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ABSTRACT

Accurate and robust spot tracking is a necessary tool for quantita-

tive motion analysis in fluorescence microscopy images. Few track-

ers however consider the underlying dynamics present in biological

systems. For example, the collective motion of cells often exhibits

both fast dynamics, i.e. Brownian motion, and slow dynamics, i.e.

time-invariant stationary motion. In this paper, we propose a novel,

multi-frame, tracker that exploits this stationary motion. More pre-

cisely, we first estimate the stationary motion and then use it to guide

the spot tracker. We obtain the stationary motion by adapting a re-

cent optical flow algorithm that relates one image to another locally

using an all-pass filter. We perform this operation over all the im-

age frames simultaneously and estimate a single, stationary optical

flow. We compare the proposed tracker with two existing techniques

and show that our approach is more robust to high noise and vary-

ing structure. In addition, we also show initial experiments on real

microscopy images.

Index Terms— Spot tracking, stationary motion, fluorescence

microscopy, optical flow, all-pass filters

1. INTRODUCTION

Recent developments in fluorescence microscopy, such as improved

optics, electronic imaging and new fluorescent probes [1, 2], have

enabled biologists to observe and investigate biological systems,

such as intracellular processes, at an unprecedented spatiotemporal

resolution [3]. A major challenge, therefore, is to understand not just

the spatial organization of biological systems but their spatiotem-

poral relationship [4]. A key technique used in the analysis of this

relationship is spot tracking [3] - following the position of a spot

over a series of time frames. However, robust and accurate tracking

is difficult due to high noise levels in microscopy images [2] and fast

dynamics, such as Brownian motion [5].

Numerous spot tracking methods have been proposed for differ-

ent biological applications, for example see [6, 7, 8, 9] to list but a

few. In general, these tracking methods all follow the same proce-

dure: preprocess the image data, detect the spots in each frame and

then link the detected spots over time to create trajectories [2]. A

survey of spot detection in fluorescence microscopy was presented

in [5], however, a recent evaluation of spot trackers, designed for

microscopy imaging, found no one method outperformed the others

in all situations [3]. The more general problem of object tracking

has also been extensively studied in image processing. A partic-

ularly popular method, used in applications such as crowd analy-

sis [10, 11], is the Kanade-Lucas-Tomasi (KLT) tracker proposed

in [12]. The KLT Tracker is based on Lucas and Kanade’s optical
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flow algorithm [13]. For a comprehensive review of the state-of-the-

art see [14, 15].

In this paper, unlike existing approaches in the spot tracking lit-

erature [3, 6, 7], we propose a multi-frame optical flow tracker that

exploits global motion characteristics present in biological systems.

More precisely, we assume there exists a motion pattern that under-

pins the dynamics within the system being imaged. We define this

underlying motion as the main part of the motion between any two

consecutive images in the sequence that does not change, i.e. the

stationary motion field. This type of stationary motion has been ob-

served in many organisms, such as crowds of people [16], flocks of

birds [17] and bacteria [18]. In particular, in the study of the col-

lective motion behavior of cells, the structural movement often ex-

hibits stable flow dynamics which do not significantly change over

the period of several frames [19]. Hence, we propose to improve

accuracy and robustness by using this stationary motion to guide the

spot tracking.

Similar to [12], we use an optical flow algorithm to estimate

the stationary motion. Instead of enforcing temporal coherence on

a frame-by-frame basis [20], we estimate a single optical flow for

the whole image sequence using an adapted version of the algorithm

proposed in [21]. This algorithm consists of relating local changes in

one image to another image using all-pass filters and then extracting

the optical flow from the filters. Our approach is to perform this

operation over all the image frames simultaneously. We compare the

proposed method with two existing tracking techniques for synthetic

image sequences, which mimic the images obtained from confocal

microscopy. We also demonstrate the applicability of the method

for the estimation and tracking of multiple spot movements in real

fluorescence confocal microscopy images.

2. OPTICAL FLOW ESTIMATION USING LOCAL

ALL-PASS FILTERS

Recently, Gilliam and Blu [21] presented a novel algorithm for op-

tical flow estimation; termed the Local All-Pass (LAP) algorithm.

Instead of using the optical flow equation [13, 22], the authors esti-

mate the flow using local all-pass filters. In this paper, we want to

adapt the LAP to estimate a stationary motion field. Accordingly,

before proceeding, we outline the main aspects of the algorithm.

2.1. Idea 1 - Shifting is all-pass filtering

The central concept of the LAP algorithm is that a constant optical

flow is equivalent to filtering with an all-pass filter. To observe this

equivalence, consider two images, I1 and I2, relate by a constant

optical flow, u = [ux, uy ]
T
. Assuming brightness consistency [23],

the two images can be related as I2(x, y) = I1(x − ux, y − uy),
where (x, y) is the pixel coordinates. In the Frequency domain, this
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Fig. 1. Diagram illustrating optical flow estimation using the Local

All-Pass (LAP) algorithm. The LAP assumes the optical flow is lo-

cally constant in a window W and that this local flow is equivalent

to a convolution with a local all-pass filter hL. Moving the window

results in a new local filter. The flow is then extracted from the local

all-pass filters.

relation is equivalent to:

Î2(e
jwx , ejwy ) = Î1(e

jwx , ejwy ) e−juxωx−juyωy , (1)

where Î represents the 2D discrete time Fourier transform of the

images and (w1, w2) denotes the 2D frequency coordinates. Now, if

we define H(ejwx , ejwy ) = e−juxwx−juywy , then I2 is a filtered

version of I1 and the filter, H , is all-pass in nature.

2.2. Idea 2 - FIR approximation of the all-pass filter

Importantly, the frequency response of the all-pass filter H can al-

ways be expressed as

H(ejwx , ejwy ) =
P (ejwx , ejwy )

P (e−jwx , e−jwy )
, (2)

where P (ejwx , ejwy ) is the forward and P (e−jwx , e−jwy ) is the

backward version of a filter P respectively. Given this structure,

[21] approximate the all-pass filtering using a forward-backward FIR

filtering scheme that involves P . In other words, in the pixel domain,

we now have the following filtering relationship

p(−x,−y) ∗ I2(x, y) = p(x, y) ∗ I1(x, y), (3)

where ∗ denotes convolution. Therefore, estimating the FIR filter P
is equivalent to estimating the all-pass filter H .

2.3. Idea 3 - A basis representation of the FIR filtering

The final element in the LAP algorithm is to approximate the FIR

filter P as a linear combination of a few filters, Pn(e
jw1 , ejw2 ), i.e.

a basis representation:

P (z1, z2) =
N−1
∑

n=0

cnPn(z1, z2), (4)

where N is some small number (either 3 or 6) and cn are the

coefficients. As a consequence, determining the all-pass filter H
amounts to estimating the coefficients {cn}n=0,...,N−1 assuming

the forward-backward filtering scheme in (3). The basis in question

comprised a family of filters based on the Gaussian function and its

derivatives. For this paper, we shall restrict the basis to the first three

elements, i.e. N = 3. Therefore, the filter basis is

p0(x, y) = e
− x

2+y
2

2σ2 ,

p1(x, y) = xp0(x, y) and p2(x, y) = yp0(x, y),
(5)

where σ = (W + 2)/4. The advantage of these filters is that they

are completely scalable and are typically suited for flows of displace-

ment up to W pixels.

2.4. Local All-Pass (LAP) Algorithm

Now, using the above ideas, the LAP algorithm functions by assum-

ing the optical flow is constant within a local window W and esti-

mating an all-pass filter, for that window, using (3) and (4). Once this

local filter is obtained, the window W is shifted and a new all-pass

filter is estimated. The result is that a local all-pass filter is estimated

per pixel (a filter corresponds to the central pixel in W). A diagram

illustrating the LAP is shown in Fig. 1. The exact minimization

solved at each pixel is

min
{cn}

∑

x,y∈W

|p(−x,−y) ∗ I2(x, y)− p(x, y) ∗ I1(x, y)|
2, (6)

where p(x, y) = p0(x, y) +
∑N−1

n=1
cnpn(x, y) and W is the local

region with size (2W + 1) × (2W + 1). Importantly, this solution

can be implemented very efficiently using convolution and pointwise

multiplication [21].

The final stage of the LAP algorithm is to extract the optical

flow estimates from the local all-pass filters. Based on the ideal re-

sponse in (1), the following expressions were proposed involving the

impulse response of the filter P :

ux = 2

∑

x,y
xp(x, y)

∑

x,y
p(x, y)

and uy = 2

∑

x,y
yp(x, y)

∑

x,y
p(x, y)

. (7)

3. STATIONARY LOCAL ALL-PASS TRACKER

In this section, we present a novel spot tracker that uses time-

invariant (i.e. stationary) motion information to help guide its

tracking. The stationary motion is obtained by adapting the LAP

algorithm, hence we call the tracker the Stationary Local All-Pass

(SLAP) Tracker. The tracker consists of three stages: i) estimation

of an underlying stationary motion field; ii) simple spot detection;

iii) trajectory estimation based on the stationary motion field. We

now expand upon these stages.

3.1. Stationary Motion Estimation using Local All-Pass Filters

Collective behavior has been observed in many organisms, such as

plant cells [19], birds [17], bacteria [18] and crowds [11]. The cen-

tral assumption behind it is that there exists an underlying motion

pattern that is stationary over the image sequence. A similar idea,

termed the floor field, was proposed in [16] for optical flow estima-

tion in crowd analysis. This floor field was obtained by estimating

the optical flow between every pair of images in the sequence and

then averaging across time. In contrast, we propose estimating one

single optical flow, ū(x, y), from the whole image sequence directly,

i.e. a stationary motion field. To estimate this motion, we adapt the

algorithm in Section 2 and hence obtain the stationary local all-pass

(SLAP) algorithm.
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Fig. 2. Illustration of the SLAP Tracker. (a) The detected spots

and extracted flow vectors from the SLAP algorithm; (b) Trajectory

Estimation by linking spots across different image frames. The black

circles and line indicate spots already joined into a trajectory. Dark

gray circles indicate the detected spots in the next frame. Open circle

represents the estimated spot position by the flow. The black arrow

points out which one will be chosen to be added to the trajectory.

Specifically, our goal is to determine the stationary flow,

ū(x, y) = [ūx(x, y), ūy(x, y)]
T
, from a given sequence of images

I(x, y, t), t = 0, 1, ..., T −1, where T is the number of time frames.

As a consequence, to handle multiple time frames simultaneously,

we adapt the minimization in (6) to:

min
{cn}

T−1
∑

t=0

∑

x,y∈W

|p(−x,−y) ∗ I2(x, y, t)− p(x, y) ∗ I1(x, y, t)|
2,

where {cn} are the coefficients for the filter p. The stationary motion

field is then obtained using the equations in (7).

3.2. Detection and Trajectory Estimation

Spots Detection: In image processing, there exists many meth-

ods to detect spots (or more general features), for example Gaus-

sian fitting, using the Laplacian of Gaussian or detecting SIFT fea-

tures [24]. For a complete review of the state-of-the-art see [5, 25].

In this paper, we opt for a low complexity detection method: the

Gaussian mask correlation method proposed in [26]. We first re-

move small image values using a threshold, thus determining regions

that many contain spots. Given these regions, we then compute their

correlation with a pre-defined Gaussian mask. Finally, the spot loca-

tions are estimated by finding the local maxima of the correlations.

Note that we obtain a motion vector for each spot from the flow es-

timated using the SLAP algorithm. A typical example is shown in

Fig. 2(a).

Trajectory Estimation: Let Xi stands for the position of a spot

gi in frame i, using the stationary motion field, ū, the motion vector

for this spot is vi = ū(Xi). Accordingly, in ideal conditions, the po-

sition of the spot in frame i+1, i.e. gi+1, should be X̂i+1 = Xi+vi.

However, due to model mis-match, this many not be the case. As a

consequence, we use X̂i+1 as the center of a circular search region,

of radius r, in which we aim to find gi+1. More precisely, within

the search region, we have a set of candidate spots. From these can-

didates, we choose the closest spot to X̂i+1 based on the Euclidean

distance. The chosen spot is then labeled gi+1 and Xi+1 is set to

its position. Finally, this procedure is repeated for all frames thus

constructing a trajectory for the spot. The end result of the SLAP

tracker will be a set of trajectories relating to the spots detected. An

illustration of this trajectory estimation is shown in Fig. 2(b).
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Fig. 3. Illustration of trajectory evaluation. Diagram (a) shows a cor-

rectly estimated trajectory and (b) shows an incorrect trajectory. A

trajectory is correct if all its estimated positions (crosses) fall within

a certain radius, R, of the ground truth positions (squares). The po-

sitions that fail this criteria are marked as underscored crosses.
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Fig. 4. Examples of the different variations allowed in the synthetic

model. (a) The trajectories of two different motion models, Deter-

ministic and Stochastic respectively. (b) Intensity profiles of gener-

ated spots with varying structures over different frames. (c) Image

quality for generated spots with different levels of noise.

4. EXPERIMENT AND RESULTS

4.1. Performance Evaluation

The result of a spot tracking algorithm is a series of trajectories that

detail the position of each tracked spot at each time point. Given

these estimated trajectories and access to the ground-truth, we eval-

uate the performance of a tracker using a conservative measure; ei-

ther a trajectory is correctly identified or it is not. Our definition of a

correctly identified trajectory is: for each time point in the trajectory,

the estimated position of the spot is within a certain radius, R, of the

actual spot’s position. A diagram illustrating this concept is shown

in Fig. 3. Accordingly, we can evaluate a tracker based upon the

percentage of correctly identified trajectories. The advantage of this

approach is that it provides a straightforward, intuitive, measure of a

tracker’s overall ability to track spots.

4.2. Synthetic Images

Simulation Setup: The synthetic image sequence consists of two

elements: the spots we wish to track and the underlying stationary

motion that controls their movement. To mimic the images obtained

from a confocal microscopy, similar to [3], we choose to model the

spots using an isotropic 2D Gaussian function; the variance, σg , of

the function dictates the size of the spot and its amplitude. Note that

we set R = 2
√

2 ln(2)σg when evaluating the trajectory. In these

simulations, we generate 100 spots that are randomly positioned in

a 245 × 200 pixel image. Having defined the spots, we then model

their movement over 30 time frames using the Lamb-Oseen vortex

model [27]. This model generates a spiral stationary motion field

that is illustrated in Fig. 5. Note that the maximum displacement of

the motion, at one time instance, is 8 pixels.

In practice, however, biological systems observed via mi-

croscopy are subject to noise. We therefore introduce three types



Scenarios
KLT Tracker Particle Tracker SLAP Tracker

PSNR=22 PSNR=18 PSNR=8 PSNR=22 PSNR=18 PSNR=8 PSNR=22 PSNR=18 PSNR=8

Deterministic+Constant 56% 56% 53% 75% 74% 57% 90% 87% 76%

Deterministic+Varying 51% 54% 47% 67% 63% 48% 80% 75% 62%

Stochastic+Constant 29% 28% 23% 39% 38% 31% 62% 60% 50%

Stochastic+Varying 27% 24% 18% 38% 29% 23% 59% 57% 45%

Table 1. Comparison results of the tracking algorithms when applied to synthetic images in different scenarios. The algorithms are compared

in terms of the percentage of correctly identified trajectories (there are 100 spots to track in total). Constant/Varying represents the profile of

the spot structure and Deterministic/Stochastic represents the dynamic model. The bold values indicate the best results.

Fig. 5. A visualization of the underlying motion field used in the

synthetic image sequence. Note that the direction and magnitude of

the motion is color coded (the key is in the top left).

of noise corruption. The first is to corrupt the final images using

additive Gaussian noise, see Fig. 4(c). The peak-signal-to-noise-

ratio (PSNR) of the noise is either 8dB, 18dB or 22dB. The second

corruption is to allow the structure and intensity of the spots to

slowly vary over time (i.e allow the variance of the Gaussian func-

tions to change). An example of the time varying structure is shown

in Fig. 4(b). Finally, the third corruption is to add a stochastic

variation to the motion field at each time instance. In other words,

the movement of the spots is modeled as a deterministic element,

due to the stationary motion, plus a stochastic element (e.g. Brow-

nian motion), see Fig. 4(a). Given these options, we examine

four different scenarios: (i) deterministic motion and constant spot

structure; (ii) deterministic motion but time varying spot structure;

(iii) deterministic+stochastic motion but constant spot structure; (iv)

deterministic+stochastic motion and time varying spot structure.

Note that, in all scenarios, we corrupt the images using the additive

Gaussian noise defined above.

Tracking results: We compare the SLAP Tracker with two

existing tracking techniques: KLT Tracker [12], which is based

on the Lucas-Kanade optical flow algorithm [13], and Particle

Tracker [6], which is one of the state-of-the-art methods identified

in [3]. We use the implementation of the KLT Tracker available at

http://www.ces.clemson.edu/%7estb/klt/ and the ImageJ plug-in of

the Particle Tracker.

The results, see Tab. 1, show that our SLAP Tracker outper-

forms the other two algorithms in all conditions. In particular, when

the spots have a constant structure and deterministic trajectories,

scenario (i), the SLAP Tracker achieves an average accuracy of

84.3% across all noise levels. For the most challenging, scenario

(iv), this average accuracy drops to 53.7% however the equivalent

accuracy for the Particle Tracker and the KLT Tracker is 30.0% and

23.0%, respectively. Accordingly, the results demonstrate the advan-

tage of using the optical flow estimated from the SLAP algorithm

for accurate spot tracking. In terms of computational complexity,

the main cost in the SLAP Tracker occurs when calculating the

stationary motion field; the simple detection and linking strategies

employed have low computational cost. However, although a per

!"# !$#

Fig. 6. SLAP Tracker results for real microscopy images. (a) The

estimated stationary motion field obtained from the SLAP algorithm.

Note that the direction is color coded (top left). (b) The trajectories

of 32 spots built by the Tracker.

pixel motion field may seem costly, it is only calculated once across

all the images using a very fast algorithm [21], thus it is indepen-

dent of the spot number. In contrast, the KLT Tracker is required

to estimate the optical flow locally for each spot in every image.

Movies illustrating the performance and results can be found online

at http://www.ee.cuhk.edu.hk/%7ejzli/SLAPTracker.

4.3. Real Images

In this section, we demonstrated the proposed SLAP Tracker on

a real image sequence. The sequence depicts cytoplasmic stream-

ing in Drosophila oocytes (fruit fly eggs) and is obtained from

[28]. Drosophila oocytes provide a good system to investigate

microtubule-dependent transport, and microtubule motors are im-

portant both for targeted localization of polarity determinant mR-

NAs. The stationary motion field obtained by the SLAP algorithm

is shown in Fig. 6 (a); it explicitly reveals the underlying motion be-

hind the cytoplasmic streaming. The results of tracking 32 spots are

shown in Fig. 6 (b). We observed that the SLAP Tracker success-

fully followed 25 spots (correctness=83.3%) during 30 consequent

frames until their disappearance.

5. CONCLUSIONS

We have presented a novel multi-frame optical flow-based approach,

SLAP Tracker, for spot tracking in image sequences. The approach

is based estimating the underlying, stationary, motion of the biologi-

cal system and using it to guide the tracking of spots. This stationary

motion field is estimated from all the images simultaneously using

local all-pass filters. We validated the accuracy of the SLAP Tracker

using synthetic images with complicated motion patterns, intensity

variation and high noise, and it was shown to outperform two ex-

isting approaches in terms of correct trajectory estimation. We then

demonstrated the potential applicability of the SLAP Tracker for real

biological applications.
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