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Quantitative Fourier Analysis of
Approximation Techniques: Part II—Wavelets

Thierry Blu, Member, IEEE, and Michael Unser,Fellow, IEEE

Abstract—In a previous paper, we proposed a general Fourier
method that provides an accurate prediction of the approximation
error, irrespective of the scaling properties of the approximating
functions. Here, we apply our results when these functions satisfy
the usual two-scale relation encountered in dyadic multiresolution
analysis. As a consequence of this additional constraint, the quan-
tities introduced in our previous paper can be computed explicitly
as a function of the refinement filter. This is, in particular, true
for the asymptotic expansion of the approximation error for
biorthonormal wavelets as the scale tends to zero.

One of the contributions of this paper is the computation of
sharp, asymptotically optimal upper bounds for the least-squares
approximation error. Another contribution is the application
of these results to B-splines and Daubechies scaling functions,
which yields explicit asymptotic developments and upper bounds.
Thanks to these explicit expressions, we can quantify the im-
provement that can be obtained by using B-splines instead of
Daubechies wavelets. In other words, we can use a coarser
spline sampling and achieve the same reconstruction accuracy
as Daubechies: Specifically, we show that this sampling gain
converges to� as the order tends to infinity.

I. INTRODUCTION

T HE NOTION of order is at the heart of wavelet theory.
The standard requirement for a wavelet transform of order

if that the refinement filter on the synthesis side has
a built-in factor [1]–[3]. For filter designers, this
imposes a multiple-zeros constraint at , which is the
only property that distinguishes wavelet filters from the more
conventional perfect reconstruction filterbanks [4], [5]. This
order constraint has some remarkable consequences, such as
the vanishing moments of the analysis wavelet, the ability of
the scaling function to reproduce polynomials of degree

(approximation property), and the special eigenstructure
of the two-scale transition operator [3, ch. 7]. The order has
also a strong influence on the smoothness of the underlying
basis functions: Most wavelet families exhibit a regularity
index that is roughly proportional to (typically,
with ). It is therefore quite natural to index common
families of wavelets (Daubechies [6], orthogonal splines [7],
[8], semi-orthogonal splines [9], [10], biorthonormal splines
[11], coiflets, etc.) by the order parameter.

The other remarkable consequence of the order constraint is
that the residual error of a scale-truncated wavelet expansion
will decrease like the th power of that scale [12]–[15].
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This is a basic property well known in approximation theory
(Strang–Fix conditions) [16]. To make the connection explicit,
we observe that a scale-truncated biorthonormal wavelet ex-
pansion can also be expressed as a single scale expansion using
the scaling functions at the next finer scale

(1)

with the short-form notation . This
suggests that we can estimate the wavelet approximation error

by studying the properties of the projector operator

(2)

simply because . This problem therefore clearly
falls into the general framework of the companion paper [17],
except that the present situation is more constrained: The
functions and are biorthonormal and both satisfy a two-
scale relation. From what is known in approximation theory,
we would expect higher order wavelets to provide better
approximations of piecewise smooth functions, at least in the

-sense. The price to pay is that higher order basis functions
tend to be less localized: They require more computations
and can induce Gibbs-like oscillations around sharp signal
transitions. Those limitations notwithstanding, it is of great
interest to compare wavelet transforms from the point of view
of their approximation properties.

This kind of investigation was initiated by Sweldenset
al. [13], [14]. They derived some upper bound constants
for the asymptotic error and used them to compare various
wavelet transforms. They also proved that the asymptotic error
depends on the order properties of the primary representation
space only (synthesis) and not on how the complementary
wavelet spaces are chosen [13]. Their main conclusion was that
spline wavelets (irrespective of their kind) had by far the best
approximation properties. The main problem with Sweldens’
analysis was its complexity and its lack of numerical effi-
ciency, mainly because it was entirely done with wavelets
[i.e., the -expression in (1)]. Some progress was achieved
by reformulating the problem, as has just been done above,
and studying the error behavior of the more general projection
operator [15]. This work resulted in an exact asymptotic
error formula as well as a computational method for obtaining
the leading constant in the wavelet case.

Thanks to the general results that have been presented in
our companion paper [17], we are now in the position to
go further. The main problem with wavelets, however, is
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that they generally have no closed-form representation, which
implies that we cannot simply apply the error formulæ as
they appear in [17]. While it is conceivable to evaluate the
approximation kernel (cf. Section II–C) using infinite
products, obtaining the various derivatives and extrema that
are required by the theory is less obvious. The purpose of
this paper is to show how we can circumvent this difficulty
and use the two-scale relation to our full advantage to derive
much simpler equations for the bound constants. This leads to
much more direct and explicit wavelet computations than those
found in the general theory. For instance, we will be able to
exhibit closed-form error formulæ for spline and Daubechies
wavelets of any order .

The paper is organized as follows. In Section II, we start
with a brief review of the approximation results that were
presented in [17]. All these results make use of a new
quantity—the approximation kernel—which was defined in
[18]. In Section III, we review some not-so-well known results
in wavelet theory. These will be needed to develop com-
putational solutions for the exact evaluation of some of the
basic quantities (inner products, moments) that are required
by our formulation. In Section IV, we enunciate theorems
that provide the asymptotic development of the error as well
as some upper bounds. Finally, we illustrate the theory in
Section V, with the useful examples of splines and Daubechies
wavelets and provide general formulæ for all quantities of
interest.

In this respect, our most notable finding concerns the supe-
riority of splines over Daubechies wavelets: Asymptotically,
when the approximation order tends to infinity, we obtain
the same approximation quality as the latter by using spline
wavelets of the same order with a sampling step that iscoarser
by a factor exactly.

A. Notations

The notations are the same as in [17]. We recall them below
for the sake of self consistency.

The conventional inner product between
two functions is denoted , and the associated
Euclidean norm is .

The Fourier transform of is . Let be a positive
real number; the Sobolev space is defined as the collection
of functions satisfying . In line
with this definition of regularity, we extend to
noninteger values of by equating it to the square root of

. The smoothness of a function can
thus be characterized by the maximumsuch that ;
this regularity exponent indicates that has
derivatives in for all . There is also a direct
connection withpointwisesmoothness: If with ,
then has at least continuous derivatives [19].

The Riemann zeta function is defined as .
Discrete filters are either described by their impulse re-

sponse (lowercase letters) or by their-transform
(uppercase letters).

Most of the asymptotic expansions are presented with
“ ” and “ ” terms, which allows a more compact and

understandable form to the results. Writing
is equivalent to writing ; in
the same spirit, writing is equivalent to

(not necessarily ).

II. SAMPLING, APPROXIMATION, AND INTERPOLATION

In this section, we summarize the results obtained in the
companion paper [17]; refer either to this paper or to [18] for
the more technical developments and proofs.

A. The Approximation Scheme

We want to approximate a given function by a linear
combination of uniformly shifted functions at a given
scale . One of the most general approximating operators
satisfying these conditions takes the form

(3)

with

(4)

where is a distribution that we shall term “sampling dis-
tribution” or “sampling function.” It can be shown [18] that
this expression has a meaning (i.e., it converges in a stable
way toward an function) when the following standard
hypotheses are made on the functions involved.

1) is a Riesz basis, i.e., there exists two
positive finite constants such that

(5)

2) , which includes the Dirac delta
distribution but not its derivatives.

3) , where (this implies that is continuous
but not much more).

Although there is noa priori requirement on the support of,
we will consider only compactly supported functions because
they are easier to handle in the multiresolution framework.

It is known [20] that (5) is satisfied iff for
almost every , where is the Fourier transform
of the autocorrelation sequence

(6)
This function will play a central role in our argument; it has the
nice feature of being easy to compute for compactly supported
refinable wavelets (see Subsection III–C).

In this paper, we consider the approximation
error . In addition, we will essentially
limit our investigations to biorthonormal schemes, i.e.,

for all . Although
the quasibiorthonormal framework considered in [18] is
much more general, and although we shall briefly deal with
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quasiinterpolation (see Section IV–C), the present restriction
contains most cases of interest for wavelets.

• oblique (or biorthonormal) projection [11],
[21], [15], [22]. This includes the most general wavelets
generated by perfect reconstruction filter banks.

• least-squares approximation . That is, orthogo-
nal projection, for which such that

(7)

Using this function—also called “dual”—on the analysis
side yields the smallest approximation error. This
corresponds to the case of orthogonal [6], [23] and semi-
orthogonal wavelets [9], [10].

• interpolation . That is, with the property that
by choosing , where

(8)

This is the inverse of a digital FIR filter since
. A particular case is the spline interpo-

lator, which is investigated in [24] and [25]. Computing
such an interpolation provides a consistent way of ini-
tializing the wavelet transform at the finer resolution
level.

B. Approximation Order and Strang–Fix Theory

A crucial notion in approximation theory is the order of
approximation describing the rate of decay of
as the sampling step goes to zero. The fundamental result in
this area, due to Strang and Fix [16], is that the minimum error
(i.e., for ) has an th-order decay
if and only if

and for

(9)

This powerful equivalence was initially proven for compactly
supported ; it also holds with fewer restrictions (e.g., poly-
nomial decay, multiple generators) [18], [26], [27].

C. Approximation Theorem

The main result emphasized in [17] is that the approximation
error can be evaluated in a very accurate way
by computing expression

(10)

where is a kernel that depends only onand

(11)

(12)

Obviously, is the main expression to consider since
it is the least-squares approximation kernel.

The theorem proved in [18] states that
whenever belongs to . Some other

nice features (average theorem, stochastic theorem [17]) lend
confidence in the choice of as a faithful estimate of the true
approximation error.

Specific applications of this theorem lead to asymptotic
expansions and sharp upper bounds of the approximation error
as a function of the sampling step. We now show how
these theoretical results can be efficiently exploited when the
functions and satisfy a two-scale relation.

III. D YADIC MULTIRESOLUTION ANALYSIS

Our goal in this section is to present selected results on
dyadic wavelets that will be needed by our determinations. In
particular, we will show how to compute the key quantities
required by our formulation (autocorrelation, moments, etc.);
however, we will not expose the general multiresolution theory
of the wavelet transform. Instead, see [1]–[4] and [28] for a
clear and complete exposition.

A. Two-Scale Difference Equation

A dyadic “father” wavelet (or “scaling function”) satisfies
a linear equation relating its values at a given resolution to its
values at twice the same resolution [1], [6], [19], [28], [29]

(13)

and is such that . Most of the time, the considered filter
is FIR, which implies that the solution of (13) is compactly

supported: This is our assumption throughout the paper.
Another aspect of (13) is its Fourier equivalent

(14)

The convergence of the infinite product on the right-hand side
is ensured whenever [30]; this assumption is always
made in practice.

Most often, this kind of implicit equation defines a non-
regular function, that is, a function or even a distribution
that does not belong to . It is also known that the factor

is narrowly linked to the regularity [19], [30], [31].
To be more precise, defines a smoother scaling
function, which is the difference
between the integral of and its translate. Thus, we can build
regular functions by multiplying an initial filter by a sufficient
number of regularity factors . From now on, we shall
assume that at least one such factor divides .

B. Strang–Fix Conditions

The Strang–Fix conditions (9) carry over mechanically from
the function to its generating polynomial . Since

satisfies the Riesz condition (5), we have the following
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property:

satisfies the Strang-Fix
conditions of order

is divisible by
and

(15)

This property can, for example, be obtained as a special case
of [18, Lemma 3] (see also [32] and [33]).

C. Interpolation Property

The two-scale difference equation (13) implies that it is
possible to compute iteratively the value ofat any dyadic
points once the samples at the integers are known. Specifically,
we have

(16)

where is a discrete sequence defined by induction on:
and (see [19] for a detailed

analysis). We now show that it is possible to compute
exactlyfrom the FIR filter since the problem can be written
as a linear system of equations [19], [30], [31].

Let in (13), and let take every integer value on the
support of . We can rewrite (see [19], [30], and [31]) the set
of corresponding equations into the matrix form

(17)

where is a square matrix with coefficients ,
and where . If ,
then it is easy to show that the support ofis included in

so that the indices of the matrix run from
to (if is continuous, ). To ensure
the normalization , we must add another equation to
this system, namely, . In vector notation, this
becomes , where .

Note that even if we do not compute the exact value of
, we can use the canonical sequence to approximate

since this discrete sequence always converges whenis
Hölder continuous. This convergence is exponential as shown
in [19].

Once has been computed, we build the polynomial
, which is linked to the interpolation filter

in (8) through . In fact, the matrix equation
(17) is equivalent to the polynomial two-scale relation

(18)

The same technique also works for the exact computation of
the autocorrelation filter by taking note that this filter is
built out of (instead of for the interpolation filter)
and that the corresponding autocorrelation function is solution
of a two-scale equation generated by [3].

D. Moments of

It is also possible to compute exactly the moments of
—or, equivalently, the MacLaurin development of—from

the coefficients of ; this is a rather pleasing result, given

that we cannot know exactly at most real points (the case
of B-splines is a noteworthy exception) [3, p. 396]. For this
purpose, we assume thatand have the MacLaurin
development

(19)

and

(20)

where we know that (because ). Using (14),
we end up with the induction equation

(21)

for . The induction on provides a method for
computing the desired moments.

IV. A PPROXIMATION RESULTS FORWAVELETS

We now resume our study of the approximation error and
apply the results of [17] to the special case of dyadic wavelets.
We consider the most general FIR filters such thatsatisfies
the Strang–Fix conditions of order. The examples of B-
splines and Daubechies wavelets will be treated in Section V.

Here, we will provide two main results. The first one
expresses the asymptotic form of the approximation error for
biorthonormal wavelets, and the second gives upper bounds
for (semi-)orthonormal wavelets (i.e., least-squares approxima-
tion). These bounds are not only sharp but also asymptotically
optimal when the sampling step tends to zero. They are also
easy to compute, especially for orthonormal refinement filters.

It is, in fact, the two-scale relation (13) that makes it
practicable to derive results that depend on the generating
filter only. This is not obviousa priori, given that
the only explicit form of the functions defined by (13) is
an infinite product. Moreover, (13) allows the exact compu-
tation of quasi-interpolating prefilters (needed to initialize a
wavelet transform) or of the shift-invariance error [17] that
characterizes the approximation space. Finally, we show how
dyadic schemes converge toward their limit functions and how
the rate of convergence can be improved by using adequate
approximation functions. These results are straightforward by-
products of the main approximation theorems [17, Th. 1 and
Th. 2]: The extended range of the problems solved shows the
power of this approach.

A. Asymptotic Development of the Error

We gave in [18] the explicit form of the asymptotic de-
velopment of the least-squares error as . Here, we
refine this result and provide the explicit development of the
biorthonormal projection error when the analysis
function is of order .
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Theorem 1: Assume that and are in and that the
scaling functions are generated by two FIR biorthonor-
mal filters . Moreover, assume that are of
order and , respectively, with . We then have the
asymptotic development

(22)

where and are defined by the MacLaurin developments

(23)

(24)

and where are determined by as in

(25)

Note that the order hypotheses imply that for all
and that for all . If , then
(22) still holds with a remainder of lower power, namely,

.
Proof: We start with (12). We have shown in [18] how

to develop the first term of the kernel into power series
up to order . The result provides the first sum of the right-
hand side of (22). The second term of (12), namely, , can
be rewritten as . Since and are

biorthonormal, , which

is thus . In addition, we know that .
Thus, we have if .

On the other hand, using (14), we find a two-scale induction
relation satisfied by

Thus, if , then for
, according to (24). We must restrict

the development of to the powers of that are less than
since this is the highest power of the development of

given in [18]. Thus, two cases should be considered: Either,
, which ensures that the accuracy of the development

of (namely, ) is less than , or , and
then we should consider only the first coefficients of the
development of . In both cases, we have to develop the

Fig. 1. Scatterplot ofC�
'

(log-scale) as a functionof the Sobolev regu-
larity exponent: A total of 10 000 randomfiltersH of degree 19, having
approximation order isL = 10, have been computed.

expression up to the corresponding
power, which ultimately leads to (22).

Given a filter , it is obviously possible to compute
the coefficients exactly. This is also true for since

can be known as well (see Section III-C).
For the least-squares error case where , we clearly

have . Thus, the asymptotic development reduces to the
first summation in (22), which was the result initially reported
in [18]. Equation (22) also confirms the result of Sweldenset
al. [14], who proved that the expansions of the biorthonormal
and the orthonormal error should match up to (not including)
the power ; however, these authors did not give the
explicit form of the developments.

An essential contribution of (22) is that we now have an
explicit form for the the first order equivalent defined in
[15]

(26)

where . Using this simplified formula,
we illustrate the link between the Sobolev regularity “” and

that was surmised in [15]. For this purpose, we have esti-
mated both the constant and the regularity exponent (using the
exact formula given in [3] and [19]) for a large—10 000—set
of randomly designed filters that have ten zeros at .
As can be seen in Fig. 1, the first-order asymptotic constant
decreases roughly exponentially as the Sobolev regularity
increases.

First-Order Interpolation Error: The technique used in the
proof of Theorem 1 can also be exploited in the interpolation
case. We show below how to obtain the first order of the
corresponding error. First, we rewrite the error kernel from
(11) and put it under the form
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where is the interpolation filter (8). We know from above
that , where is given by (26). Thus,
we can concentrate on the first term of, which is denoted

. Using both the Fourier two-scale relation (14) and
(18), we have

(27)

(28)

We know that , and we want to find
such that . Thus,

at the first order in . After some rear-
rangements, we finally get

(29)

Therefore, if and only if ; we
insist that this is true only when satisfies a two-scale
equation. For the centered B-splines of even order(i.e., of
odd degree), we check that ,

and thus, using (29), we get , which
provides an explicit relation for the constant introduced in [34].
This formula is valid for even order splines only. Note that,
asymptotically, when , we have .

B. Upper Bound

A general expression for upper bounds that are asymptoti-
cally optimal (up to a given order) was given in [17]. When

satisfies a two-scale equation, we show that we can give
an explicit expression of the constants involved in the general
formula. We first apply the technique to the lower order upper
bound calculation; then, we show how to obtain higher orders.
Asymptotically optimal upper bounds follow.

First-Order Upper Bound:The first-order bound given in
[17] takes the following form:

(30)

Moreover, the smallest constant that satisfies (30) is
necessarily greater than , which is the minimum constant
over the subclass of Nyquist-bandlimited functions (cf. [17,
Sec. IV–B]). This implies that

TABLE I
WAVELET UPPER BOUNDS AND SHIFT-INVARIANCE ERROR

As a result, the upper bound in (30) is all the more sharp as
the second term in the argument of the square root is smaller
with respect to the first one.

In order to estimate the upper value of for
, we use (13) and the two-scale induction equation

. After some
algebra, we obtain , where

is given by (23); this implies that

since is positive. Then, we define

and get by induction . Finally, (30) yields

(31)

This new bound, and the “sharpness percentage”, have
been computed for Daubechies and B-spline wavelets (see
Table I). A sharpness percentage of 100% indicates that there
are signals for which the inequality (31) is an equality; lower
values of this percentage indicate that (31) is strict as well
as indicating how tight it is. We observe in particular that
the bounds for Daubechies wavelets are very sharp and that
their sharpness tends to 100% when the approximation order
increases. By contrast, the bounds for spline wavelets are less
sharp, and their sharpness depends only loosely on the order.

Higher Order Bounds:Higher orders can be obtained by
bounding the remainder of the MacLaurin series of (see
[17, (28)]). The use of the two-scale relation also yields an
explicit form of this sharpened bound.

Theorem 2: Assume that ; then, we have
the upper bound for the least-squares approximation error by
dyadic wavelets

(32)
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TABLE II
WAVELET QUASI-INTERPOLANT PREFILTERS

where is a constant obtained by

(33)

and where have the same definition as in (23).
The proof follows the same steps as for the first order and

is a direct consequence of the two-scale relation (13). Notice
that (32) contains (31) if we let .

The interest of this result is that (32) and the true approx-
imation error have thesame asymptotic developmentin the
neighborhood of up to the power . We can thus
say that (32) is asymptotically optimal up to the order;
this provides a new series of unreported bounds with optimal
characteristics.

C. Initialization Filters for the Wavelet Transform

Unless the scaling function already satisfies a so-called
quasi-interpolation property [35], it is advisable to use a
prefilter to compute the fine scale expansion coefficient in
(3), given the discrete values of the function . Some
examples of wavelet prefiltering algorithms are discussed in
[34] and [36].

The problem amounts to finding a prefilter
such that has the same asymptotic development
as when tends to zero, up to the order .
This problem has been explicitly solved in [17, (36)], where
it was shown that it is equivalent to choose such that

. Since we can compute exactly
(see Section III-C) and since we have the exact value of

the moments of (see Section III-D), we can express the
exact MacLaurin development of up to the order .
As noticed in [17], this condition is satisfied by an infinite
collection of filters having various length and delay.

In Table II, we give quasi-interpolant prefilters for (non-
centered) B-splines and Daubechies wavelets of various ap-
proximation orders : Using these filters as sampling distribu-
tions ensures that .
Moreover, we have chosen the filters so that the resulting
approximation kernels are well-behaved away from .

D. Shift-Invariance Error

Except for ideal unrealizable functions such as the Nyquist
interpolator, the approximation spacegenerated by integer
shifts of is not globally shift invariant. Thus, if ,
we have in general. However, the results
given in [17] allow us to compute the average value over all
the possible real shifts of the approximation error when
projecting orthogonally onto . This is
a consequence of [17, Th. 2], which yields

Here, we show that this equation can be rewritten in a form
that is suitable for exact computation. Specifically, if we let

, and then

(34)

Note that as for can be computed exactly;
it corresponds to the integer samples of the dyadic wavelet
generated by the filter (see Section III-C).
Let us denote by and the FIR filters defined by

and , respectively. Then,
using the formulation of complex analysis, we have

(35)

where is the unit circle (in the complex plane) centered
on 0. We then know, by Cauchy’s residues theorem, that the
integral on the right-hand side equals the sum of the residues
of for the poles lyingstrictly inside . Of course, a
major simplification occurs when is orthonormal, that is to
say, when . In that specific case, we simply have

.
In Table I, we give the reduced value for Daubechies

and spline wavelets of order 1 to 8. We observe that the
Daubechies ones have a much slower decrease toward 0 than
the splines as the order increases. This trend was confirmed
by further investigation: We computed for the first 100
orders and observed that the shift-invariance error seems to de-
crease as a polynomial in for Daubechies wavelets (roughly

) and as an exponential for splines

(roughly ). This indicates that the approximation
spaces generated by Daubechies wavelets converges much
more slowly than splines to a shift-invariant space, as their
order tends to infinity.

E. Convergence Rate of Dyadic Schemes

The function defined by (13) is, in general, not known
exactly everywhere; in particular, irrational values ofcan be
obtained only through an infinite number of iterations of the
interpolation scheme described in Section III-C. If we restrict
ourselves to iterations, the iterated two-scale difference
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equation reads

where is defined as in (16). This form suggests a way
to approximate the limit function : We can simply define a
sequence of functions as in [37] by

(36)

where the compactly supported functionis chosen so that
the error tends to zero as . Interestingly,
the study of this error also falls within the scope of the
present paper: It suffices to observe that we can rewrite (36)
as , where is defined by the couple of sam-
pling/approximation functions : This is a consequence
of the equality .

For our results to apply, we assume that with
. We thus have

Since the second term on the right-hand side does nota priori
decrease faster than if , we cannot hope to have
a convergence rate higher than. Moreover, if is
bounded, then implies that the first term on the right-
hand side is . This means that if we choosesuch that

, then the convergence rate of to will be
at least . When , this is a significant improvement
over the usual rate, namely, , which would drive the
convergence process if we had performed the approximation
with a classical step function. From (12), we see that the
constraint on is satisfied iff satisfies the Strang–Fix
conditions of order , and .

A related result appears in [37] and [38] in the (more
general) case of -adic schemes, i.e., rational up-sampling
iterated schemes: It was shown that under the same conditions
on as above, the convergence rateunder the norm of
the approximating functions is , where is the Hölder
regularity exponent of . Clearly, the approximation error
decreases faster than the error, due to the well-known
inequality [3], [19].

V. EXAMPLES: SPLINES AND DAUBECHIES WAVELETS

A. B-Splines

Non-centered B-splines are piecewise polynomials that sat-
isfy a two-scale relation (13); the generating filter is

. We thus have , which
solves the induction equation (14) explicitly. In this case, we
can get the exact minimal approximating kernel .
Even though the two-scale technique used in the preceding
sections applies to splines as well, we shall, however, consider
this exact kernel since it makes it easier to obtain our bounds
and asymptotic developments.

1) Asymptotic Expansions:
Theorem 3: The first coefficients of the asymptotic

development of the least-squares spline approximation error
is given by

(37)

Proof: Writing down the expression of , we
have

(38)

where is defined as . In this sum, we
develop each term into convergent MacLaurin
series and exchange the summations. This yields

(39)

This development is uniformly convergent for any
. The proof now follows easily from (38), which

shows that .
The first coefficient of this development appeared previously

in [15], where it was expressed with a Bernoulli number
instead of a zeta function. The next terms of the development
are new and provide a finer asymptotic characterization of the
expansion error.

2) Upper Bounds:
Theorem 4: The least-squares polynomial spline approxi-

mation error is bounded as follows:

(40)

Moreover, we can find asymptotically optimal upper bounds.
If , we have

(41)

Proof: We consider again the exact expression (38) of
. Our first task is to bound . Let us define

. It
is easy to check that is strictly negative for every

and, thus, that is strictly decreasing over
this same interval. In particular, if , we have

. Using (38), we find
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Fig. 2. Least-squares approximation of a Gaussians(x) = e� using
cubic splines(L = 4), as a function of the sampling stepT . The solid line
is the exact error, whereas the dashed line is the error computed using (10)
and involving the kernel (12). The oblique dash-dotted lines are the upper
bounds computed with (40), and (41) forN = 1; 2; 3; 4. When the orderN
increases, the bounds get closer to the exact curve forT � 1. The horizontal
dash-dotted line is the trivial upper bound given byksk

L
.

A final simplification occurs if we use the inequality
. Applying (30), we end with the

first-order bound (40).
Finding the asymptotically optimal bounds is hardly differ-

ent. Let us denote by the first terms of the devel-
opment (39) of . The remainder
is strictly positive, as is obvious from (39). Moreover, since
this expansion is uniformly convergent over and
since all its coefficients are strictly positive, is a strictly
increasing function of ; thus, . Using (38),
these remarks lead to

We have that , where and
can be computed exactly, as in (the first-order

asymptotic), and . Moreover,
using the definition of the zeta function, a close inspection
shows that . Thus, we
finally get (41).

Note that the simplified form (40) is only slightly less sharp
than the bound that would be obtained directly from (31):
For example, the relative difference between (40) and (31)
is approximately and for

, respectively. As tends to infinity, this relative
difference quickly vanishes.

Fig. 2 shows how sharp our new bounds are in the particular

case of the approximation of a Gaussian by cubic splines
(see caption for details). As can be observed, the quality of
the bound improves as increases for sampling steps lesser
than 1; in turn, the upper bound worsens for higher values of
the sampling step because of the polynomial behavior of (41).

B. Daubechies Wavelets

The Daubechies filters [6], which we denote by ,
are the shortest orthonormal filters that contain“regularity”
factors . The product can be computed

exactly by the formula (see Meyer, quoted by [3, p. 168])

(42)

where .
1) Asymptotic Expansions:We apply here the results of

Section IV-A. Since Daubechies wavelets are orthonormal, we
simply have so that are the coefficients of the
development of up to the order as specified
by (23). The expression of can be obtained by
substituting to in (42).

Theorem 5: The first coefficients of the asymptotic
development of the least-squares approximation error by
Daubechies wavelets are given by

(43)

where the coefficients are defined by the MacLaurin
development of

(44)

Proof: Note that for all . The link between
the coefficients of (23) and of (44) is straightforward

by using (42). We find that . Thus, applying (22),
we find (43).

The coefficients are easy to obtain. For example, we
have and , which implies that

In particular, this expression provides a closed form for the
first-order asymptotic constant. This improves the previously
reported expression of the first-order asymptotic constant,
which was given as the limit of an infinite summation [15].
This exact expression makes it easy to compare theoreti-
cally the constants arising in Daubechies and spline wavelet
approximations.

Theorem 6: The first-order asymptotic constant of
Daubechies wavelets is given by

(45)

Moreover, the asymptotic sampling density required by using
Daubechies wavelets tends to be exactlytimes larger than the
splines, as , that is, if and are the sampling
steps necessary for Daubechies and spline wavelets to provide
the same (asymptotical) approximation error, then

(46)
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Proof: We concentrate on the second part of the theorem
since (45) is a direct consequence of Theorem 5.

The relation between and is obviously

. It follows that .

Using the Stirling formula , we find

. Thus, as . On the other

side, since as . The limit
result (46) then follows immediately.

Finding the precise factor in this context is rather unex-
pected. Our result confirms the previous reports [14], [15] that
splines are superior to Daubechies wavelets for the approxi-
mation of smooth functions.

2) Upper Bounds:
Theorem 7: A first-order upper bound of the least-squares

approximation error with Daubechies wavelets is

(47)

Proof: Here we can use the results of Section IV-B. The
definition (42) of shows that

Thus, since , we have , where was
defined by (33). The application of (32), and a rearrangement
using the value of , provides (47).

Since the second term is smaller than the first one, and since
it is asymptotically negligible with respect to the first term (as
shown by Theorem 6), it appears that the upper bound for
Daubechies filters is very close to the asymptotic first order
equivalent: This shows how sharp our first bound is and that it
is consistent with the indications of sharpness found in Table I.

The higher orders in (32) provide even sharper bounds.
However, the constant in (47) is already so close to the optimal
asymptotic value that there is not much benefit in refining the
bound further.

VI. CONCLUSION

In this second paper, we have shown how easy it is
to compute various quantities (asymptotics, bounds, shift-
invariance error, etc.) linked to the approximation error once
we assume the basis functions satisfy a scaling relation. Due
to the explicit connection between these quantities and the
generating filter, our expressions help to solve optimization
problems, such as filter design, whenever optimized approxi-
mation characteristics are desired.

The results given here can be extended to the case of ar-
bitrary (integer) scaling factors. The case of fractional scaling
factors [39] is currently under investigation by one of us:
This study reveals that after some (nontrivial) adaptations, the
formulæ take the same qualitative form.

We expect that our investigations in approximation theory
will be helpful in signal processing since interpolation (see
Shannon’s celebrated theorem [40]) is such a common tool
here. The advantage of the theorems that have been presented

here is that they are validirrespective of the amplitude of the
sampling step: This contrasts with most results in approxima-
tion theory that concentrate essentially on the limit when the
sampling step tends to zero. In signal processing, indeed, the
sampling step is most often given in advance and cannot be
made smaller.
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