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Summary
The estimation of motion from a sequence of volumetric images is an important task that
has many applications in biological and medical imaging, e.g: image registration, cardiac
analysis in 3D cine CT images and cell dynamics in confocal microscopy. In this work, we
present a novel algorithm to estimate a dense 3D motion using local all-pass filters. We
demonstrate the effectiveness of this algorithm on both synthetic motion flows and in-vivo

MRI data involving respiratory motion. In particular, the algorithm obtains greater accuracy
for significantly reduced computation time when compared to competing approaches.

Motion Flow Estimation
Problem: Find a velocity field ~u = (ux(~x), uy(~x), uz(~x))

T based on the variation of inten-
sities within a volumetric image sequence [1], where ~x = (x, y, z)T is the voxel coordinates.
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Optical Flow Point of View

Assume a voxel’s intensity remains constants as it flows from one image to another:

Brightness Constraint: I2(~x + ~u(~x)) = I1(~x)
︸ ︷︷ ︸

Non-Linear

Standard algorithms [1,2,3] are based on linearising the constraint under the assumption
that the displacement of the motion is small:

Optical Flow Equation: I2(~x)− I1(~x)− ~uT∇I1(~x) = 0
︸ ︷︷ ︸
1 Constraint for 3 Unknowns ⇒ Ill-posed

# Solve using regularisation [1] or assume motion is constant over a local window [2]

Our Approach
Instead of assuming small displacement and using the optical flow equation:

Assume the motion is slowly varying ⇒ Treat as locally constant

Under this assumption:

•Relate local changes between two images via a filter that is All-Pass in nature

•Extract local estimate of motion flow from this all-pass filter

# No limit on the size of displacement of the motion

All-Pass Filtering Framework[4]

1. Shifting is All-Pass Filtering

Under brightness constraint:

Constant motion =⇒ Shifting by a displacement vector ~u = (ux, uy, uz)
T

Shifting in frequency domain:

Î2(~ω) = Î1(~ω) e
−j~uT~ω

︸ ︷︷ ︸
= Filtering Operation

Define Filter
===========⇒ ĥ(~ω) = e−j~uT~ω

︸ ︷︷ ︸
= All-Pass

where ~ω = (ωx, ωy, ωz)
T.

2. Linearising the All-Pass Filtering

Any all-pass filter can be expressed as h[~k] = p[~k] ∗ p−1[−~k], where p is an arbitrary, real,
digital filter and ~k = [k, l,m]T is the discrete voxel coordinates:

All-Pass Filtering Equation:

I2[~k] = h[~k] ∗ I1[~k] ⇐⇒ p[−~k] ∗ I2[~k] = p[~k] ∗ I1[~k]

3. Filter Approximation - A Basis Representation

Approximate p using a linear combination of a few, known, real filters:

papp[~k] =
N−1∑

n=0

cnpn[~k]

A good basis should span the derivatives of an isotropic filter [5]:

p0[~k] = e−
k2+l2+m2

2σ2 , p1[~k] = k p0[~k], p2[~k] = l p0[~k], p3[~k] = mp0[~k]

where σ = (R + 2)/4 and R is the half-support of the filters.

# Extract estimate of displacement vector from all-pass filter h

3D Local All-Pass Algorithm
Assume motion is constant within a window W and estimate a local all-pass filter. Thus,
for (2R + 1) cubic window W , solve at every voxel:

min
{cn}

∑

~k∈W

∣
∣
∣papp[~k] ∗ I1[~k]− papp[−~k] ∗ I2[~k]
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∣
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# c0 = 1 =⇒ Solve linear system of equations with N − 1 unknowns

•Efficient implementation using convolutions
and pointwise multiplication

•Extract motion estimate from filters
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Poly-Filter Framework

Estimate the motion in a slow-to-fast varying manner by changing the filter parameter R;
large values of R allow the estimation of large flow whilst small values allow faster variations.

Post-Processing:

•Remove erroneous flow estimates
using inpainting

• Smooth estimate using Gaussian
filtering

LAP Algorithm
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# Pre-process images using high-pass filter

Results
Synthetic Evaluation: Image I1 is generated by warping image I2 using a known ground
truth motion - brightness constraint exactly satisfied.

Noise Images (128× 128× 64 voxels) MR Images (256× 256× 72 voxels)

Constant Flow Smoothly Varying Flow Constant Flow Smoothly Varying Flow

AEE AAE Time AEE AAE Time AEE AAE Time AEE AAE Time

3D LAP 0.014 0.065 9.320 0.019 0.319 9.290 0.007 0.038 34.77 0.048 0.771 40.82
Elastix [6] 0.174 0.558 47.20 0.223 4.400 49.80 0.196 0.914 69.42 0.494 7.809 76.00

Demons [7] 0.173 0.784 66.14 0.253 4.853 134.5 0.240 1.070 246.7 0.230 3.070 235.5

* AEE - Average End-point Error, ‖~u− ~uest‖2, (in voxels), AAE - Average Angular Error (in degrees) [3] and Time - computation time in seconds.

** Maximum displacement for each motion flow is 8 voxels.

# LAP computation times achieved using only a Matlab implementation (no C++ code)

Example estimating the smoothly varying motion flow

(a) xy-Slice of Image 1, I1 (b) xy-Slice of Ground Truth Motion (c) xy-Slice of Image 2, I2 (d) LAP Motion Estimate

Respiratory Motion Estimation on three in-vivo MRI: Noisy, real, conditions -
unlikely that the brightness constraint is satisfied.

Lung Segmentation Image Registration Computation Time
(Dice Coefficient [8]) Accuracy (dB) (seconds)

3D LAP 0.90 (0.01) 39.93 36.28
Elastix [6] 0.87 (0.02) 37.30 61.55

Demons [7] 0.73 (0.05) 38.23 434.6

* Lung Segmentation - perform automatic lung segmentation on both I1 and the registered version of I2 and then measure the overlap using Dice Coefficients [8]

Example estimating respiratory motion in MR images

(e) Moving Image, I2 (f) LAP Estimate (coronal slice) (g) Fixed Image, I1 (h) Registered Image, Ir
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