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Abstract—The effect of multiplicative noise on a signal when
compared with that of additive noise is very large. In this paper,
we address the problem of suppressing multiplicative noise in
one-dimensional signals. To deal with signals that are corrupted
with multiplicative noise, we propose a denoising algorithm based
on minimization of an unbiased estimator (MURE) of mean-
square error (MSE). We derive an expression for an unbiased
estimate of the MSE. The proposed denoising is carried out in
wavelet domain (soft thresholding) by considering time-domain
MURE. The parameters of thresholding function are obtained
by minimizing the unbiased estimator MURE. We show that the
parameters for optimal MURE are very close to the optimal
parameters considering the oracle MSE. Experiments show that
the SNR improvement for the proposed denoising algorithm is
competitive with a state-of-the-art method.

Index Terms—multiplicative noise, denoising, risk estimation,
thresholding.

I. INTRODUCTION

A. Background

Signal denoising is a widely studied problem. Most of
the literature deals with the additive noise model: given an
original signal x, one typically assumes that it is corrupted
by additive noise w. The problem is then to recover x from
the measurements y = x + w. Many approaches have been
proposed in the literature to suppress additive noise.

In this paper, we are concerned with a different denoising
problem. The assumption is that the original signal x has
been corrupted by multiplicative noise w: the goal is to
estimate x from the measurement y = xw. Multiplicative
noise is encountered in coherent imaging systems such as laser
Doppler imaging, synthetic aperture radar (SAR) imaging,
synthetic aperture sonar (SAS) imaging, ultrasound imaging,
etc.

In general, the noise in the multiplicative noise model is
described by a non-Gaussian probability density function with
Gamma being the common employed model [1], [2].

B. Related Literature

Several methods have been proposed in the literature [3]–
[13] to reduce the effect of multiplicative noise. One way is to
transform the multiplicative noise in the signal to an additive
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one by employing a log transformation. Thereafter, additive
suppression methods can be employed for restoring the signal.
Finally, taking the exponential of the processed signal, we
obtain the restored signal. However, such a straightforward
method does not lead to satisfactory results. Most widely used
filtering approaches to suppress multiplicative noise include
Kuan filter [3], Lee filter [4], Frost filter [5] and adaptive
speckle filtering by Lopes et al. [6]. Variational approaches
using total variation (TV) were proposed by Rudin et al. [7],
Aubert and Aujol [8], Shi and Osher [9], and Huang et al. [10].
Durand et al. proposed an approach by combining curvelet
thresholding and variational method [11]. Bioucas-Dias and
Figueiredo proposed a method based on variable splitting and
constrained optimization [13].

C. This Paper

We propose a denoising method based on minimization of
unbiased risk estimator. Since the oracle MSE (or risk) is
unknown, we derive an expression for the unbiased estimator
of MSE, namely multiplicative noise unbiased risk estimator
(MURE). We find the optimal parameters of the denoising
function by minimizing MURE, which yields a good estimate
of the original signal. Unbiased risk estimation approaches
have been developed for additive noise [14]–[16]. To the best
of our knowledge, risk estimators for multiplicative noise
have not been reported in the literature. We compare the
performance of the proposed method with a state-of-the-art
method.

II. PROBLEM STATEMENT

Consider the multiplicative noise signal model,

yi = xiwi, for i = 1, 2, · · · , N,

where yi is the ith element of y, y ∈ RN is the noise-
contaminated observation of original (unknown) signal x ∈
RN , {wi, i = 1, 2, · · · , N} are identical and independent
noise random variables with probability density function de-
noted by q(wi).
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The multiplicative noise is Gamma distributed with proba-
bility density function given as

q(w) =
N∏
i=1

q(wi), where w = [w1, w2, · · · , wN ] ∈ RN ,

q(wi) =
ab

Γ(b)
wb−1

i exp−wia, (1)

where a and 1
b are the scale and shape parameters, respectively.

q(wi) has mean E [q(wi)] = a/b, and variance

σ2
w = E

{
[q(wi)− E(q(wi))]

2

}
=

a

b2
.

We choose a = b = k. Let f : RN → RN be the denoising
function that yields denoised estimate of original signal, x̂ =
f(y). We have taken a parametric form for f . The goal is to
find the optimal parameters of denoising function f such that

MSE =
1

N
E
{
‖x̂− x‖2

}
is minimized.

The ground truth signal is not known. Hence, instead of
minimizing the oracle MSE, one needs to obtain an unbiased
estimator of the MSE and minimize it.

III. MULTIPLICATIVE NOISE UNBIASED RISK ESTIMATOR
(MURE)

Notation. Given a 1-D function f , we define M by the
following operator

Mf(y) = k

∫ 1

0

f(sy)sk−1 ds.

For a multivariate function f(y) = f(y1, y2, . . . , yN ), we
define the operator Mi which applies the operator M to the
ith component of f(y) only.

This notation is extended straightforwardly to multivariate
vector functions f(y) = [f1(y), f2(y), . . . , fN (y)]T according
to

Mf(y) = [M1f1(y),M2f2(y), . . . ,MNfN (y)]T

Lemma 1. Consider a 1-D function f such that E {|f(y)|}
is finite. If y = xw where w is a multiplicative Gamma
distributed random variable, with mean 1 and variance 1/k,
then

E {xf(y)} = E {yMf(y)} (2)

Here, the expectations are taken over the realizations of w.

Proof: Letting y = wx, we have

E {yMf(y)} =

∫ ∞
0

kwx dw

∫ 1

0

f(swx)q(w)sk−1 ds

= kx

∫ 1

0

sk−1 ds

∫ ∞
0

wf(swx)q(w) dw

= kx

∫ 1

0

sk−1 ds

∫ ∞
0

w

s2
f(wx)q

(w
s

)
dw

= kx

∫ ∞
0

f(wx) dw

∫ 1

0

wk

s2
kk

Γ(k)
e−kw/s ds

= kx

∫ ∞
0

f(wx)
kkwk

Γ(k)

[
e−kw/s

kw

]1
0+

dw

= x

∫ ∞
0

f(wx)
kkwk−1

Γ(k)
e−kw dw

= x

∫ ∞
0

f(wx)q(w) dw = E {xf(y)}

Here, the hypothesis E {|f(y)|} <∞ was used to validate the
integration sign exchanges, and the limit at 0+.

Using Lemma 1, We derive an expression for the unbiased
estimate of the risk as follows:

Theorem 1. An unbiased estimate (or risk) of the MSE is
given by the expression

MURE(f) =
1

N

(
k

k + 1
‖y‖2 + ‖f(y)‖2 − 2yTMf(y)

)
.

(3)

Proof:
Since ‖f(y) − x‖2 = ‖x‖2 + ‖f(y)‖2 − 2xTf(y) we need

to find two functions of y alone that are unbiased estimates
of ‖x‖2 and xTf(y).
• First, xTf(y) = x1f1(y)+x2f2(y)+· · ·xNfN (y): From

Lemma 1, we have that

E {xifi(y)} = E {yiMif(y)}

This shows that

E {xTf(y)} = E {y1M1f(y)}+ E {y2M2f(y)}
+ · · · E {yNMNf(y)}

= E {yTMf(y)}

and so that yTMf(y) is an unbiased estimate of xTf(y).
• Second, ‖x‖2 = x21 + x22 + · · ·x2N : looking at the ith

component of y, yi = xiwi, we have that E
{
y2i
}

=
x2i E

{
w2

i

}
= x2i

(
1 + 1/k

)
. Hence

x2i =
k

k + 1
E
{
y2i
}
,

and finally ‖x‖2 =
k

k + 1
‖y‖2

Therefore, the unbiased estimate of MSE is

MURE(f) =
1

N

(
k

k + 1
‖y‖2 + ‖f(y)‖2 − 2yTMf(y)

)
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IV. DENOISING PROCESS

The denoising process that we have employed is as
follows: First, we decompose the observed signal into
different subbands using undecimated wavelet transform.
D and R represents a wavelet decmposition and reconstruc-
tion matrices satisfying the perfect reconstruction condition
RD = I. Typically D = [D1

TD2
T . . . DJ

T ]T and R =
[R1R2 . . .RJ], Dj,Rj ∈ RN×N , j = 1 to J implement a
J-band filterbank of undecimated analysis and synthesis filters.

Fig. 1. Denoising process

We suppress noise by proper thresholding of wavelet co-
efficients in highpass subbands. After thresholding, we apply
the corresponding reconstruction filter to revert to the time
domain. The key idea of the denoising process is to perform
transform-domain denoising by considering the time-domain
MURE.

A. Undecimated wavelet decomposition

The wavelet coefficient vector wj = {wj
m}Nm=1 in the jth

subband is given by,

wj = Djy, j = 1 to J,

Dj = [djm,l]1≤m,l≤N , Rj = [rjm,l]1≤m,l≤N.

B. Subband thresholding in the highpass subbands

To suppress the noise, thresholding is performed on the
wavelet coefficients using suitable thresholding function in
each subband except the lowpass subband.

Since the unbiased estimator given by (3) contains integra-
tion term, if we consider soft-thresholding function, the com-
putation of MURE becomes difficult. To reduce computational
complexity, we have considered the thresholding function,
which reliably approximates the soft-thresholding function.
The transfer characteristic of the thresholding function with
input w is given by,

θ(w, T ) = w

[
1− exp

(
−
(
w

γ

)2
)]

where γ = T ×
√
w and T , w are the thresholding parameter,

and subband variance estimator, respectively.

The unbiased estimate of variance of mth wavelet coefficient
of jth subband is given by ,

wj
m =

1

k + 1

N∑
l=1

dj
2

m,l y
2
l .
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Fig. 2. MSE/MURE (MURE is scaled by ∼5) versus thresholding parameter
T for Square signal with Gamma noise (scale parameter a = 10, shape
parameter 1

b
= 0.1).

The Taylor’s series approximation of θ(w, T ) is

θ(w, T ) = w

[(
w

γ

)2

− 1

2!

(
w

γ

)4

+
1

3!

(
w

γ

)6

− · · ·

]
(4)

The polynomial representation on the right-hand side of
(4) makes the computation of the integration term in MURE
easier.

C. Wavelet reconstruction

After thresholding, we apply the corresponding undecimated
wavelet reconstruction filter, which yields the denoised esti-
mate of original signal x. The denoised estimate f(y) is,

f(y) =

J∑
j=1

RjΘ(wj , T ),

where Θ(wj , T ) = [θ(wj
1, T ), θ(wj

2, T ), · · · , θ(wj
N , T )]T .

The parameter of the thresholding function is T . We choose
the optimal T such that MURE is minimized.

V. RESULTS AND PERFORMANCE COMPARISON

In simulations, we used Haar wavelet basis and four-level
wavelet decomposition. We find the optimal thresholding pa-
rameter T that minimizes the unbiased risk estimator (MURE)
by exhaustive search method.

Simulations are performed on different standard signals with
Gamma distributed multiplicative noise with varying scale
parameter. Our experiments showed that the optimization of
MURE gives minima close to those obtained by optimization
of MSE. From Figure 2, we observe that although MURE is
not so close to the oracle MSE for some values of the threshold
parameter T , since MURE minima is so close to oracle MSE
minima with respect to threshold parameter, minimization of
MURE is nearly equivalent to the minimization of oracle MSE.

Figures 3, 4, and 5 show the noisy signals and corresponding
restored signals using MURE-denoising method.

We compare the results obtained by the proposed method
with a state-of-the-art method. We compare the performance
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(a) Original signal
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(b) Noisy signal (SNR = 4.84 dB)
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(c) Restored signal (SNR = 20.86 dB)

Fig. 3. Denoising performance on a sinusoidal signal

of the proposed denoising method on noisy sinusoidal signal,
square signal and triangular signal with the variational ap-
proach [8]. Table I shows a comparison of results obtained by
the proposed method with the variational approach. The SNR
improvement for the proposed method is competitive with the
state-of-the-art method.
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(b) Noisy signal (SNR = 10.07 dB)
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(c) Restored signal (SNR = 24.17 dB)

Fig. 4. Denoising performance on a square wave

VI. CONCLUSIONS

We developed a new risk estimation framework for sup-
pressing multiplicative noise in one-dimensional signals. Start-
ing with the mean-square error as the risk function, we have
developed an unbiased estimator that approximates the risk and
enables efficient optimization of the denoising function. The
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(b) Noisy signal (SNR = 0.07 dB)
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(c) Restored signal (SNR = 15.88 dB)

Fig. 5. Denoising performance on a triangular wave

result has been derived specifically for the case of Gamma
distributed noise. However, suitable risk estimators may be
derived for other distributions as well. We have considered un-
decimated wavelet decomposition based denoising, where the
denoising function parameters on every subband are optimized
for using the risk estimator. Performance analysis on noisy

Signal SNRin(dB) SNRout(dB) SNRout(dB)
[8] MURE

sinusoidal 4.69 19.76 21.03

sinusoidal 7.20 21.70 23.14

sinusoidal 9.98 24.13 25.24

sinusoidal 14.75 27.41 28.15

square 4.90 19.56 21.06

square 6.85 20.42 22.39

square 9.90 23.36 24.52

square 14.63 27.82 27.46

triangular 4.76 18.25 20.43

triangular 7.0 20.61 22.16

triangular 9.90 23.03 23.24

triangular 12.89 25.44 24.73

TABLE I
COMPARISON OF THE PROPOSED DENOISING METHOD WITH THE

VARIATIONAL APPROACH [8].

1-D signals showed that the proposed method is capable of
enhancing the signal-to-noise ratio significantly. Comparisons
with a state-of-the-art technique showed that the proposed
technique has about 0.5 to 1.5 dB higher output SNR. A
thorough comparison with other techniques, and performance
assessment on real signals is currently being carried out.
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