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ABSTRACT

We present complex rotation-covariant multiresolution families aimed for image analysis. Since they are complex-
valued functions, they provide the important phase information, which is missing in the discrete wavelet transform
with real wavelets.

Our basis elements have nice properties in Hilbert space such as smoothness of fractional order o € RT.
The corresponding filters allow a FFT-based implementation and thus provide a fast algorithm for the wavelet
transform.
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1. COMPLEX WAVELET APPROACHES

The discrete wavelet transform (DWT) with real wavelets became an essential tool for signal and image analysis
because of its multiresolution property and the existence of fast algorithms. Up to now only a few researchers
have experimented with complex wavelet approaches, although these allow to introduce phase information. The
phase provides a description of the local behavior of the image. So far, the approaches concentrate on filter
design.!™  The wavelet is calculated afterwards from the filter coefficients by iterative methods. This often
results in wavelets with unfavorable properties, e.g. fractal-like functions. Other approaches consider redundant
complex wavelet transforms*® and abandon DWT environment and multiresolution analyses.

We examine another approach to construct complex-valued multiresolution bases and consider a family of
complex 2D rotation-covariant functions. Convolution with appropriate 27Z%periodic functions yields scaling
functions in the Hilbert space L*(R?). They generate complex multiresolution analyses. Both, scaling functions
and the corresponding wavelets have explicit analytic representations, and an arbitrary degree of smoothness.
The respective discrete wavelet transform is implemented in Fourier space and yields a fast and stable algorithm.

2. LOCALIZED ROTATION-COVARIANT FUNCTIONS

The classical approach to a 2D wavelet basis decomposition for image analysis consists in using tensor products
of a 1D scaling function ¢ and a corresponding wavelet 1. This analysis method tends to privilege the ordinates
and 1mage details in the vertical and horizontal directions.

It is now well established that the discrete wavelet transform is a powerful and nearly optimal tool for the
analysis of piecewise smooth functions in one dimension. Unfortunately, for the reasons exposed before, the
situation is not as favorable in higher dimensions. Classical tensor product wavelets have several disadvantages
when applied to image analysis or higher dimensions. The most prominent one is directional selectivity. In
addition, hitherto used real wavelets do not provide phase information. The phase provides a description of
the local behavior of an image. Furthermore, the amplitude-phase representation imparts greater robustness to
image processing algorithms.
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In contrast to the classical construction method, here we consider the function space
Vo = spangega{p(z — k)} N L*(R?),
which is generated by a rotation-covariant function p in the complex plane. Here rotation-covariance means
p(Rex) = ¢V p(x) for the rotation operator Ry and N € N. We define p in the sense of distributions by
1

(Wi 4+ w3)* (w1 — iws

plwr,wy) == v € Dr2®a{(0,0)}):

where (w1,ws2) € R%\ {(0,0)}, « € R, N € N.

To localize the generating function p, we eliminate the singularity of p at the origin by multiplying the
function by an appropriate bounded (27, 27)-periodic function v. For example, we found that the trigonometric
polynomial
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will do. Then

v(wi,ws)

(W} +w3)™ - (w1 — dws) N

is bounded in (w1, ws2) = (0,0). Moreover, the function is square-integrable for a + % > % and has fast decay
|G(wi,wa)| = O(||(wr,ws)||72*~N) for ||(wi,ws)|| = oo. This results in a function @(z1,z2) € L*(R?) with
explicit time representation ¢(z) = Y, .52 vkp(2 + k) for almost all 2 = (21, 29) € R?. Here (vx)zez denotes the
sequence of Fourier coefficients of the (27, 27)—periodic multiplier v(wy,ws) and p is the inverse Fourier transform
of the Hadamard partie finie P fp:

plzy,29) = (a:f + m%)o‘_l(rl — ixz)N -Cla,N) for a¢N,

with constant Co ny = %772(0‘+N_1)_1(—2i)NF(—(a +N)+ 1)l'(a+ N -1l (a+ N)"'T(a—1)7!. For a € N
the term has to be modified by a factor In(y/z7 + 22)c(a, N), e(a, N) constant. This can be deduced by passing

from .the nonsingular values t(? the limit « E N. Moreover, in defining r := y/z? 4+ z2 and 6 := arctan z—f the
function p can be represented in polar coordinates

p(r,6) = plotN=2,—iN§ -C'(a,N) fora¢N,
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which shows clearly the rotation-covariance. Here again, C'(a, N) is a constant depending on « and N, and
in the case a € N the formula has to be modified by a factor Inr. From the decay properties of the Fourier
transform in frequency we deduce that the function ¢(z) is an element of the Sobolev space W4"(R?) for all
m<2a+ N —1.

3. MULTIRESOLUTION BASES

The function ¢ satisfies a refinement relation for a family of dilation matrices and generates a multiresolution
analysis. Consider the dilation matrices A € GL(2,R) of the form

A:( a4 b), a,beZ,
—b a

with eigenvalues of absolute value greater than one. This includes the quincunx case. The function ¢ satisfies
an A-scale relation for all those matrices. For w = (wl,wg)T the refinement filter has the following form:
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THEOREM 3.1. Let @ € Rt and N € N be fived. Let the multiplier v(wy,ws) be a bounded, (2m,2r)-periodic
function in R? that fulfills the following properties:



~| = ¢ for ||(w1,ws)|| = 0, and a positive constant c.

. v(wi,ws)
() | @re)e(er —wn)

(i1) v(wi,ws) # 0 for all (wi,wq) € [—m, ]2\ {(0,0)}.

Then @ = v-p is the Fourier transform of a scaling function ¢ which generates a multiresolution analysis {V;};ez
of L*(R?) with dilation matriz A:

V; = span{|det A|i/2p(A7 o —k), k € 7.%}.

This can be proved by verifying that ¢ satisfies the two-scale relation (cf. (1)), the Riesz basis condition, and
by providing density arguments for the completeness of the multiresolution bases. In particular, we show that
the second condition is met by bounding the autocorrelation filter M (w) := 3"y 72 |B(w + 27k)|%:
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in [—m, ]2 respectively. The function ¢ denotes the Riemann zeta function.

, C' the maximum of the same term, and B the maximum of |v|

where ¢ 1s the minimum of

4. WAVELETS

The bounded autocorrelation filter M allows orthonormalization. We thus can construct explicitly all kinds of
wavelets: orthonormal, semi-orthogonal or bi-orthogonal bases. The number of cosets ¢ = |det A| of A(Z?) in
7% indicates that ¢ — 1 wavelets are needed to span the orthogonal complement W_; = Vi © V_;. A general

method to construct the corresponding wavelets uses unitary polyphase matrices.”8
. . . . 11 .
As an example we consider bi-orthogonal bases in the quincunx case A = < 11 ) with |det A] = 2 and

only one wavelet 1) spanning the space W_;. One possible choice is
P(ATw) = e Hw+ (m,m)T)M (w + (r,m)T)B(w),

such that

W; = span{y; = 27/2¢(A7 & —k), k € Z2}.

Since H(w + (m,7)T) = % = O((w? + w%)a"'%) for [|(w1,w2)|| = 0, the Fourier transform of the

wavelet 1/7 has a rotation-covariant behavior in a neighborhood of (0,0)7:
$(w) = O((wh + )7 (w1 + iwn) M ((m,m)T)).

This implies that the wavelet transform of a test function f,
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behaves as a Laplacian of order a modified by a differential operator of Wirtinger type of order N. Here
d(w) = V() = em 5@+ (1 4 O(||lw|)) M (A Tw + (7, 7)T)B(A"Tw) for ||w|| — 0 is a lowpass

(Witwd)*(witiwz)V T
kernel. The wavelet thus can be represented as

N
=(-A)*|—-im——-—] @
1/)(1’1,1’2) ( ) < Zal‘l 81’2) (I‘l,l‘g),
i.e., the derivative of order 2a + N of the kernel ®.

5. IMPLEMENTATIONAL ASPECTS

The coefficients of the refinement filter H depend on the choice of the (27, 2w)—periodic localizing function v.
Moreover, for non-integer «, the filter H has in general an infinite impulse response and is non-causal. Therefore,
a classical implementation by convolution in space domain would tend to be rather costly and would lead to
accuracy problems because of the necessity to truncate the filters.

Since the filter H is given explicitly in Fourier domain (1), it is more convenient to implement the corre-
sponding wavelet transform in the Fourier domain using FFTs. We again consider the quincunx case, where we
have to take into account just one wavelet filter. The discrete Fourier transform of the image data is filtered by
multiplying with the refinement and the wavelet filter. Exploiting symmetries, we can downsample the data by
a factor of 2 and use an inverse discrete Fourier transform on the reduced data. This yields a fast and stable
algorithm.

6. CONCLUSION

We presented a new family of complex multiresolution bases in L?(R?). Our approach considered localizations
of the rotation-covariant function of the form p(z1,z2) = C(a, N)(2? + 22)*~ (21 + izs)Y (times a logarithmic
factor if @ € N). This yields nonseparable complex-valued multiresolution bases of L?(IR?) for scaled rotation
dilation matrices.

The parameter a € Rt can be chosen arbitrarily; in particular, non-integer. This gives flexibility: We can
control the smoothness and decay of the resulting wavelets. With the integer parameter N, we are able to
influence rotation-covariance properties. Both degrees of freedom can be important for applications in image
analysis.

Since our new family of complex rotation-covariant functions yields multiresolution bases, we can apply them
in the DWT algorithm. We thus have a non-redundant complex wavelet transform and perfect reconstruction.
Furthermore, there is not much change for the implementation in comparison to the real DWT: Our transform
can still be implemented using a perfect reconstruction filterbank. The wavelet filters can also be specified to yield
various types of decompositions; i.e., orthogonal, semi-orthogonal, or bi-orthogonal. Moreover, our FFT-based
implementation provides a fast algorithm.
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