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Interpolation Revisited
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Abstract—Based on the theory of approximation, this paper amplitude of the difference between two conditions (e.g., active
presents a unified analysis of interpolation and resampling versus inactive) is very small. Registration is used to align fMRI
techniques. An important issue is the choice of adequate basis;m,qeg hefore they are subtracted to reveal where and how they
functions. We show that, contrary to the common belief, those that differ 1101, H ith fect k led f the ideal
perform best are not interpolating. By opposition to traditional iffer [ _]' owever, eYe” wi _p(_er eg nowe_ge orthe idea
interpo|a’[i0n’ we call their use genera"zed interpo|ation; they geomet”ctransformauon,adef|C|ent|nterp0|at|0n can wash out
involve a prefiltering step when correctly applied. We explain these tiny differences.
why the approximation order inherent in any basis function is  The essence of interpolation is to represent an arbitrary
important to limit interpolation artifacts. The decomposition the- continuously defined function as a discrete sum of weighted
orem states that any basis function endowed with approximation d shifted basis functi Ani tant i is the ad i
order can be expressed as the convolution of a B-spline of the an _S ifted basis unc Ions._ n importan .I§Sue '5_ € adequale
same order with another function that has none. This motivates Ch0|ce Of those baS|S fUnCt|0nS. The tradltlonal view aSkS that
the use of splines and spline-based functions as a tunable way tothey satisfy the interpolation property, and many researchers
keep artifacts in check without any significant cost penalty. We have put a significant effort in optimizing them under this
discuss implementation and performance issues, and we provide gyaific constraint [11]-[17]. Over the years, these efforts have
experimental evidence to support our claims. e ’

shown more and more diminishing returns.

Index Terms—Approximation constant, approximation order, Here, instead, we introduce and advocate the use of gener-
SBL'JSP'(';?(SMOFrg’]‘S‘)”erieig\?\zsg?rgf'horﬁ;:rs“a' order and minimal  gized interpolation, which does away with the constraint of

PP P poy ' interpolation at the cost of an additional prefiltering step. The

overall benefit is to allow for the use of a much broader class
|. INTRODUCTION of potential basis functions, some of which enjoy, at the same

HE ISSUE of quality is particularly relevant to the med:{ime’ excellent approximation properti_es and shor_t support. We

ical community; for ethical reasons, it is a prime concerplresenf[ a p_erformance anfaIyS|s that lies on the firm ground of
when manipulating data. Any manipulation should result in t proxmqtlon theory. WPT introduce anquncal tools that allow
least amount of distortion or artifacts, so as not to influence tHeE P ract|t|c.>ner.to det_ermlne t he theorgucal performance .Of any
clinician’s judgment. For practical reasons, efficiency is anoth psts function, mcludmg nonlnterpqlatmg ones, .and provide an
prime concern. Any processing should resultin the least comﬂ -_dep'th'analy5|s of many p|eceW|§e-ponnom|aI Cases. Th|§
tational effort, particularly when dealing with the large amou ass 1s important because it contains some fa_\mllles of_ba3|s
of data involved in volumetric medical imaging. In this pape unctions that can be shown to be the best achievable with re-

we analyze the tradeoff between the quality and the cost of s spect to several criteria, such as maximal regglarity (B-splines),
eral interpolation methods, and we introduce generalized int& _bes; I?ﬁsttr;squatr_esI;alpprc:jmmatlon protp(ﬁrtlfﬁ (to-Moms?.. V\ée
polation as a means to overcome the limitations of traditiong 0/ 20" theoretically and experimentally that generalize
interpolation. interpolation performs better thgn traditional m_terpolatl_on in
Interpolation is at the heart of various medical imaging a he context of image transformations. The resulting quality can
e arbitrarily high; for a given quality, generalized interpolation

plications [1]-[3]. In volumetric imaging, it is often used to tal tational t than that i d by th
compensate for nonhomogeneous data sampling. This rescafifgi€s &t a lower computational cost than that incurred by the

operation is desirable to build isometric volumes [4]-[6]. Antra itional methods which satisfy the interpolating constraint.

other application of this transform arises in the three-dimen—The organization of this paper is as follows. Section Il in-

sional (3-D) reconstruction of icosahedral viruses [7]. In vqumtéOduc_eS the notations and we compare tradltlonal interpola-
n with our proposition for generalized interpolation. In Sec-

rendering, itis common to apply by interpolation a texture to trﬂao . 4 . ; .
facets that compose the rendered object [8]. In addition, volu %nllll, we discuss some deswabl_e aspepts of basis fu.nct|ons.|n
rendering may also require the computation of gradients, whi £ Imaging context. We expose in Sec.tlon v th? main contri-
is best done by taking the interpolation model into account [ ution of this paper, where we apply to interpolation a method-

In functional magnetic resonance imaging (fMRI), the relativ logy that0r|g|_n_ates in the theory of approximation. We prese”‘.
the decomposition theorem and develop tools that are benefi-

cial to its application. In Section V, we analyze several piece-
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[I. INTERPOLATION solution is preferable because no special value (e.g., 0) is intro-
duced; only already-existing values are used. When compared to
the other traditional extension known as periodization, it offers

We restrict this paper to the case where the discrete data gfg additional advantage that no abrupt transition results on the
regularly sampled on a Cartesian grid. We also restrict the digsta boundaries. Furthermore, the structure of mirror-extended
cussion to exact interpolation, where the continuous modelgga is invariant under filtering provided the filter is symmetric,
required to take the same values as the sampled data at the gt yields consistency of design. In the case one-dimensional

locations. Finally, we restrict ourselves to linear methods, sugh p) jetting the known range bey, =], the mirror-extended
that the sum of two interpolated functions is equal to the integigna) satisfies

polation of the sum of the two functions.

A. Scope

{f(wo—w) = f(zo +z)
fla1 — ) = fa1 + ).
Let us express an interpolated valfigx) at some (perhaps Given f(x), @ € [0, z1], the (eventually multiple) application

noninteger) coordinate in a space of dimensiopas a linear f the folding operation just given is sufficient to defiriéx),
combination of samplefi evaluated atinteger coordinates= € R. We explain in Appendix-A how this translates to a

(ki ko, oo kq) € 27 practical algorithm for discrete arguments, and we extend this
1-D case to higher dimensions in Section I11-B.

B. Traditional Interpolation

f(x) = Z Jxoins(x — k) Vx = (a1, 2, ..., z4) € R
ke ze D. Determination of the Coefficients

@ To enforce exact interpolation for integer arguments ko,

The sample weights are given by the values of the functigh® "Mt that

¢ini(x — k). To satisfy the requirement of exact interpolation, fiy = Z ckPky—k Vo € 29 A3)
we ask that the functiogy,; vanishes for all integer arguments Keze

except at the origin, where it must take a unit value. A classical ) ) )

example of the basis functian, is the sinc function, in which Wherepx = (k). Given some functionp that is knowna

case all synthesized functions are bandlimited. priori, this expression is nothing but a linear system of equa-
tions in terms of the unknown coefficients. We are now faced
C. Generalized Interpolation with a problem of the forne = P~!f, and a large part of the

literature (e.g., [18]) is devoted to the development of efficient
techniques for inverting the matrR in the context of specific
basis functiong. The problem s trivial whep is interpolating,
fx)= ) ap(x-k) VxeR. () for thenP is the identity.

keze Another strategy proceeds by recognizing that (3) is equiva-

The crucial difference between the classical formulation (1§Nt t© the discrete convolution [1]
and the generalized formulation (2) is the introduction of co-

. . . = Vko € Z1. 4
efficientscy in place of the sample valugg. This offers new Jio = (€5 Pl 0€ “)

possibilities, in the sense that interpolation can now be carrigdirectly follows that the infinite sequence of coefficiedts
in two separate steps. Firstly, the determlnatlon_ of <_:oeff|C|er1§§n be obtained by convolution of the infinite sequefigg}
ax from the sampled, and second, the determination of dewith the convolution-inversép) !, which is uniquely defined,

sired valuesf(x) from the coefficients:. The benefit of this and which does generally exist in the cases of interest. Con-
separation is to allow for an extended choice of basis functionglving both sides of (4) byp)~!, we get that

some with better properties than those available in the restricted
classical case wherg@. = fix. The apparent drawback is the ko = ((p)7" % f)kO Vko € Z%. (5)

need for an additional step. We will see later that this drawback

is largely compensated by the gain in quality resulting from thince convolution is nothing else but filtering, (5) suggests that
larger selection of basis functions to choose from discrete filtering can be an alternative solution to matrix inver-

Whether the interpolation is traditional or generalized, walon for the determination of the sequence of coefficiginis
carry the summations all the way to—and from—infinity. Thusneeded to enforce the desirable constraint (3). To derive the

it is essential to assign a specific value to those samfléisat PrOPer algorithm, we start by noting that the basis function

are unknown because they are out of the range of our datal§iiways symmetncinl an imaging context. Thus, we can write
the context of generalized interpolation, we will soon see thii€ #-transform of(p)~* as

As an alternative approach, let us consider the form

any given coefficienty, is dependent on all sample valuis . 1
Vk € Z¢; for this reason, it is preferable to limit the degree of P(z) = P
po+ Z pr(2h + 27k)

arbitrariness when extrapolating data. To reduce boundary ef-
fects, we prefer to avoid the traditional extension which imposes "

Jx =0,k ¢ D, whereD is the known support of the data; in- o 2™ H (2 —z) Yz — 27t
stead, we advocate to perform implicit data mirroring. This latter

kCN.

i=1
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where{z;} aren out of the(2n) poles of(p)~!; those are nec- column-by-column, and so forth. In particular, the determina-
essarily real and come in reciprocal pairs. Thus, the convolutitaon of the interpolation coefficients needed for generalized
inverse(p)~! can be decomposed in a seriesnofilter pairs, interpolation is separable, too, because the form (2) is linear.
where each pair consists of a causal (with pgleand of an For the rest of this paper, we concentrate on separable basis
anticausal (with pole;” 1) IIR filter. With suitable parameters, functions; we describe them and analyze them in one di-
we can then apply a very efficient algorithm which leads to mension, and we use the expression above to implement
recursive in-place implementation [19], [20]. Its computationahterpolation efficiently in a multidimensional context.

load for the popular cubic B-spline is two additions and three

multiplications per produced coefficient. C. Symmetry

Preserving spatial relations is a crucial issue for any imaging
_ ) ) L . system. Since interpolation can be interpreted as a convolution
~ Comparing (1) with (2), it appears that classical |nlterpolat|%r equivalently, filtering) operation, it is important that the re-
is a special case of generalized interpolation—Wily * = &k, sponse of the involved filter does not result in any phase degra-
¢k = fi andy = iy The converse is also true. To see Whyyation. This consideration translates into the well-known and
we determine the interpolating;,, from its noninterpolating yesiraple property of symmetry such thatx) = o(—x) or

E. Reconciliation

counterparty by writing Cint(X) = @mi(—X). Symmetry is satisfied by all basis func-
_ 1 _k tions cpnsndered here, qt the pps&ble minor and very localized
7(x) k;q ((p) * f)kl wlx ) exception of nearest-neighbor interpolation.
_ —1
= Z Z Pl S o 0(x — k). D. Regularity

ki€Z2 koeZ9 .. . . . .
Some authors insist that the regularity of the basis function is

Finally, the interpolating;y; that is hidden behind a noninter-ap, important issue [16]. This may be true when differentiation
polating is of f is needed, but differentiating data more than, say, once or
. . 1 _ twice, is uncommon in everyday imaging applications. Often,
Pint(X) = k;q(lﬂ)k p(x —k). ©) 4t most the gradient is needed; thus, it is not really necessary

to limit the choice of basis functions to those that have a high
It is crucial to understand that this equivalence allows for thfegree of regularity.

exact and efficient handling of an infinite-support, interpolating

basis functionp;,; by performing all operations with a finite- IV. APPROXIMATION THEORY

support, noninterpolating basis functign
A. Error Kernel

[ll. DESIRABLE PROPERTIES Since most clinical data are available once only, at a given
resolution (or sampling step), there exist no absolute truth re-

) . o o garding the value of between its samplef. It is thus nec-

~ The price to pay for high-quality interpolation is computagssary to resort to mathematical analysis for the assessment of

tion time. For this reason, it is important to select a basis fung;e quality of interpolation. The general principle is to define an

tion that offers the best tradeoff. There are several asPeCtsiﬁférpolated functiory;, as given by a set of samples that are
consider. The most important deals with the suppoxtaf or | nits apart and that satisfy

¢, which is a measure of the smallest interval in which we have

thatp(x) # 0. The larger the support, the more the computation 1

time. Another important aspect is the quality of approximation Ju(x) = Z Ko <ﬁ x- k) Vx € Rt
inherent in the basis function. Other aspects involve the ease kezq

of analytical manipulation (when useful), the ease of comput\%—ith the interpolation constraint thak, (hk) = f(kk) for all
tion, and the efficiency of the determination of the coefficients € Z1. The difference betweef), (x) aLmdf(x) forallx € R

ax when is not interpolating. will then describe how fast the interpolated functigin con-
verges to the true functiofi when the samples that defirfg

. . o . . become more and more dense, or, in other words, when the sam-
Consider (1) or (2) in multidimensions, with> 1. Let us pling steph becomes smaller and smaller.

assume that the support of the interpolating. or the nonin- Let us perform the following experiment:
terpolatingy is of sizeS?. This large computational burden can

only be reduced by imposing restrictionsgrAn easy and con-
venient way is to ask that the basis function be separable, as in

A. Generalities

B. Separability

1) Take some arbitrary square-integrable functfér) and

select a sampling step > 0;
2) Create a set of samplg$ik);

4 3) From this sequence, using either (1) or (2), build an inter-
psep(x) = [ [ w(@i)  Vx= (1,22, ..., 1) € R polated functionf, (x) = 3~ ckp((1/h)x — k);
i=1 4) Comparef with f;, using some norm, for example the

The very beneficial consequence of this restriction is that the ~ mean-square (ak;) norme?(h) = ||f — full3, = [,
data can be processed in a separable fashion, line-by-line, ... [7 (f(x) — fa(x))? dz1...dxz,.

— o0
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When the sampling stepgets smaller, more details ¢gfcan  Cy,, as soon aé < Cy,, Which frequently happens in the cases
be captured; it is then reasonable to ask that the approximatafrinterest. Thus, it is important to usg,; for ranking basis

errore(h) gets smaller, too. The following formula predicts théunctions of identical order only; it would be inappropriate to
approximation error in the Fourier domain [21]-[23] considerCy,; when comparingy; with ¢ if Ly # Lo.
Equations (7) and (8) describe the evolution of the error for
2y L [T RN : ible sampling step thus, the error kernek;,; is
n-(h) = o / . / f(w)‘ Ein(wh)dw; ... dw, every possi piing ép , _ int

T J o —c0 a key element when it comes to the comparison of basis func-

(7) tions, not only near the origin, but over the whole Fourier axis.

N ) ) . The error kernel,,; can be understood as a way to predict the
where f(w) is the Fogrler t.ransform.of the arbitrary funCt'Onapproximation error whem is used to interpolate a sampled
f(x), and whereE;y; is an interpolation error kernel that de~ersjon of the infinite-energy functiof(x) = sin(wz). Being a
pends on the basis function only, and that is given by single number, but being also loaded with relevant meaning, the

2 approximation ordeL is a convenient summary of this whole
> pw+2rk)| + 3 |¢(w+27k)? curve.
kez? kez?
B (w) = 5 (8) c. strang—Fix Equivalence
kgq ¢(w +27K)| . Suppose we are interested in just the approximation atder

of a basis functiory, without caring much about the details of
The equivalencee = 7 holds for bandlimited functions. E,. In this case, the explicit computation of (8) is not neces-
For those functionsf that would not belong to that class,sary. Instead, Strang—Fix [25] have proposed a series of condi-
the estimated erron(h) must be understood as the averagions that are equivalent to (9). The interest of these equivalent
error over all possible sets of samplgshk + A), where conditions is that they can be readily tested. They are valid for
A= (Aq, As, ..., A,)is some phase term with,; € [0, »[.  all basis functions with sufficient decay—the sinc function is
This applies to dimensiong > 1 and to interpolating as well one of the very rare basis where these conditions are not satis-
as noninterpolating basis functions [21]-[23]. In the restrictiniied. We mention three equivalent 1-D Strang—Fix conditions as
conditions wherg = 1, for bandlimited functiong” and when 1) Lth order zeros in the Fourier domain
the basis functiorp;,,; is interpolating, this error kernel reduces
to the kernel proposed in [24]. {@(0) =1

M (2rk)=0 ke Z, nel0,L-1]
B. Order of Approximation

A decrease in the sampling stepvill result in a decrease of 2) Reproduction of all monomials of degrees [0, L — 1]

the argument ot’;,; in (7); thus, the error kernel must vanish at
the origin to ensure that the approximation error disappears al-
together. The vanishing rate is controlled by the approximation
order L and the constartt;,; such that

Vnel0o,L—-1 3{...,cn—1,¢n0,Cn 1, --}

Z o wplx — k) =2a"

keZz
772(’1) :(Cim)QhQL <2i /Oo ‘wa(CU)‘Q dw) 3) Discrete moments
T J—oo
ash — 0 Z(a: —k)"o(x — k) = pin Vnel0, L—1]
kcZ
where the parenthesized expression is recognized as being the
norm of theLth derivative of the smooth functiofiwe started wherey.,, depends om only.
from. Under mild hypothesis, any of these conditions is equivalent to
Finally, for a basis function of approximation orderwe get e(h) < Constx h%|| | ;,. WhenL = 1, or, equivalently,
that whenn = 0, these conditions are called the partition of unity,

or the reproduction of the constant. More generally, the second
ash — 0. (9) Strang—Fix condition implies by linearity that, apart from tech-

nical details, a basis function of ordeican reproduce any poly-
This result expresses the fact that we can associate tg @y nomial of degred.—1 or lower exactly. Thus, the approximation
numberL and a constant’y,; such that the error of approx-of data that are smooth at scalevill be close to the original for
imation ¢ predicted by, decreases liké”, whenkt is suffi- two equivalent reasons, since one can either analyze the quality
ciently small. The numbet is called the approximation orderof the approximation in terms of frequency contents, or in terms
of the basis functiog; it gives a global estimate of how fast theof polynomials. On one hand, there will be few high-frequen-
approximation error decays when the sampling step gets fingies, and the fact that the cardinal basis funciigp may depart
The constan®;,,; > 0 allows one to further rank the quality of from sinc is mostly irrelevant. On the other hand, the Taylor ex-
those basis functions that would have the same dtdethere a pansion of a smoothly varying function is dominated by low-de-
smallerC;,; corresponds to a better. Nevertheless, it is clear gree terms, and a polynomial of corresponding degree will cap-
from (9) that the decay of is dominated by:” rather than by ture the local behavior of the function in sufficient details.

W8 = 1f = file. = Cosh [ £2)

Lo
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TABLE | . sense are all members of this class. For this reason, we feel im-
PROPERT'ES’T{'SA:PF(’;T&O(;Q/@)f))% (i) *u)(z) = portant to develop analytical tools that ease their Fourier anal-
v ‘ ysis. Letpy, be a polynomial piece

o(x) u(x) (@)
Order L 0 . n
Regularity c" crt ak, 0+ Z ak:koxko’ T €]k, Tryi|
ko=1
Support w W-L
Degree n n—L =1 r & [Tx, Trt1]  (10)
%(ak,0+zak7koxk0>’ x:xk\/x:xk_i_l
\ ko=L

D. Decomposition Theorem

1) Theorem:Any uniform piecewise-polynomial basisWhere _
function that possesses an order > 0 can be expressed &  index of the piece; _
as the convolution of a B-spline of orddr with a uniform 7 overall highest polynomial degree;
piecewise-polynomial distribution(z) that has the properties @, ~ POlynomial coefficients. o _
shown in Table . By convention, the piece describedgyyis valid on the interval

The factorization of as the product of two terms, one ofl*x» @x+1]; in the following analysis we assume that,, =
them being the Fourier transform of a B-spline of ordemwas z,+1. The special behavior on the boundaries is such as to allow

first presented in [25] without proof and without specifying thé0r basis functions that are pointwise symmetric, including ones
properties of the distribution. A rigorous proof of an extended Wlth discontinuities (the boundaries are shared by two adjacent
version of this theorem was later given in [26], in a more matf€ces)- o _ o

ematically abstract and general context than required for thisV& now decompose this piecewise-polynomial into elemen-
paper. Our actual formulation is aimed at fitting the present takKY functions for which an expression for the Fourier transform
and audience; the corresponding proof will appear in a forti$ known: Let us first introduce the one-sided power function
coming paper [27]. x'y as being given by

A direct corollary of the decomposition theorem is that the

. . 0, n=0Az<0
support of any functiorp of order L > 0 must satisfiyV > L, L
because no distributiancan have a negative support. However, o= 27 n=0Az=0 (11)
it may happen that the support ofbe null. In this casey is + 1, n=0Azx>0

necessarily a combination of Dirac pulses and their derivatives,
which calls for an extension to negative values of the concepts
of regularity and of degree: a distributieris said to have regu- Althoughz?; is not a finite-energy function, we can nevertheless
larity C~" with m > 0 whenever it3n-times integration yields express its Fourier transform as

a functionU that has regularity>®. For example, a discontin-

uous function—say, a rectangular pulse—has reguléfity, a o Fopsier _nt + ™ ()

Dirac pulse has regularitg'=2, the derivatives") of a Dirac * (Jw)rtt

Ise has regularitg'—2, and so on. The concept of degree is . I . L .
Eitended sin?illjarl)ll ¥ P g Iwhere&(") is thenth derivative of the Dirac distributiofi Using

This theorem is very relevant to the problem of determiningis basic building block, we now express the truncated power

the order of a piecewise-polynomial basis function: its Fouri netionp 4y as being given by

0,..n
LT n > 0.

transform can necessarily be factored as the product of a "
(sind((1/27)w))* term with a remaining terni(w), whereL aly =27 — Z <”>($ _ 1)2.
is the order of the original piecewise-polynomial basis function. ’ him0 Ky

As a simple example, let us consider the B-spline of degree
which we call3™. Then, we conclude from#” = 4" x 6 that This function satisfies, ,; = «™ for = €]0, 1[ andzf, ;; =0
u = . In turn, the regularity of. is C™~* = =2, its support for = ¢ [0, 1]. The boundaries are such tha} ,, +z7, ., =
isW — L =0, and its degree is — L = —1. Solving for these [, . including at the particular argument= 0. The E:ourier
last three equations, we rederive the well-known fact that bdfignsform of this finite-energy function is

the orderl. and the suppor¥ of a B-spline is one more than

its degreen, while it hasC™~! regularity. Other examples are 70, 1]
given in Appendix-B.

Fourier 1! — F(TL +1, Jw)
Gy

) . ) ] wherel'(n + 1, z) is the incompletd-function given by the

E. Piecewise-Polynomial Analysis finite sum
Uniform piecewise-polynomials form an important class of "
all possible basis functions. In particular, we shall see later that I(n+1,2)=nle™? Z

2k
the basis functions that are optimal in a precise mathematical P k!




744 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 7, JULY 2000

Finally, we rewrite each polynomial piece in terms of truncateahd

gg\évftfai(r:igunrltsztfsns. For this, we build a new set of polynomial [@ko} — o—3iw/2 [% (3 4 cosw — 2jsinw) |
k1 kg —F 27 sin Y _geiwl2gin2 Y
bko = Gieko + i )@ (2o +R)H TR T 2
ki=ko+1 N0 which results in
Then, we observe that e
ml ml P(w) = 1 ej“/2(3 + cosw — 27 Sinw)—1 —‘e
p(x) = Z pr(z) = Z au(x —xo — k) (12) 4 ' Jw
_ k=0 k=0 _ o wl—e I+ jw)
wherem is the number of polynomial pieces, and whegés a +2sin 2 (Jw)?
truncated polynomial given b i .
Poly given by 2jw/2,2w2—26_1‘“(1+jw—%w2)
B N A D) )3
a(x) = Z k,koT[o, 1]* (Jw)
ko=0 7 . w 3
By contrast with (10), the important property of (12) is that both N ) 1+ —_1(,. )2
support membership and special treatment of the piece bound- o d g V¢ )
aries are now implicit. Lettings, be the(2r)-periodic contin- 2

uous Fourier transform of the discrete sequence of coefficiefptg), its explicit expression, we see that the quadratic Schaum

b, ko basis function has the suppd#f = 3 and the degree = 2.
m—1 Referring to the decomposition theorem, we determine from the
biy (w) = Z by, gy €Ik expression of its Fourier transform that its ordeLis- 3; thus,
k=0 the polynomiak: resulting from factoring out a B-spline must

, . . ._have the suppoi” — L = 0. It is made of the sum of a Dirac
we can finally express the Fourier transform of the piecewise- . ; . . . )
olvnomial as with unit weight (which corresponds to 1 in the Fourier domain),

poly n | ) and of a second derivative of a Dirac with weightl /8) [which
Plw) = eI Z b, (w)ko' — F(ko +1 Jw)_ corresponds t§—1/8)(jw)? in the Fourier domain]. Thus, in
Py (Jw)kott short notation we can write that = 3% — (1/8)32. Also, the
degree ofu isn — L = —1 and it hasC™ % = ¢~ regularity,
F. Example which implies thaty hasC—! regularity. This can be checked
The analysis above facilitates the calculation of the err8 inspection of the explicit expression of the quadratic Schaum
kernel (8) for many basis functions, because the latter are off@#siS function. _
piecewise-polynomials themselves. Moreover, it allows for an After some tedious algebra (which can be handled by most
easy determination of the ordér. For illustration purposes, Current symbolic manipulation software), the introduction of the

we propose to analyze the quadratic Schaum basis functfPression above into (8) yields

(results for many more cases are available in Appendix-B). Let 3w
this function be given by Ry w2 17 4w
o, v < Bine(w) =2 = B 2+ (3) ) 'y
—1 _ =3
16 r== 2
14+ %a: + %3327 —73 <z< _Tl Taking the ordet. = 3 into consideration, the corresponding
9 po =L approximation constant of a quadratic Schaum basis function is
16 T2 finally given by
o(r) =¢ 1—2?, S <z<;
9 1 FE; 407
16 T=3 G = tim V. “If(w) = \/ = 0.0410.
3 L e 1 3 w0 w 241920
1-35Sz+s52°, s<z<3
=1 r=2
5 ’ s V. SPECIFIC PIECEWISE POLYNOMINAL EXAMPLES
5 <
\ 2 .
which can be summarized by A. Nearest-Neighbor
1 3 i The basis function associated to nearest-neighbor interpola-
[ r]=|1 0 -1 with zo = =2, m = 3 tion is the simplest of all, since it is made of a square pulse. It
2 M0 ? ? . e o . . . ..
" 1 2 satisfies the partition of unity, provided a slight asymmetry is in-
z 2 troduced at the edges of the square pulse. Its expression is given
andn = 2. by
From that, we build
%1 0 % 0, z< %1
berg=|2 1 -1 WCla)y=<1, F<z<i
1
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The main interest of this basis function is its simplicity, which 1007
results in the most efficient of all implementations. In fact, for ]
any coordinatex where it is desired to compute the value of 0.75
the interpolated functiorf, there is only one samplg, that ]
contributes, no matter how many dimensigase involved. The 0.50

price to pay is a severe loss of quality.

B. B-Splines

There is a whole family of basis functions made of B-splines 0.00 -}
™. These functions are given by [28]

n+1 k n
" B (_1) (n—i—l) n+1 3 -3 -2 -1 0 1 2 3
p (x)_;(n+1—k)!k! ;g te-k .

Ve e R, VnéeN 1'003

where (z)7} is the one-sided power function defined in (11). 075
From Table |, itis easy to conclude that these B-spline functions 1
enjoy the maximal order of approximation for a given support; 0.50
conversely, they enjoy the minimal support for a given order ]
of approximation. In addition, they are maximally continuous. 0.25 ]
They have many other interesting properties as well [28], [29];
most fall outside the scope of this paper, except perhaps the fact 000 ] Py S
that a B-spline derivative can be computed recursively by ] \/ \/

d 1 1
= g7z = gt )y _pgr1 _Z 0. 6 5 4 3 2 -1 0 1 2 3 4 5 6
@=pt(eag) g (emg) o
(b)
Then, computing the exact gradient of a signal given by a disg. 1. B-spline of third degree. (a) Function shape. (b) Equivalent interpolant.
crete sequence of interpolation coefficiefits } can be done as

follows: high-degree B-spline should ever be used in the context of
Equation (1). Equation (2) must be used instead. Unfortu-
d d . ) i .
T flx) = Z Cr Bz —k) nately, some authors have failed to observe this rule, which
* keZ * led them to claim that B-splines typically blur data. There-
- Z(Ck — Gy )"t (z—k+13) fore, such claims are misleading, even though they can
kcz be repeatedly found in the published literature. A cubic
B-spline is often used in practice. Its expression is given
where then-times continuous differentiability of B-splines en- by

sures that the resulting function is smooth wheh 3, contin-
uous whem > 2, and bounded when > 1. 2 LeP2—z]), 0<|z[<1
 Degreen = 0: The B-spline of smallest degree = 0 B (z) =< L2 - |z])?, 1<zl <2
is almost identical to the nearest-neighbor basis function. 0 2 < |-
They differ from one another only at the transition values, -
where we ask that® be symmetric with respect to theThis basis function is not interpolating. As explained in Equa-
origin (¢° is not), and at the same time that it satisfies thion (6), it is nonetheless possible to exhibit an infinite-support
partition of unity. Thus, contrary to the nearest-neighbdrasis functiong,, = 32, , that allows one to build exactly
case, it happens in some exceptional cases (evaluatiohat same interpolated functigh To give a concrete illustration
half-integers) that interpolation with? requires the com- of this fact, we show in Fig. 1 both the noninterpolating cubic
putation of the average between two samples. B-spline 32 along with its interpolating equivalent basis func-

« Degreen = 1: The B-spline function3* is also called tion. The latter is named a cubic cardinal spli#ig,,,. Graph-
linear interpolation. It enjoys a large popularity becauseally, the B-spline looks similar to a Gaussian; this is not by
the complexity of its implementation is very low, justchance, since a B-spline can be shown to converge to a Gaussian
above that of the nearest-neighbor; moreover, soméen its degree increases. Already for a degree as small as
consider that it satisfies Occam’s razor principle by being = 3, the match is amazingly close since the maximal relative
the simplest interpolating basis functighone can think error between a cubic B-spline and a Gaussian with identical
of that builds a continuous function out of a sequence gériance is only about 3.5%.
discrete sample&f; }. On the bottom part of Fig. 1, the cardinal spline displays de-

» Degrees: > 1: No B-spline/™ of degreen > 1 bene- caying oscillations that are reminiscent of a sinc function. This
fits from the property of being interpolating; thus, no sucks not by chance either, since a cardinal spline can be shown to

7
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Fig. 2. B-spline basis functions. Approximation kernel for several degrees.

converge to a sinc function when its degree increases [30], [3The constan,,,; corresponds to the least-squares error kernel
Throughout the paper, we have given numerous reasons whgiiten by
is more profitable to approximate a true sinc by the use of non-

N 2
interpolating basis functions rather than by apodization. Even Eopi(w) =1 — |[p(w)] )
for moderate degrees, the spline-based approximations offers a Z |¢(w + 27k |2
sensible quality improvement over apodization for a given com- keza

putational budget. In Fig. 2, we give the approximation kemifter substitution ofE:

defined in (8) for B-splines of several degrees. int DY Eopi in (7), one is left with an

approximation error that corresponds to the least-squares pro-
jection of a signalf onto the set of shifted basis functiops
This error is the smallest achievable in a quadratic sense, and
The family of functions that enjoy Maximal Order and Min—equires that the set of discrete constraints expressed in (3) be re-
imal Support is called Moms (or splines of minimal support iplaced by a continuous constraint [33]. While it is also possible
the terminology of [26]). It can be shown that any of these funee find Moms functions such that their asymptotic approxima-
tions can be expressed as the weighted sum of a B-spline andiéi C;,,, constant reaches its absolute minimum, experiments
derivatives [26], [32], such that the distributiarof the decom- have shown that these particular functions are in fact less favor-
position theorem has a vanishing support able for interpolation than are o-Moms.
The o-Moms functions are indexed by their polynomial de-
green and they are symmetric. Their knots are identical to those
Moms"*(z) = 8" (2) + Z cmd m (). of the B-spline they descend from. Moreover, they have the same
m=1 support agl”, that is,n + 1; this support is the smallest achiev-
B-splines are those Moms functions that are maximally differe‘ra\dble for an approximation order + 1. Although their order is
entical to that of a B-spline of same degree, their approxima-

tiable. There exist several other interesting classesmthlsfamtl n error constanCsy, is much smaller. By construction, their

in particular, the o-Moms functions [32] are such that their Ieas Approximation error constanit,y, is the smallest possible.

squares approximation constany,, is m|n|mgl. This constant These functions are not interpolating; thus, they need a way to

is closely related t@”;,,;, because we can write that . ; .
compute the sequence of coefficiefits } required for the im-

plementation of (2). Fortunately, the same algorithm than for the

C. o-Moms

Copt = @) 27rk B-splines can be used. The o-Moms functions of degree zero and
keZ, one are identical tg° and3*, respectively. The o-Moms func-
tions of higher degree can be determined recursively in Fourier
while we have that [32]; we give here the expression for= 3
2 o-Moms'(z) = B(z) + — — (=
” oo (@) =Fw) + oy s ()
mt Z |<)0 27T]$ opt 90 ( ) 1 3 2
eyt slzl® = lz* + 14|w|+21, 0< o] <1
Eint(w) = %1|x|3+|$|2 |$|+217 1<z <2

:ul.-% wk ) 0, 2 < =
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1.00 F. Keys

The principal reason for the popularity enjoyed by the family
of Keys functions is the fact that they perform better than linear
interpolation, while being interpolating [15]. Thus, they do not
require the determination of interpolation coefficients, and the
classical equation (1) can be used. These functions are made
of piecewise cubic polynomials and depend on a parameter
Their general expression is

0.75 4
0.50
0.25

0.00

_0,25_5 (CL+2)|J}|3—(CL+3)|$|2+1, 0S|J}|<1
3 2 -1 0 1 2 3 wao(x) =3 alz]® — 5alz|? + 8alzx| —4a, 1< |z| <2
@) 0, 2 < ||
1.00 ]
] Comparing this expression with that of the cubic spline, it is ap-
0.75 3 parent that both require the computation of piecewise-polyno-
] mials of the same support. However, their approximation order
050 differ: the best order that can be reached by a Keys function is
] L = 3, for the special value = (—1/2), while the cubic spline
025 has order = 4. This extra order fop3® comes at the cost of
] the computation of a sequen{&, }, for use in (2). However, by
0.00 AN £ using a recursive filtering approach, this cost can be made neg-
] \/ \/ ligible. Altogether, the gain in speed offered by Keys function
o is not enough to counterbalance the loss in quality when com-
65 4 S 20 23 456 paring3® with ¢(_, /2). Moreover, the regularity of Keys &,
(b) which is one less than that of the cubic spline.
Fig. 3. o-Moms of third degree. (a) Function shape. (b) Equivalent interpolant.
G. Meijering

As a curiosity, we point out in Figs. 3 and 4 that this basis func- Meijering et al. [16] have designed piecewise-polynomial
tion has a slope discontinuity at the origin; thus, its regularif§asis functions that all have the same approximation order
is C° (in addition, it has other slope discontinuities fof = 1 L = 3 and that are interpolating. What is distinguished between
and|z| = 2). Itis nevertheless optimal in the sense describedhem are their support and their polynomial degreeThe
benefit of higher values for these characteristics is to allow for
a stronger regularity"™; also, the constant of approximation
Cit gets smaller. With regard to approximation properties

Like the o-Moms, the pseudo-Lagrangian basis functions progVertheless, and even with a support as large’as- 8, the
posed by Schaum can also be represented as a weighted sulMigliering basis function of degree = 7 is no better than an
B-splines and of their even-order derivatives [17]. They hagMoms function of the much smaller suppd#t = 3 and
same order and same support as B-splines and o-Moms. Ti&ch smaller degree = 2. _ _
main interest is that they are interpolating. Their disadvanti&]ewe give in Fig. 5 the error kernel of several basis functions

with respect to both o-Moms and B-splines is a worse apprak@t all have the identical order of approximatibn= 3. The
imation constan€.y,: for example, considering an approXima_correspondmg basis functions have a wide range of polynomial

tion order L = 4, the value reached by a cubic o-Moms i§€gree (fromn = 2 up ton = 7). They also have a wide range
Cine = 0.000627; the constant for the cubic spline is more thaff SuPPort (fromiW” = 3 up to W = 8), which translates into
twice with C,, = 0.00166, while the cubic Schaum loses arSoMe Very large differences with respect to computational re-
additional order of magnitude wit,,, = 0.01685. They are quirements. Nevertheless, the approximation quality is essen-

discontinuous for even degrees, and @fefor odd degrees. tially the same for all these kernels (compare to the broader se-
lection of performances to choose from in Fig. 2). One possible

selection criterion is the constant of approximatidp, ; we give
E. Dodgson itin Table II.

D. Schaum

Dodgson has proposed a basis function built out of quadratic
polynomials [12]. Unfortunately, it fails to be a member of thé'-
family of Moms. While it has a suppoW = 3, its approxima-  German [13] has proposed an interpolating basis function
tion order isL = 2, which is no higher than in the linear inter-with an approximation ordet. = 5. Its support is larger than
polation case that has the smaller suppbrt= 2. In return, its necessary, which leaves some freedom to the designer. In this
constant of approximatio€y,; is about five times smaller than case, this freedom has been used to increase the regularity to
in the linear case. C'. Note that the quartic B-spline enjoys the same ofder 5

German



748 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 7, JULY 2000

0.621 —

0.620 —
0.619 —
0618 —
0.617 ~
0.616 —
T T T T T T T T T T T T T T T T T T T
0.1 0.0 0.1

Fig. 4. o-Moms of third degree (central part).

10
10"
e
2
= 10
=
b
R
=]
£ 10’
o
E
<
2 .
é:l 10‘4 O * K Schaum 2 ceververerens
~ II'/ R :/ KeyS .....
o /; e Meijering5 —--=--
iopns s B-spline2 = -ememeee
10° A Meijering7 — —
Py i o-Moms 2 ————-
¢ 4 /.' B-spline 6 —
6 ’ ~‘.i /.'
10 T Ll T T T T T T T
0.0 0.5

Normalized Frequency «/2n

Fig. 5. Various basis functions of same approximation ofder 3. A sextic B-spline of degree = 6 and ordel. = 7 has been added for comparison, because
it offers much better performance than any of the third-order basis functions, while it has essentially the same experimental computatioma cbshes o
(septimic Meijering).

TABLE I VI. SINC-BASED BASIS FUNCTIONS
CONSTANT OF APPROXIMATIONS FORV ARIOUS BASIC FUNCTIONS WITHL = 3

A. Bandlimitedness

Cinl

For a long time, sinc interpolation—which corresponds to

Quadratic Schaum
Keys (a=3)
Quintic Meijering
Quadratic B-spline
Septimic Meijering

Quadratic o-Moms

7% = 0.0410
7 =0.0115
et =0.0075
ok =0.0057
s = 0.0044
7ok = 0.0031

[AC I B SO TN CC IS \S I

W o W N w (S

ideal filtering—has been the holy grail of geometric operations.
Nowadays, researchers acknowledge that, while interpolation
can be realized under special circumstances (e.g., translation of
a periodic signal through discrete Fourier transform operations),
in general, it can only be approximated. Another drawback of
the function is that it decays only slowly, which tends to spread
out ringing-associated effects.

The sinc function provides error-free interpolation of the ban-
dlimited functions. There are two difficulties associated with

for a shorter support, while it has the maximal regula€ity. this statement. The first one is that the class of bandlimited
Moreover, its approximation is much better than that of Germdiunctions represents but a tiny fraction of all possible functions;
since we have thafi,, = /(823/79833600) = 0.00321 moreover, they often give a distorted view of the physical re-
for the fifth-order German basis function, and thaality in an imaging context—think of the transition air/matter in
Cint = +/(1/47900160) = 0.00014 for the quartic B-spline. a CT scan: as far as classical physics is concerned, this transi-
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tionis abrupt and cannot be expressed as a bandlimited functionthe context of (2). We want to mention here that the impor-

Further, there exist obviously no way at all to perform any kinthnce of this overhead is negligible, especially in the practical

of antialiasing filter on physical matter (before sampling). Mostase where it needs to be computed once only before several in-

patients would certainly object to any attempt of the sort.  terpolation operations are performed. This situation arises often
The second difficulty is that the support of the sinc function ig the context of iterative algorithms, and in the context of in-

infinite. An infinite support is not too bothering, provided an efteractive imaging; moreover, it disappears altogether when the

ficient algorithm can be found to implement interpolation witimages are stored directly as a set of coefficiehig} rather

another equivalent basis function that has a finite support. Thiign a set of sampldsfi }. Thus, we will ignore this overhead

is exactly the trick we used with B-splines and o-Moms. Unfoin the theoretical performance analysis that follows.

tunately, no function can be at the same time bandlimited and

finite-support, which precludes any hope to find an equivaleﬁt Cost

finite-support basis functiop for use in (6). Thus, the classical et us assume that we want to compute the interpolated value

solution is simply to truncate sinc itself by multiplying it with f(x) of a 2-D imagef at argumenk, using a separable basis

a finite-support window; this process is named apodization. #inction of finite-supporti?’. For each output value, we first

large catalog of apodizing windows is available in [14], alongeed to perforni’’” multiplications and additions to compute

with their detailed analysis. Chy = ) Chy, ko@(21 — k1). This computation is embedded in
a similar outer loop that is also executdd times. Finally, we
B. Dirichlet Apodization needW ? multiplications and additions in 2-D; more generally,

Dirichlet apodization is perhaps the laziest approach, sin€ Need2W¢ operations iny dimensions, where we consider
the window of total widthi¥ is simply an enlarged version ofthat @ multiplication is worth an addition.
3°, which requires no more computational effort than a test to 10 this cost, one must adg’)-times the cost of the evalu-
indicate support membership. The apodized basis function@don of the separable basis function. When the latter is piece-

given by wise-polynomial, on average we ne#d/4 tests to determine
which of the polynomial piece to use. Once a polynomial is se-
. sin(rzx) o/ @ lected, evaluation by the Horner’s scheme further reqiiés-
sinay (z) = p— (W) 1) multiplications and additions under the favorable hypothesis

thatn = W — 1. Putting these results together, the magnitude
wherelV is an even integer. The price to pay for laziness is baf the global cost of all operations for a piecewise-polynomial
qgallty. Elrst, the regulanty of tr_us funct|o_n iS I_ow since itis Nohasis function i¥)(W¢), more precisel W+ qW ((9/4)W —
differentiable. More important, its approximation order is as bag
asL = 0. This means that a reduction of the sampling step doesip the case of the sinc family, each evaluation requires the
not necessarily result in a reduction of the interpolation errorcomputation of a transcendental function and the multiplication
by the apodization window. This cost does not depend on the
C. Hanning Apodization supportiW. Hence, the magnitude of the global cost of all op-
Apodization, being defined as the multiplication of a singrations for an apodized sinc basis functiori§¥¢); more
function by some window, corresponds in Fourier to a convérecisely,2W? + Agi¥ whereA = 12 operations are spent in
lution-based construction. The Hanning window is one out ##€ evaluation of a Hanning apodization window (we consider
several attempts to design a window that has favorable propéat the transcendental functions sine or cosine are worth two
ties in Fourier. The result is multiplications each)) = 9 for a Bartlet window anch = 6 in
the Dirichlet case.
. . 1 2nx It follows from these theoretical considerations that the sup-
sindj () = singj () <§ T 5 cos <W)) : port for which a sinc-based basis function comes at a lesser com-
putational cost than a polynomial-based one, is abbbut 6
With L = 0, the order of approximation of Hanning interpolain two dimensions. For images or volumes, where 1, it is
tion is no better than that of Dirichlet interpolation; the conimportant to realize that this result does not imply that the use
stantCy, is significantly improved, though. Whereas it wa®f sinc functions is more efficient than that of polynomials, be-
Cine = 0.1076 for sind?, it is now Ci; = 0.0153 for sind?.  cause sinc typically requires a much larger support than poly-
Being continuously differentiable, Hanning is also more regul&emials to reach the same quality.
than Dirichlet. C. Performance
VII. COST-PERFORMANCEANALYSIS In Fig. 6, we present a comparison of the error kernel for
several basis functions of same suppdft = 4. It includes
cubic B-spline, cubic o-Moms, and cubic Schaum as examples
The single most influential parameter that dictates the comfpolynomial functions, and Dirichlet and Hanning as examples
putational cost is the siZ& of the support of the basis functionof apodized sinc. We observe that the sinc-based basis functions
. Second to it, we find the cost of evaluatiagr — k) for ase- do not reproduce the constant. Since most of the energy of vir-
ries of argumentéz — k). Last, there is a small additional costually any image is concentrated at low frequencies, it is easy to
associated to the computation of interpolation coefficiegts predict that these functions will perform poorly when compared

A. Generalities
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Fig. 6. Comparison of basis functions of same suppbrt= 4.

TABLE Il D. Tradeoff
PERFORMANCEINDEX FOR WHITE NOISE . i i i
Fig. 7 presents the combination of the theoretical results of

. . computation time and of those of interpolation quality. In order
Basis function e? (dB L - . .
(dB) to show the versatility of the approximation kernel, we have
Nearest-neighbor 5.94 1 changed the functiorf from bandlimited white nois¢ = 1
Linear 9.23 2 (Table 111) to a function that corresponds to a Markov model
Quadratic Schaum 9.83 3 which captures the correlation of data such that f(z)f(z+
Dodgson 9.08 5 7)dz = p~I7l. Thus, we have that
Cubic Schaum 10.99 4 . 2 —9 log(p)
Keys 11.02 3 f(w)‘ ~ w2+ (log(p)?’
Quintic Meijering 11.19 3 ) . . .
. . With p = 0.9, this power spectrum is representative of a large
Septimic Meijering 11.39 3 . . o .
variety of real images [34]. We have performed its integration
Gerf“a“ ' 1175 > against the approximation error kernel over the domaire
Quadratic spline 12.11 3 [—7, @] only, such as to conform to bandlimitedness.
Quadratic o-Moms 12.46 3
Cubic spline 13.14 4 VIIl. EXPERIMENTS
Cubic o-Moms 14.03 4 A. Protocol

To magnify the degradation that results from interpolation,
to polynomial-based basis functions. We will see in the expee adopt the following strategy that has for goal the highlighting
mental section that this prediction is fulfilled; for now, we limitof—as opposed to the avoidance of—the deleterious effects of
our analysis to that of the more promising polynomial cases.interpolation: we apply a succession of= 15 rotations of

On the grounds of (7), we can select a specific funcfidn  (27/15) = 24° each to some image, such that the output of any
sample-and-interpolate, and we can predict the amount of gdven step is used as input for the next step. We then compare
sulting squared interpolation error. As a convenient simplificaPe initial image to the final output. To limit potential boundary
tion, we now assume that this functighhas a constant-value effects, we perform the final comparison on some central por-
power spectrum; in this case, it is trivial to obtain the interpoldion of the image only. Also, we avoid any interaction between
tion error by integrating the curves in Fig. 6. Table |1l gives th#terpolation and quantization by performing all computations
resulting values as a signal-to-noise ratio (SNR) expressedfina floating-point format. Fig. 8 shows the central portion of
dB, where the integration has been performed numerically od8e image we want to rotate.
the domainw € [—m, «], and where we have set the natural ] ) )
sampling intervah = 1. These results have been obtained by: Nearest-Neighbor and Linear Interpolation
giving the same weight to all frequencies up to Nyquist's rate; Since the circular pattern of Fig. 8 is characterized by a radial
if low frequencies are considered more important than high freinusoidal chirp with higher frequencies in the center than in the
guencies, then the order of approximatibrand its associated periphery, the effect of the interpolation-associated filtering can
constantC;,; are the most representative quality indexes.  be read visually as increases or—more often—decreases in the
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Fig. 7. Theoretical performance index for a Markov-like power spectrum. Triangles correspond to interpolating basis functions, circlesrpolatimgtenes.

@ (b) (©

() (b) (a) (b)
Fig. 9. Rotation of a circular pattern. (a) Nearest-neighbor. (b) Lineafig. 10. Difference between the original and the several-times rotated image
interpolation. of a CT scan. Positive values are light and negative values are dark. A zero

difference is represented by middle gray. (a) Nearest-neighbor interpolation. (b)
Linear interpolation.
degree of modulation of those spatial frequencies. Fig. 9 shows
the effect of the rotation experiment when using the two moatcording to which linear interpolation (equivalentl¥,) per-
commonly found interpolants. Nearest-neighbor interpolatidarms poorly when compared to other cases. Fig. 10 shows the
results in a lot of data shuffling, and the image is highly clutifferential effect of the rotation experiment on the CT scan. In
tered. Linear interpolation results in the loss of high frequencidhjs case, we represent error images—the result of subtracting
which corresponds to strong blurring. These losses cannotthe rotated image from the original one. We observe that the
compensated; they correspond to the prediction made in Figdata shuffling aspect of nearest-neighbor interpolation results
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Fig. 11. Rotation of a circular pattern. (a) Keys. (b) Cubic spline. (c) Cubic o-Moms.

() (b) (©)
Fig. 12. Difference image for the CT scan. (a) Keys. (b) Cubic spline. (c) Cubic o-Moms.

() (b) (c)

Fig. 13. Rotation of a circular pattern. (a) Dirichigd” = 4). (b) Hanning(W = 4). (c) Sextic spline¥y = 7, less computation time than Hanning with
W = 4).

in widespread noise, while the low-pass aspect of linear intelithering process inherentin printing these figures. More impor-

polation results in artifacts mostly near edges. tant, cubic spline interpolation results in less blurring, and cubic
o-Moms in even less. Fig. 11 shows the resulting image for the
C. Cubic Interpolation circular pattern, while Fig. 12 shows the difference image for

. . . . . he CT .
Figs. 11 and 12 propose three basis functions of identical smﬁp? CT scan

Iport ;vhich har\]/e essentir?lly the sa:me computational cost. On the Sinc-Based Interpolation
eft, despite the use of the optimal parametet (—1/2), Keys . . .
offers thg poorest visual pergnrmanﬁ):e since thé cer/1tr)al pa):t of th&19- 13(a) and (b) shows the resuit of using two different trun-
figure is blurred. In addition, close inspection (particularly on §2t€d and apodized approximations of sinc, where the supportis
monitor screen) discloses blocking artifacts that betray the#ie same as in the functions of Figs. 11 and 12. The testimages
selves as moiré patterns. Those are absent with cubic spline 8hfig. 8 have a nonnull average; since an apodized version of
cubic o-Moms interpolation, although patterns unrelated to isinc does not reproduce this constant value faithfully, each in-
terpolation may eventually be present on paper, in reason of tremental rotation results in the drift of the average value of the
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TABLE IV
RESULTS IN NUMERICAL FORM

Basis Function Time [s] CT [dB] Circular [dB] Lena [dB]
Nearest-neighbor 0.24 19.44 4.96 18.57
Linear 0.36 24.21 7.13 21.98
Dodgson 0.52 28.11 9.49 24.23
Quadratic Schaum 0.70 39.88 16.33 28.79
(Cubic spline 0.88 50.77 23.22 31.98)
(Cubic o-Moms 0.88 62.05 32.76 34.29)
Keys 0.90 38.74 15.00 28.16
Cubic Schaum 0.92 37.51 14.09 27.61
Quadratic spline 0.95 45.52 19.65 30.56
Quadratic o-Moms 0.95 46.71 20.37 30.88
Quartic Schaum 1.11 48.64 21.29 31.08
Cubic o-Moms 1.17 62.05 32.76 34.29
Cubice spline 1.17 50.77 23.22 31.98
German 1.33 16.66 15.89 16.48
Quintic Schaum 1.35 46.17 19.07 30.13
Quintic Meijering 1.35 39.71 15.65 28.53
Quartie spline 1.38 60.07 30.25 33.90
Quartic o-Moms 1.40 62.62 33.36 34.53
Sinc Dirichlet W=4 (-) 1.45 0.39 -0.54 0.34
Sextic Schaum 1.63 54.57 25.02 32.35
Quintic spline 1.64 63.61 35.01 34.81
Quintic o-Moms 1.67 65.15 39.06 35.40
Sinc Dirichlet W=4 (+) 1.70 -4.04 -27.73 -12.48
Sinc Bartlet W=4 (-) 1.72 0.41 0.38 0.41
Septimic Meijering 1.90 40.92 16.41 28.94
Sextic spline 1.92 65.40 40.17 35.54
Sinc Bartlet W=4 (+) 1.97 39.09 15.27 28.32
Sextic 0-Moms 1.97 65.97 43.82 35.96
Sinc Hamming W=4 (-) 2.08 18.12 12.58 17.66
Sinc Hanning W=4 (-) 2.08 6.81 7.13 6.76
Sinc Dirichiet W=6 (-) 2.09 -15.21 -13.62 -15.24
Sinc Hamming W=4 (+) 2.33 33.18 12.35 26.50
Sinc Hanning W=4 (+) 2.33 29.30 10.16 24.81
Sinc Dirichlet W=6 (+) 2.46 19.34 5.69 19.36
Sinc Bartlet W=6 (-) 2.50 1.08 1.03 1.08
Sinc Bartlet W=6 (+) 2.87 39.27 20.77 31.10
Sinc Hamming W=6 (-) 3.04 24.83 22.11 24.06
Sinc Hanning W=6 (-) 3.05 19.61 18.59 19.32

image. This drift manifests itself as images that appear too ddtk Discussion

(negative drift) or too light (positive drift). We conclude that Tapje |v presents in succinct form the numeric results of these
sinc performs extremely poorly when compared to other bagigperiments, along with some additional ones. In particular, we
functions of the same support, and not only drift of the meaiiso provide the results for the standard Lena test image, and for
value, but also both blocking and excessive blurring artifacts atee synthetic circular test pattern of Fig. 8. The execution time
present. is given in seconds and corresponds to the duration of a single
Even though the support of the sinc-based basis functions pietation of a square image 512 pixels on a side. The computer
sented in Fig. 13 is short, the associated computation time isi&l& Power Macintosh 9600/350 and the measure of the SNR is
ready substantial. Fig. 13(c) shows that much higher quality cgffined as
be achieved in less time with a more efficient, noninterpolating
basis function (here, s_extic B-spline). Fig. 13(c) is visually in- SNR = 10 10g< Z 12 Z (fi — gk)2>
distinguishable from Fig. 8(c). Kcz? Kcz?
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é oMoms(5) OMOD;S(g)
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1 A
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z ] Meijering(7)
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Fig. 14. Summary of the main experimental results for the CT scan. Triangles correspond to interpolating basis functions, circles to nonintereslathe
hollow circles give the computational time for an accelerated implementation.

where f is the original (nonnull average) data, and wheiie  similarity between them confirms that our theoretical ranking of

given by ther-times chaining of the rotation. basis functions was justified. The difference between the inter-
These results point out some of the difficulties associatgdlation methods is more pronounced in the experimental case

with the analysis of the performance of a basis functjofror because it has been magnified by the number of rotations per-

example, the computation time should ideally depend on tFemed.

number of mathematical operations only. In reality, the opti-

mization effort put into implementing each variation with one IX. CONCLUSION

basis function or another, has also some influence. For inStanC%e

we have a fast implementation of the cubic spline and of th?d haye anbalyzed ItWO apprloacheslto the :a_xact mtler_polanr:)n
cubic 0-Moms (in italic in Table IV and in white circles in©! data given by regular samples. In classical interpolation, the

Fig. 14) that runs in shorter time than the normal implemeR@SiS functions must be interpolating, while noninterpolating
tation (in bold in Table IV and in black circles in Fig. 14). wePasis functions are allowed in generalized interpolation. We
have, nevertheless, shown the result of all implementations B&ve tried to dispel the too-commonly held belief according to
cause this corresponds to a somewhat unified level of optimi24dich noninterpolating functions (typically, cubic B-splines)
tion. The time spent for the determination of the interpolatiophould be avoided. This misconception, present in many books
coefficients—uwith a filtering algorithm implemented accordin@’ reports on interpolation, arose because practitioners have
to Section 1I-D—is included in the reported results. sometimes attempted to use noninterpolating basis functions
We have provided results for two classes of sinc functiongithout the prefiltering step that is required to achieve a consis-
The class labeled (-) represents traditional apodization, whint implementation of the generalized interpolation. We have
the class labeled (+) represents an apodized-normalized versjpoyvided a unified framework for the theoretical analysis of the
In the latter case, we have modified the basis function as  performance of both methods. We have applied this analysis
to specific cases that involve piecewise-polynomial functions

sin(rx) (ﬂ? ) as well as sinc-based interpolants. We have performed 2-D
wi — .
singY (z) = 7z W experiments that support the 1-D theory.
Z sin(n(x — k)) wl = k We conclude from both theoretical and practical concerns
m(x — k) W that the most important index of quality is the approximation

<7 order of the basis function, its support being the most important

wherew is the original apodization window. The purpose of thi§arameter with respect to efficiency. Thus, the class of Moms
operation is to restore some better approximation order to tictions, stands apart as the best achievable compromise
sinc-based cases, at the cost of additional processing. As caR®veen quality and speed. We have observed that many
seen in Table IV, this is successful only for large supports affmerly proposed basis functions, such as Dodgson, Keys,
incurs an unbearably long computation time. Meanwhile, thdeijering, German, and any of the apodized versions of a sinc,
resulting quality is obviously suboptimal when compared to tH0 not belong to this class. Experiments have confirmed that
much better piecewise-polynomial cases. these basis functions do indeed perform poorly. In particular,
Fig. 14 proposes a graphic summary of the most relevant re sinc-based interpolation results in an acceptable quality
sults (CT scan, quality better than 20 dB, execution time shortgith regard to its computational demand. In addition, they are
than 2 s). Itis interesting to compare this figure with Fig. 7; thdifficult to handle analytically, which leads to unnecessary
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complications for simple operations such as differentiation or It is, however, meaningless to compare approximation

integration. constants associated to basis functions that would differ
The more favorable class of Moms functions can be further in approximation order;

divided into subclasses, the most relevant being B-splines, « the smaller the support, the less the computational burden;

Schaum, and o-Moms. Of those three, the Schaum functionse never use a noninterpolating basis function in the context

are the only representatives that are interpolating. Nevertheless, of (1). Use (2) instead, and determine the interpolation

experiments have shown that this strong constraint is detri- coefficients as explained in Section II-D.

mental to the performance; we observe that the time spent in) First-Order B-spline (Symmetric Nearest-Neighbor):

computing the interpolation coefficients required by B-splines Piecewise-polynomial representation

and o-Moms is a small, almost negligible investment that offers [a]ix: = [1], 20 = —1/2.

a high payoff in terms of quality. For this reason, we discourage Degreen = 0, regularityC—1, supportiv’ = 1, approxi-

the use of Schaum and advocate generalized interpolation i — /1719 =~

instead, with noninterpolating basis functions such as B-splines matlon constant’, 1/12 = 0.288.

OrderL = 1, interpolating, decompositiof(w) = 1.

and o-Moms. Error kernel

Finally, comparing B-splines with o-Moms, we conclude that
the lack of regularity of the latter makes them less suitable than ¢in ¥
B-splines for imaging problems that require the computation Ein(w)=2-2—; 2
of derivatives, for example to perform operations such as edge 3

detection or image-based optimization (e.g., snake contouring,

registration). These operations are very common in medical) Second-Order B-spline (Linear):
imaging. Thus, despite a poorer objective result than o-Moms,
B-splines are very good candidates for the construction of an
image model. Moreover, they enjoy additional properties such 1 1

as easy analytical manipulation, several recursion relations, the [alaxa = L _J ’ zo = —1.

m-scale relation (of great importance for wavelets, a domain

that has strong links with interpolation [29], [35]), minimal  pegreen = 1, regularityC?, support’ = 2, approxima-
curvature for cubic B-splines, easy extension to inexact in- tjgn constantC,, = /1/120 = 0.0912.

terpolation (smoothing splines, least-squares [33]), simplicity ~ OrderL = 2, interpolating, decompositioi(w) = 1.

of their parametrization (a single number—their degree—is  Error kernel

enough to describe them), and possible generalization to

Piecewise-polynomial representation

irregular sampling. Gin? ¥ 9 "
Ejni(w) =2—-2—3 - 5 sin 2.
APPENDIX | (5)
A. Mirror Extension .
. _ _ 3) Second-Order Dodgson (Quadratic):
We want to extend a finite, discrete sigigb, ..., fv—1} Piecewise-polynomial representation
of length NV into an infinite-length, discrete signal by using a
mirror extension. To obtain an explicit sample value for any ar- g % 1
umentk € Z, we write f(k) = f(s(qx)), where _
g fk) = f(s(an)) [asxa= |1 0 —2|, zo= 73
. 0<qu <N 3 =3
sta) = { 2 < 2 71

2N —2—q1, N<qu <2N -2
Degreen = 2, regularityC, supportW” = 3, approxima-

and where tion constant’, = 1/1/320 = 0.0559.
0, N=1 OrderL = 2, interpolating.
qrx = || Decomposition
k| — (2N —2 1< N.
- 28 - 2)| g | 1< )
sin 3
. . . . 7 =92 —
B. Piecewise-Polynomial Basis ) v cos
We give here a technical summary of the principal character- 2
istics of some uniform piecewise-polynomial basis functibns. Error kernel
We draw the attention of the reader on the following facts: w w
« the higher the approximation order, the better the quality; sin® 3 s o
« for basis functions of identical approximation order, the Eini(w) =2 - N2 4—g= —2cos 5
smaller the approximation constant, the better the quality. (5) 2

10nly those error kernels that have an expression with a manageable size are _ 2 1 gin2
reported. 5 15
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4) Third-Order Schaum (Quadratic):
Piecewise-polynomial representation

3 1
2 2
0

—
S
=)
|
|
L

[a]3><3 =

= = =

-3

1
2 2
Degreen = 2, regularityC'—*, supportW’ = 3, approxi-

mation constan€,, = /407/241920 = 0.0410.
Order L = 3, interpolating, decompositiofi{(w) = 1 +

(1/2)(w/2)*.

Error kernel

sin® &
9 w2 17 . 4w
Eim(w) =2 - w 2 <2 + (5) ) — % Slll4 5

3
(3)
5) Third-Order Keys (Cubic):
Piecewise-polynomial representation

5 1
2 4 3 5
0 =% =3
[alaxa = 2 ; ; o = —2
1 0 5 3
5 -1
2 -4 5 7

Degreen = 3, regularityC*, supportW’ = 4, approxima-
tion constanC, = /1/7560 = 0.0115.
OrderL = 3, interpolating.

Decomposition
sin —
Ww) =3 —5= —2cos —
2

Error kernel

sin® g sin g

Eip(w)=2-2 oo 3 w — 2 cos 3
(3) \ >

6) Third-Order Meijering (Quintic):
Piecewise-polynomial representation

-—243 —891 —81 —117 —21  —3 7
32 64 32 32 64
6L 165 =7 -85 21 13
32 64 8 32 16 64
—17 63 27
(aloxs = L0 =5 0 5% 5
66 1 0 =17 0 63 =27 |’
8 32 32
6L 165 -7 85 -2 13
32 64 8 32 16 64
243 891 81 117 21 3
L 32 64 8 32 32 64 -
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o — —3.

Degreen = 5, regularityC?, supportW’ = 6, approxima-

tion constantC, = /35/608256 = 0.00758.
Order L = 3, interpolating.
Decomposition (see (A-1) at the bottom of the page).

7) Third-Order B-spline (Quadratic):
Piecewise-polynomial representation

S I

[a]3><3 =

KO =W Y

Degreen = 2, regularityC", supportW’ = 3, approxima-
tion constant’, = 4/1/30240 = 0.00575.

OrderL = 3, noninterpolating, decompositidgi{w) = 1.
Error kernel

sin® d w3 sin d
ad 8 . ad
Em(w)=2- —2 +— 2__
(g) 34cosw 30 (34 cos(w))
2

8) Third-Order Meijering(Septimic):
Piecewise-polynomial representation (see (A-2) at the
bottom of the next page).
Degreen = 7, regularityC®, supportW’ = 8, approxima-
tion constantC,, = /311647/15478779888 = (0.00448.
Order L = 3, interpolating.
Decomposition (see (A-3) at the bottom of the next page).
9) Third-Order o-Moms (Quadratic):

Piecewise-polynomial representation

37 3 1
120 2 2
— 43 _ =3
[a]gxg = 0 0 —1 5 o = 5 -
187 -3 1
120 2 2

Degreen = 2, regularityC'—*, supportW’ = 3, approxi-
mation constanf’,, = 1/1/100800 = 0.00314.

Order L = 3, noninterpolating, decompositici{w) =
1— (1/60)w?.

Error kernel

Eint(w)
sin® d 2 = w3 sin o
- o [ 120-202 85 5
(w)3 43+ 17cosw 2 (43 + 17cosw)?
2

3 3
95 sin (ﬂ) + 15sin iadl I 67w cos (ﬂ) — 3w cos dad
3 2 2 2 2

= (A-1)
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10) Fourth-Order Schaum (Cubic):
Piecewise-polynomial representation

1 B 1 %
1 I -1 =t
[CL]4><4= 1 i _q i , To=—2
2 2
—11 —1
I = 1 3

Degreen = 3, regularityC?, supportW’ = 4, approxima-

tion constant’, = \/103/362880 = 0.0168.
Order L = 4, interpolating, decompositiofi{(w) = 1 +

le.

6

Error kernel

Eint(w)
L4 W
sy 1, 524 62

(24 Zw?) — -
(g) 3 945 945

2

11) Fourth-Order B-spline (Cubic):

Piecewise-polynomial representation

4 W

=2 cos w) sin

757

12) Fourth-Order o-Moms (Cubic):
Piecewise-polynomial representation

29 85 1 1L

21 42 6

3 =1 _q =1
|2 12 2 _
[a]4x4— 13 01 _q 1> Ty = —2

21 14 2

29 =8 1 =L

21 42 6

Degreen = 3, regularityC, supportW” = 4, approxima-
tion constanC, = /1/2540160 = 0.000627.
Order L = 4, noninterpolating, decompositiofi{w)
1 — (1/42)02.

Error kernel

Eint (UJ)

1 73
<546— 13w+ EW4> + <336— 8w+ EW4> CcOos W

4 9 1 1 (13 + 8cosw)?
3 6
2 _ =1
[a]uxa = | 2 0 -1 3 , To=-—2 ) .
% 0 —1 % 13) Fifth-Order German (Quartic):
4 _9 1 =L Piecewise-polynomial representation
3 6
; 2 : r=1 =5 =11 =1 0 7
Degreen = 3, regularityC=, support?’ = 4, approxima- 3 13 14 Tad
tion constaan@ = «/1/362880 =~ (0.00166. %1 g_é % 4_78 %
OrderL = 4, noninterpolating, decompositigi{w) = 1. 13 143 17 29 -1
Error kernel 6 36 8 144 1
1 0 —335 —185 1
[a] o 144 144 24 o = —3
Eint(w) 8x5 — 1 0 —335 185 1 | 0 — .
1 1 144 144 2
4% 124 — 0t 4 (6 — —w? ) cosw 13 145 ir =2 -1
Ssin 2 35 280 [§) 36 -% 144 16
= < -1 1 R S
(w) (24 cosw)? 3 36 18 ® 48
o5 —1 5 —11 1
2 L5 1 F@ ta 0
- 9088 49984 13064 5680 8875 923 213 71 -
867 2601 867 867 5202 3468 9248 83232
114355 1983989 99572 521045 301115 45703 79 403
3468 20808 867 6936 10404 6936 96 9248
259 —109739 —243 —33145 —5815 —9583 —477 1127
3468 20808 17 2312 867 6936 9248 83232
1 0 —3611 0 16775 0 —22039 —22013
[CL] _ 1734 10404 27744 83232 T = —4 (A-Z)
8x8 — 1 0 —3611 0 16775 0 —22039 22013 |° 0=
1734 10404 27744 83232
259 109739 —243 33145 —5815 9583 —477 —1127
3468 20808 17 2312 867 6936 9248 83232
114355 —1983989 99572 —521045 301115 —45703 79 —403
3468 20808 867 6936 10404 6936 96 9248
9088 —49984 13064 —5680 8875 —923 213 —71
- 867 2601 867 867 5202 3468 9248 83232 -
LW 3w . [ dw w 3w dw
7( 8594 sin (—) +3769sin 22 ) +71sin (22} —w ( 62512 cos (—) —8313cos( 22} =71 cos 22
. 2 2 2 2 2 2
U= (A-3)
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Degreen = 4, regularityC*, support’ = 6, approxima-

tion constant’, = /823/79833600 = 0.00321.

Order L = 5, interpolating.

Decomposition
o) = (1= 5% oos (%)
9 2
1

(19]
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