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Summary

We design two complex filters {h|n|, g|n|)} for the filter bank structure as shown in
Fig. 1 based on two atom functions {p{(t), o} ,(t)}, such that:

e they generate an orthonormal multiwavelet basis;

e the two scaling functions {¢y(t), ¢1(t)} are real-valued;

e the two complex conjugate wavelets {1 (t),1*(t)} have their frequency responses
supported either on the positive or negative frequencies;

e the resulting complex wavelet transform is non-redundant and able to distinguish £=45°
diagonal features.
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Figure 1: The orthoconjugate filter bank structure for 1D non-redundant complex wavelet transform
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Complex multiresolution analysis

The Hilbert-pair atom functions

po(t) = [t1%, pljp(t) = [t "sgn(t)

satisfy a scaling property of the form: p“(t/2) = 27 p®(t). The multiresolution scaling
space V; is generated by the shifts of these two functions, i.e.,
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Figure 2: Geometrical structure of complex multiresolution analysis.

Conditions

e The frequency responses of the functions in W, are supported in [0,4o00[, which
implies that the frequency responses of the functions in W are supported in | — o0, 0],

e Orthogonality: V; L Wjand V; L W7,

Result

e There is a unique solution for W;.

e Decomposes L*(R) as
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Problem formulation

Our problem is to find an orthonormal basis for the spaces V{y and W that satisfy our
conditions; i.e., solve for the coefficient matrices C'|n] and D|n],
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such that:
e Oy(t) and ¢y(t) are real-valued;

e the associated (complex-valued) wavelets (t) and *(t) have one-sided frequency
support;

® Oo(t), P1(t), ¥(t) and 1*(t) are jointly orthonormal.

Solution
The frequency responses of C'[n| and D|n| are given by
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The corresponding scaling functions and wavelets can be expressed as
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Figure 3: Frequency (left) and time (right) representation of the scaling (top) and wavelet functions
(bottom) for av = 2.5.
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The frequency responses of {h|n|, g|n|} are given by
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Figure 4: Magnitude of the complex filters {H (e/“), G(eI“)}.
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Figure 5: Frequency-domain energy localization of the orthonormal multiwavelet basis.
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Figure 6: Frequency-domain energy localization of the orthonormal multiwavelet basis.
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Figure 7: Demonstration of directivities between proposed 2D NRCWT and traditional 2D DWT. The
decomposition level is 1. The DWT used is the fractional (o = 4.5, 7 = 0) orthonormal B-spline.
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