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ABSTRACT

We present a generalization of the Daubechies wavelet fam-
ily. The context is that of a non-stationary multiresolu-
tion analysis — i.e., a sequence of embedded approxima-
tion spaces generated by scaling functions that are not nec-
essarily dilates of one another. The constraints that we im-
pose on these scaling functions are: (1) orthogonality with
respect to translation, (2) reproduction of a given set of
exponential polynomials, and (3) minimal support. These
design requirements lead to the construction of a general
family of compactly-supported, orthonormal wavelet-like
bases of L2. If the exponential parameters are all zero,
then one recovers Daubechies wavelets, which are orthog-
onal to the polynomials of degree (N − 1) where N is the
order (vanishing-moment property). A fast filterbank im-
plementation of the generalized wavelet transform follows
naturally; it is similar to Mallat’s algorithm, except that the
filters are now scale-dependent. The new transforms offer
increased flexibility and are tunable to the spectral charac-
teristics of a wide class of signals.

1. INTRODUCTION

The wavelet transform constitutes a versatile tool for sig-
nal analysis and approximation. Part of its success is due to
the remarkable property that it sparsely represents functions
that are piecewise polynomial, a model that is well-suited to
the description of a wide class of “natural signals” that are
essentially lowpass. Another important aspect is its compu-
tational efficiency.

Our aim in this work is to introduce an extended type
of wavelet bases that offer more flexibility and may be suit-
able for an even larger class of signals; for instance, those
that contain some natural resonances and are not necessarily
predominantly lowpass. For such signals, it is appropriate to
develop an approximation theory that replaces the polyno-
mials of classical wavelet theory by adequately modulated
versions of these functions.

We thus focus on exponential polynomials, that is, func-
tions of the form P (t)eαt, where P (t) is a polynomial in
t and α is a complex exponential parameter. We construct
embedded approximation spaces which all contain the expo-
nential polynomials corresponding to a given set of param-

eters and maximum degrees. This is possible in the general-
ized framework of non-stationary multiresolution analysis
introduced by de Boor, DeVore and Ron [1], where each
space is generated by a different scaling function. Here,
these are chosen to be orthonormal and minimally supported,
and lead to the specification of corresponding wavelet-like
basis functions — the generalized Daubechies wavelets [2].

The proposed wavelet transforms are computationally
attractive because of their short support property; they can
be efficiently implemented using an adaptation of Mallat’s
algorithm [3] with scale-dependent FIR filters. Interest-
ingly, there is also a relation between these generalized wave-
lets and non-stationary subdivision schemes [4] developed
independently in computer graphics; in particular, a recent
construct by Dyn et al. [5] that preserves exponential poly-
nomials. We note, however, that these only correspond to
the lowpass synthesis part of the wavelet algorithm and that
the underlying basis functions are typically interpolating in-
stead of being orthogonal, as is the case here.

2. NON-STATIONARY MULTIRESOLUTIONS

2.1. Definition

We start by defining the fundamental structure we consider:
it is a set of embedded, shift-invariant approximation spaces.
The important difference with stationary multiresolutions
encountered in classical wavelet theory is that each space
can be generated using a different function [1], depending
on the scale parameter j. In addition, we impose that these
so-called scaling functions are orthonormal to their integer
translates.

Definition 1 (Non-stationary multiresolution). Given the
scaling functions (φj)j∈Z

, the spaces

Vj = span
{

φj

(
t − 2jk

2j

)
, k ∈ Z

}
(1)

define a non-stationary multiresolution if, for any j ∈ Z:

•
(

1√
2j

φj

(
t−2jk

2j

))
k∈Z

is an orthonormal basis of Vj∩
L2(R);

• Vj+1 ⊂ Vj;
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Fig. 1. Non-stationary filter bank.

and in addition Vj ∩ L2(R) → L2(R), {0} respectively as
j → −∞, +∞.

2.2. Basic properties

The embedding of the spaces Vj implies the existence of
scaling filters hj [k] such that

φj+1

(
t

2j+1

)
=

∑
k∈Z

hj [k]φj

(
t − 2jk

2j

)
. (2)

Conversely this scaling relation implies that any function in
Vj+1 can be expressed as a linear combination of the basis
functions of Vj , hence providing a necessary and sufficient
condition for Vj+1 ⊂ Vj .

In the Fourier-domain, the scaling relation (2) writes

2φ̂j+1 (2ω) = Hj

(
eiω

)
φ̂j (ω) . (3)

A consequence of this relation is the infinite-product for-
mula, which defines the scaling functions using the scaling
filters only, provided limj→−∞ φ̂j

(
2jω

)
= 1. In this case

φ̂j(ω) =
+∞∏
�=1

1
2
Hj−�

(
ei2−�ω

)
. (4)

3. MULTIRESOLUTION DECOMPOSITION

The embedded spaces (Vj)j∈Z
as defined above provide a

practical structure for multiresolution signal approximation.
Given a function f = f(t) ∈ L2(R), its best approximation
in Vj is given by its orthogonal projection PVj f . Definition
1 ensures that the approximation error

∥∥f − PVj
f
∥∥ tends to

zero as j → −∞.
From a mathematical standpoint, the projection PVj

f
can be expressed using simple scalar products with the func-

tions
(

1√
2j

φj

(
t−2jk

2j

))
k∈Z

, which are orthonormal. More

generally, it is also possible to define bi-orthogonal non-
stationary multiresolution analyses. This is done in the semi-
orthogonal construction of Khalidov et al. using E-splines
[6], with the important difference that the obtained scaling
functions and wavelets are not necessarily compactly sup-
ported anymore.

The following simple property relates continuous-time
multiresolution approximation and discrete orthogonal per-
fect-reconstuction filter banks. Notice that the scaling filters
are assumed to be real.

Property 1 (Conjugate mirror filters). If for any j ∈ Z

the function φj(t) is orthonormal to its integer shifts, then

Hj(z)Hj(z−1) + Hj(−z)Hj(−z−1) = 4 (5)

must hold for all j.

(5) is also known as the conjugate mirror filter condi-
tion. Equivalently, it states that the discrete filter hj [k]/

√
2

is orthonormal to its even translates. It makes the filter bank
in Fig. 1 orthogonal and ensures perfect reconstruction, pro-
vided one sets Gj(z) = z2n−1Hj(−z−1). This structure
efficiently computes coarser approximations of a function
f from a given projection PVj

f . More precisely, if xj [k]
denotes the components of the projection at scale j; i.e.,

PVj
f(t) =

∑
k∈Z

xj [k]
1√
2j

φj

(
t − 2jk

2j

)
, (6)

then xj+1[k], which represents PVj+1 f , is obtained from
the filter bank in Fig. 1.

Similarly we may introduce Wj+1, the orthogonal com-
plement of Vj+1 in Vj . Then, yj+1[k] corresponds to PWj+1

f . These projections on the spaces Wj are expressed us-
ing the dyadic shifts of wavelet functions ψj(t) respectively,
which are defined by the following relation:

ψj+1(t/2) =
∑
k∈Z

gj [k]φj(t − k). (7)

In the reminder of the paper, we constrain the scaling
functions (and thus the wavelets) to be orthonormal and
compactly supported. This implies that the scaling filters
Hj(z) must be FIR. In this way, the projection operator
PVj is both orthogonal and local, allowing a simple and nu-
merically efficient filter-bank implementation. Since the in-
volved filters depend on the scale j, all that needs to be done
is to precompute them up to the desired coarseness level.

4. REPRODUCTION OF EXPONENTIAL
POLYNOMIALS

We shall now discuss the conditions under which all the ap-
proximation spaces Vj can contain a given set of exponen-
tial polynomials.

Definition 2 (Reproduction of exponential polynomials).
Given a vector �α ∈ C

N , we denote
(
α(m)

)
m∈[1,Nd]

its dis-
tinct components and N(m) their respective multiplicities.
The non-stationary multiresolution (Vj)j∈Z

reproduces the
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exponential polynomials corresponding to �α if and only if,
for any P (t)eα(m)t, deg P (t) < N(m), and at any scale j,
there exists a sequence pj [k] such that

P (t)eα(m)t =
∑
k∈Z

pj [k]φj

(
t − 2jk

2j

)
. (8)

The following result describes how this property reflects
on the scaling functions:

Theorem 1. Let (Vj)j∈Z
be a non-stationary multiresolu-

tion analysis as in Def. 1; it reproduces the exponential
polynomials corresponding to �α if and only if each filter
Hj(z) has a zero of order N(m) at z = −e2jα(m) , for
m ∈ [1, Nd].

(The proof of this theorem as well as other mathematical
results of this paper can be derived from [7].)

This means that, in order to reproduce the exponential
polynomials corresponding to �α, Hj(z) must be divisible
by R2j �α(z), where

R�α(z) =
N∏

n=1

(
1 + eαnz−1

)
. (9)

5. GENERALIZED DAUBECHIES WAVELETS

In the compactly supported case, the previous result im-
plies the existence of an FIR filter Qj(z) such that Hj(z) =
R2j �α(z)Qj(z). Our goal is thus to design the shortest pos-
sible Qj(z) for the filters Hj(z) to be orthonormal, which
will lead to minimally supported scaling and wavelet func-
tions through the infinite-product formula (4).

We impose that the scaling filters are real, which implies
that the elements of �α should be real or appear in complex-
conjugate pairs. We can then perform the standard change
of variable Z = (z + z−1)/2 and get a polynomial U(Z) ∈
R[Z] such that

U

(
z + z−1

2

)
= R�α(z)R�α(z−1). (10)

One can thus relate the orthonormality constraint (5) to the
following well-known result:

Theorem 2 (Bézout). Given U(Z) ∈ R[Z], there exists a
polynomial V (Z) ∈ R[Z] such that

U(Z)V (Z) + U(−Z)V (−Z) = 4 (11)

if and only if U(Z) has no pair of opposite roots.

The fundamental limitation here is spectral factoriza-
tion. In fact, (5) is equivalent to the formulation in (11)
provided the following condition is fulfilled:

Lemma 1 (Riesz). For any polynomial V (Z) ∈ R[Z], there
exists a polynomial Qj(z) ∈ R[z] such that

V

(
z + z−1

2

)
= Qj(z)Qj(z−1) (12)

if and only if V (Z) ≥ 0 for Z ∈ [−1, 1].

We are thus looking for a solution of (11) that is posi-
tive on [−1, 1] with lowest-possible degree. Therefore, it is
useful to give a complete description of the solution set.

Property 2 (Bézout solution set). If U(Z) has no pair of
opposite roots,

1. there exists a unique polynomial V0(Z) ∈ R[Z] s. t.{
deg V0(Z) < deg U(Z)
U(Z)V0(Z) + U(−Z)V0(−Z) = 4.

(13)

2. the set of all polynomials V (Z) ∈ R[Z] satisfying
(11) is given by{

V0(Z) + Zλ(Z2)U(−Z), λ(Z) ∈ R[Z]
}

. (14)

We provide examples to illustrate the previous propo-
sitions. Some plots of the resulting scaling functions and
wavelets are shown in Fig. 2.

Example 1 (Daubechies case). Daubechies’ traditional con-
struction corresponds to �α = �0 ∈ C

N (Fig. 2 (a)). In
this case V0(Z) is positive on [−√

2,
√

2] [8]. Thus one
can always use the shortest Bézout solution to derive the
corresponding orthonormalized filter. Notice that we are
in fact considering a stationary multiresolution that repro-
duces regular polynomials up to degree (N − 1), and one
only needs to derive a single filter which is then the same
for all scales.

Example 2 (Harmonic case). If we choose �α to be com-
posed of a single imaginary conjugate pair (iω0,−iω0) with
multiplicity M , we can reproduce modulated polynomials
of the form P (t) cos(ω0t), deg P (t) < M . Here one shows
that V0(Z) = V0 D (Z/ cos(ω0)) / cos(ω0)2M , where the in-
dex D refers to the corresponding Daubechies case �α = �0 ∈
C

2M . Thus, the shortest Bézout solution is guaranteed to be
acceptable if | cos(ω0)| ≥ 1/

√
2. If the order M is low, this

bound is even lower (Fig. 2 (b)).

One potential problem is that V0(Z) is generally not
guaranteed to be positive definite over [−1, 1]. This situ-
ation may occur when | cos(ω0)| < 1/

√
2 and the order M

is large or when �α includes distinct frequencies. One then
needs to look for higher-order Bézout solutions from (14)
(Fig. 2 (c)).

The following result ensures that there always exists a
positive Bézout solution, thereby allowing to extend Daube-
chies’ idea of looking for a minimal-length scaling filter:
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Fig. 2. Scaling functions (continuous lines) and wavelets
(dashed lines) corresponding to different �α parameters.

Property 3 (Positive Bézout solution). If U(Z) has no
pair of opposite roots, then there exists a polynomial V (Z) ∈
R[Z] such that{

V (Z) ≥ 0, Z ∈ [−1, 1]
U(Z)V (Z) + U(−Z)V (−Z) = 4.

(15)

Note that the higher-order solutions are generally non-
unique, which calls for additional design constraints.

6. CONVERGENCE

We complete our presentation with some results concerning
the convergence of the infinite product formula (4) and the
properties of the resulting scaling functions and multireso-
lution spaces.

Property 4 (Convergence). If the filters (Hj(z))j∈Z
are

always constructed using a Bézout solution with the lowest-
possible degree, then for each j ∈ Z, the infinite prod-
uct on the right-hand side of (4) converges to a function
φ̂j(ω) ∈ L2(R). Moreover, φj(t) is orthonormal to its inte-
ger translates.

Property 5 (L2(R)-density). Let f ∈ L2(R) be a function
whose Fourier transform has a compact support in [−2Jπ,
2Jπ]. Then,

lim
j→−∞

∥∥f(t) − PVj
f(t)

∥∥2 = 0 (16)

7. CONCLUSION

The multiresolution approximation structure that was pre-
sented along with its discrete implementation is expected to
be applicable to any type of signals that have their energy
concentrated around specific frequencies. Indeed, for these
modulated components, exponential polynomials have ap-
proximation properties that are equivalent to those of poly-
nomials in the case of base-band signals. The ability to tune
the filters to the considered application is a promising fea-
ture. In speech processing for instance, one may derive fil-
ters that are adapted to the pitch and harmonics of a specific
speaker. Many algorithms may be designed to exploit the
sparsity of the resulting representation. More generally, the
structure that we described can be adjusted to fit the natural
modes and responses of a wide class of differential systems.
For example, in neurophysiology, it might be well-suited for
the analysis of exponential pulses corresponding to different
spiking neurons.
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