. CONCLUSIONS
We have developed a novel technique for computing SURE
for an arbitrary denoising algorithm. A possible interpreta-
tion of our Monte-Carlo scheme is that of a random rst or-
der difference estimator of the divergence of an operator: it
boils down to a randomly weighted summation of the differ-
ence between the restored signal and a perturbed version of it.
In effect, this yields a black-box approach that uses only the

907



Table 1. Comparison of SNR obtained based on the true MSE and SURE
Images Input SNR (dB) 4 8 12 16 20
Boats TVD (11.02, 11.01) (13.12, 13.12) (15.62, 15.62) (18.38, 18.38) (21.43, 21.43)

(512× 512) RWD (11.90, 11.90) (14.06, 14.06) (16.49, 16.49) (19.09, 19.09) (21.92, 21.92)
Barbara TVD (9.44, 9.44) (11.66, 11.66) (14.48, 14.48) (17.71, 17.71) (21.16, 21.16)

(512× 512) RWD (10.55, 10.55) (12.87, 12.87) (15.58, 15.58) (18.61, 18.61) (21.89, 21.89)
Peppers TVD (11.18, 11.18) (13.70, 13.70) (16.36, 16.36) (19.18, 19.18) (22.18, 22.18)

(256× 256) RWD (12.03, 12.03) (14.59, 14.59) (17.26, 17.26) (20.04, 20.04) (22.88, 22.88)
Shepp-Logan TVD (15.21, 15.21) (18.84, 18.82) (22.71, 22.71) (26.30, 26.30) (30.14, 30.12)
(256× 256) RWD (13.92, 13.92) (17.51, 17.51) (21.33, 21.33) (24.96, 24.96) (28.82, 28.82)
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Fig. 3. True MSE and SURE as a function of λ for TVD.
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Fig. 4. True MSE and SURE as a function of λ for RWD.

output of the denoising algorithm and does not require any
knowledge of its internal working. We did illustrate and vali-
date the method by optimization of the parameters of some
popular denoising algorithms. We found that SURE com-
puted using our method perfectly predicts the true MSE in
all the cases tested. Moreover, the SNR obtained by SURE-
based optimization is in almost perfect agreement with the
oracle solution (minimum MSE). This suggests that Monte-
Carlo SURE can be reliably employed for data-driven adjust-
ment of parameters in a large variety of denoising problems
provided that the data is corrupted by Gaussian noise.
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