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ABSTRACT : In this paper, we establish a link between the
Discrete Fourier Transform ( DFT) and 2 high-resolution
methods , MUSIC and the Tufts and Kumaresan's method
(TK). Existence and location of the extraneous peaks of
MUSIC, of the "noise" zeros of TK , are related to the minima
of the DFT of the rectangular window filtering the data. Other
properties of the "noise" zeros are given, in relation to
polynomial theory.

I- INTRODUCTION

Time series harmonic analysis is a crucial problem in a
number of practical situations. However, very often, data
lengths are short, so that the separation between the frequencies
to be retrieved may be shorter than the Fourier resolution limit.
In this case, the so-called "high-resolution” methods are
needed. Various such methods have been devised. In this
paper, we will consider the MUSIC method [1], and Tufts and
Kumaresan's method (TK) [2] {3]. In both methods, a "model
order" is chosen.It corresponds to a rectangular windowing of
the data.The sources are obtained as peaks in a spectrum
(MUSIC) or zeros of a polynomial (TK).The number of such
peaks (resp. zeros) is equal to the model order.The order is
generally chosen in order to overestimate the number of
frequencies, so that a number of extraneous peaks (resp. zeros)
are introduced. These are generally attributed to the noise. We
show that they originate in fact in the shape of the spectrum of
the above-mentioned rectangular window.

We first show that MUSIC can be viewed as a special
case of the periodogram, this latter being understood as the
average spectrum of the data, taken over overlapping
rectangular windows of width equal to the model order.The
secondary peaks of the MUSIC spectrum are thus related to the
minima of the Fourier transform of this rectangular window.

The TK method relies on the properties of the
minimum-norm vector with first coefficient equal to 1 belonging
to the so-called "noise subspace”. It is well-known that the
zeros of the associated polynomial can be divided into two
subsets, namely the "source" zeros and the "noise" zeros.The
"noise" zeros have been observed to be approximatively
uniformly distributed on a circle centered in 0, and of radius <1.

This fact has never been explained, though [4]
performs an explicit computation of the location of the roots in
the similar case of the maximum-entropy method, but only in
the single frequency case.

On another hand, [5] considers this problem from the
point of view of measure theory. A probability measure is
introduced, which assigns the same weight to each "noise" root.
For the 2 frequencies case, [5] proves that for almost every
value of the difference between these two frequencies, this
measure converges weakly to the uniform measure on the unit
circle when the model order tends to infinity.

In this paper, we present results on the structure of the
"noise" polynomial, which leads to explain properties of their

zeros. We then can relate the location of the zeros to the shape
of the Fourier transform of the above-mentioned rectangular
window.

We first show that the "noise" zeros are in fact roots of
a lacunary polynomial. The properties of lacunary polynomials
give an explanation to the distribution of the zeros.

We can then prove that the "noise” roots converge
uniformly to the unit circle, except possibly for m-1 of them, m
being the number of frequencies.The proof will not be given
here, due to lack of space.

We study in detail the 1 frequency case, giving a
direct proof of the convergence and the angular
"equi"distribution of the roots.

For any number of frequencies, we give a first-order
approximation of the lacunary polynomial, leading to prove the
convergence of the roots to the unit circle.An explicit expression
of this polynomial in the 2 frequencies case is given.

Finally, we give an heuristic explanation to the angular
distribution of the zeros: since the "noise” zeros lie near the unit
circle, the spectrum of the coefficients of the lacunary
polynomial can be expected to have minima close to the
location of these zeros. Using the above-mentioned first-order
approximation , it is possible to prove that these minima are
approximately angularly equispaced. The zeros are then likely to
be also so. On another hand we have proven that the
coefficients of the noise polynomial behaved more or less like
the sum of the signal itself plus its derivative. The angular
equispacing of the minima of its spectrum then corresponds to
the minima of the spectrum of the rectangular window of width
equal to the model order.

II- Problem Position

Throughout this paper, only noiseless data will be
considered.

Let x be a signal composed of a sum of m complex
sine waves, observed on N samples.

xk=§diexp[j ok, fork=0,..,N-1 (1)

where ;,d; areresp. the pulsations and complex amplitudes
of the i-th complex exponential.

III- Periodogram

In this paragraph, we recall the definition and
properties of the periodogram.

The periodogram is commonly defined as the squared
modulus of the discrete Fourier transform of the data.
However, very often, overlapping windowing of the data is
introduced and an averaging over the periodograms of the
windowed data is used [6] .This can be written in matrix form
as follows. Letting
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Xo X XN-L

X, X2 XN-L+1
X -

XL XNa1

and P(w) denote the averaged periodogram, we have P(®) =
/(N-L+1) [1, e7Jo, ..., efi(L-D0] XX+, e-jo, ..., eiL-Dol+

where the superscript + denotes conjugate transpose.
Let us investigate the shape of P(w).Using (1) we obtain :

1o 1
i 3%

X= A=S.A
(KD, (i(K-Da,

where A is the matrix containing the amplitudes of the
windowed signals .

Thus  XX*=SLAA*SL* )
Note that A can be expressed as follows :
d, 1 e IN-Le,
A=
dnf1 el® eI(N-L)o,

and thus that 1/(N-L+1) XX* tends towards Sp | Dl 25+
when N tends to infinity, where | DI 2 = diagd djl 2, ..., | dml 2).
If m =1, we clearly have XX*=
(N-L+1) dj2[1, edo, ..., ed-DogJ[t, edon, .., edL-Doy)
so that :
P(w) = d;2 (sin ((01-w)L/2) / sin (01-w)/2)2
P(w) has the well-known shape presenting a global maximum
equal tod;? and L-1 secondary maxima.
For well-separated sources, or for large N, we have
P(@)= T di?(sin ((0i-0)L/2) / sin (0-0)/2)?
It is then approximately true that this fonction admits L-m
secondary lobes, L being the width of the rectangular
windowing of the data.

IV- MUSIC

MUSIC is a high-resolution method, which we want to

relate to the periodogram.
MUSIC relies on the eigendecomposition of XX+.
Indeed, let XX+= UAU* , U (resp.A) being the matrix of the
orthonormal eigenvectors (resp. eigenvalues) of XX*.
According to (2), XX* has rank m, so that only m eigenvalues

are non-zero.Let Ag be the diagonal matrix containing these
c}gcnvalucs, and Ug be the matrix of the associated
eigenvectors. We can write
XX+ = UgAUs 3)

The columns of XX+ span the same subspace as those of Us,
and also as those of S, according to (2) . This subspace is
termed the "signal subspace”.

The MUSIC method consists in seeking the values of o which
maximize the projection of the "steering" vector [ 1, &9, ...,
eJL-N®] on the "signal" subspace. Indeed, the steering vectors
corresponding to the {wi} belong to the signal subspace.Since

the projector on the signal subspace is
Ig= UgUg*, MUSIC in matrix form is given by
max f(w) , where )
f()=(1, eJo, ..., edl-Do] UUHI, eo, ..., edl-Doj+
Recall that P(w) is proportional to : .
(1, edo, .., edl-Do] UAUgH( 1, €0, ..., eldL-Daj+
. For the special case of 1 frequency , Us= SL NL therefore
XX+ is proportional to UsUg*. Thus, in this case, f(w) and
P(w) are proportional.
. For any number of sources, we can write Ug=SLP, where P is
a non-singular square mxm matrix. This amounts only to
express that Ug and St span the same subspace. Thus
Pg = UgUg+= SLPP+S1 +
and
f(w) =(1,..., e3L-DO] S (PPH)S *(1...., edL-Do}+
Recall that the periodogram was given by P(w), with P(w)
proportional 1o [1,..., eJL-D@] S| (AAHSLH[1,..., edL-Doj+
we can thus consider f(®) as the "periodogram" of a special
signal whose amplitudes would be characterized by P instead
of A. This explains why the MUSIC spectrum exhibits
regularly spaced secondary peaks : they originate in the implicit
windowing of the data, as it is the case for the periodogram.
Note that for well separated frequencies AA* EﬁrDl 2and
PP+=1d . Then f(®) tends to be proportional to P(w).

V- Tufts and Kumaresan's method

In this paragraph, we first recall the principle of the TK method,
and then relate the "noise" roots to the periodogram of the data.

V.1. Principle of the method

We defined in the above section the "signal” subspace as the
one spanned by Sp. The subspace which is orthogonal to the
“signal" subspace will be termed "noise” subspace. Any vector
of the "noise” subspace is thus orthogonal to Sp. Consider a
polynomial having as coefficients the elements of such a vector.
The special structure of the columns of St implies that the (€)%
i=1, ..., m} belong to the roots of this polynomial. There is an
infinity of such polynomials. TK method singles out the
minimum-norm vector belonging to the noise subspace, with
first coefficient equal to 1 . The associated polynomial has thus
L-m-1 roots besides the {eJ® }. These are termed the "noise"
roots.

V.2 Problem position

It has been observed that the L-m-1 "noise" roots of
the associated polynomial behave "regularly” in some sense :
they seem to be approximately angularly equidistributed on a
circle concentric to the unit circle, and of radius <1. This
property facilitates the separation between these zeros and the
{efo ).

However, while it has long been proven {3] that the noise roots
are located inside the unit circle, their other properties have
never been given an explanation, except by [4] for m =1 in the
context of the maximum entropy method which leads to
polynomials having similar properties.

In another respect, we have proven that the noise roots
converge uniformly to the unit circle, except for at most m-1 of
them (we in fact give an upper bound of the distance of those
former roots to the unit circle). The proof will not be given
here, due to lack of space.

We are going to study the properties of the "noise”
polynomial coefficients ( polynomial whose roots are the
"noise" roots) . They originate in the following fact [3]. The
coefficient vector of the noise polynomial is the AR prediction-
error filter for a data sequence formed by the coefficients of the
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“signal” polynomial surrounded by zeros.

We establish that the "noise" roots are also roots of a
lacunary polynomial. This latter property gives the key to the
understanding of the location of these zeros.

We then put forth a complete study of the case m = 1.

For any number of sources, we give a first-order
approximation of the lacunary polynomial.

For m = 2, we give an explicit expression for the
lacunary polynomial.

Finally, we give an heuristic explanation to the almost
equiangular distribution of the zeros, noting that since the zeros
lie mostly near the unit circle, the spectrum of the noise
polynomial coefficients can be expected to exhibit minima close
to the location of these zeros. We have shown that the
coefficients of this polynomial were the sum of two terms, one
of them a linear sum of the same sine waves as the signal itself,
the other one a linear sum of their derivatives. This hints that the
spectrum of these coefficients has minima distributed as those
of the spectrum of the rectangular window of width equal to the
model order. This latter result can be proven using the first-
order approximation of the lacunary polynomial.

V.3 The "noise" polynomial coefficients viewed as the
AR solution to a special problem

Seeking the minimum-norm vector with first
coefficient equal to 1 belonging to the "noise” subspace is
equivalent to seeking a (L-m-1)-th degree monic polynomial
with m given zeros and minimum-norm. The product of two
polynomials can be written in matrix form as follows :

1 0 _1 = VL—I—
ol
0 [1=bl_m
1 | br-m-2 1
Ab= o =
- |
Om L.bO
0 Vi
L0 O | - Lvo |
where o, ... , &m (resp.by, ..., bL-m) are the coefficients of

the "signal" (resp."noise") polynomial A(z) (resp. BL(z)).
Assuming ap= 1 involves no loss in generality.

The minimum-norm condition gives : b*A*Ab minimum under
the constraint bg=1. The solution to this problem is given by :
A*Ab proportional to [1, 0, ..., 0]T , i.e. b is the AR solution
with respect to a signal formed by the { aji=1, ..., m)
surrounded by zeros [3].

V.4, A property of the coefficients of the "noise”
polynomial

A*A is a Toeplitz band matrix. Indeed

on I 0 0
nrn m 0
A*A=|r, m
n
0 Im Ig

Therefore, since A*Ab is proportional to [1, 0, ... , 0]T, the
data sequence {..., 0,0, 0, bg,by, ..., bL-m-1,0, ... , 0, ...}
follows a linear recursion relationship with coefficients (rj}. It
is clearly seen that since the zeros of the "signal” polynomial

have modulus equal to 1, the {r;} are the coefficients of (A(2)2.

:'l‘"herefore, we can write
bp=Z (A+ n pg Y e 51 O 3)
1) ..
The 2m values Ay and px are determined by writing that
b.1,..,bqm1) ,bL-m, .. ,bL.1 arezeroand by.m.1 =1

V.5 A lacunary polynomial

A+Ab does not represent the multiplication of the
polynomial ({rj} by the noise polynomial. This latter
multiplication is written in matrix form using the augmented
matrix (A*A)aUE | sothat

Tm X
X
rll m
ToT I 0 0 [M1=bp_pmy 1
nign I 0 0
(A*A) B p=|r T =
n b
0 | o [ bo 0
X
X
I'm |x]

where the symbol x denotes a non-significant value.

This means that (A(z))2 Br(z) is a lacunary
polynomial, i.e. of the following type Pi(z)+zL-1Py(z) with
deg(P;)<m-1 and deg(P2)<m, the polynomials depending
implicitely on the model order L.

V.6 Casem=1

We give here an exhaustive study of the location of the
roots. Taking ) = 0 involves no loss in generality.
Using (3), weobtain by = (A+nu). We have b_j=
0, thus A= p. We also have bp.;p.1 = 1. Thus A = 1/ (L-m).
Consequently
BL(z) =1/(L-m) [Z(1+k) zK ]
=1/(L-m) d/dz [(zL-m+1 - 1)/(2-1)]L
=1/(L-m)[(L-m)zL-m+1(L-m+1)zE-M+1)/(z-1)2
Following [4], [6], we can assert that the "noise" roots &; are
such that
Q@L-m))y YL-m< | g | <L-m-1)/(L-m)
(See appendix for a proof).
Moreover, ([7] p.165)) implies that each root lies within the
sector (2k+1)m/(L-m+2)3w/(L-m+2) for k=0..(L-m).
Therefore, we have proven that for m=1 the noise zeros
converge to the unit circle when L tends to infinity, while being
approximately angularly distributed.

V.7 General case

Let us write
A@BL(2)=1/L QL(@)+zL/(I/L RL(2)+A®)
There , letting Ly = e/®n , we write, using Lagrange's
interpolation polynomials
_m QL) A
@ n§1 A'Cn) z-Cy
o Ry Cn) AQ2)

R =
L@= X AT -G
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and thus , since { are 2-fold zeros of the lacunary polynomial :
QL&n)+CE 'R (C) =0

Ay G -t
R a1 | EARCALNNE) S
n L(Ck)A'(CQ G =L,

+HL-DCE2R (Cn) + LEETA () =0

for n=1..m. The second equation implies that Rp({n) is
bounded over L. Therefore, Rp(z) and Qr(z) are two
polynomials whose coefficients are bounded over L, wherefrom
the Kumaresan polynomial V| (z) follows

VL(Z) =A(Z)BL(Z)

L-1,19.@+ R @)

L A(2)
This is a useful property which shows in the limit L tends to
infinity that, when its modulus is evaluated over the unit circle,
the Kumaresan polynomial behaves as a constant except near
the roots of A. More precisely,

2 i8 _ i0y)
i0 = 14+ 2q RLE®) | 20 L-1ie QL™
e L;m”ﬁ‘[ A(cie)J‘mf"[@ ACP)

Thus, away from the {e®i}, the first (constant) term
dominates, while the second provides for a slowly varying 1/L
correction and the third a fastly varying one , behavin g like the
Fourier transform of the rectangular window of width L-1.

V.8 Casem=2

Note first that chosing w1=-wy=6 involves no loss of
genarality. We now solve the system of equations leading to the
4 coefficients of R (z) and Q_(z) and obtain

_1-S(B)cosLb S(8)cos[(L —1)8] - cosB
RL(Z)‘_ﬁD(O +z DG®)
_ S(8)cosB — cos[(L —1)8] cosLB - S(8)
Q@)= D) M Y0)
where S(6) and D(8) are defined as follows
_sinf(L-1)0]
S6)= (L-1)sinB

D) =-La-50)?)

APPENDIX

1. We have
BL(z) =1/(L-m)d/dz [(Z~-M+] - 1)/(z-1)]
=1/L-m)[ 1422+ ..... + (L-m)zL-m-1]
Using a theorem of [7] (p.l37l) about polynomials with positive
coefficients, we find that IF;, S(L-m-1)/(L-m).

2. Let Np(2)=QL-m)zb-m+1(L-m+1)zL-m4]

Consider now zL-m+INy (1/z), which we will denote
by ML(2). ML(z) = (L-m) - z(L-m+1) + zL-m+1_The roots of
ML(z) are 1/€;

{7] (Theorem 27.1) leads to seek the positive root of Ur(z),
with Up(z) = zZb-m*1. z(L-m+1)-(L-m).

Since UL (0)=-(L-m)

and  UL((2( L-m))}/(L-m)) can be checked to be positive, [7]

asserts that
1/1&; 1< 2(-m)1AL-m)

15~ ]

05— 1

Spectrum | Vi(e®) | 2 of V. (the minimum-norm
vector) ¢ varying from -z 10 +7 , for 2
sources at teJ™< and for L =20, L=50 .

VI. Conclusion

We have established a link between the shape of the
periodogram and, on the one hand, the location of the peaks in
the MUSIC spectrum, on the other hand the location of the
"noise" zeros in the TK method. In this latter case, the zeros are
proven to root a lacunary polynomial. Further work will use
this property to obtain a better understanding of the behavior of
the roots. A future paper will present the proof of the
convergence of the roots to the unit circle (except for a finite
number of them) when the model order tends to infinity.
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