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Quantitative Fourier Analysis of
Approximation Techniques: Part [l—Wavelets

Thierry Blu, Member, IEEE and Michael UnserFellow, IEEE

Abstract—n a previous paper, we proposed a general Fourier This is a basic property well known in approximation theory
method that provides an accurate prediction of the approximation (Strang—Fix conditions) [16]. To make the connection explicit,
error, irrespective of the scaling properties of the approximating ;o ghserve that a scale-truncated biorthonormal wavelet ex-

functions. Here, we apply our results when these functions satisfy . Iso b d inal | . .
the usual two-scale relation encountered in dyadic multiresolution pansion can aiso e expressed as a singie scale expansion using

analysis. As a consequence of this additional constraint, the quan- the scaling functions at the next finer scale

tities introduced in our previous paper can be computed explicitly .

as a function of the refinement filter. This is, in particular, true S; = Z Z<3,¢j7k>z/)j7k = Z(s, @i,k)%,k Q)
for the asymptotic expansion of the approximation error for >i keZ kez

biorthonormal wavelets as the scale tends to zero.

One of the contributions of this paper is the computation of ~with the short-form notatiorp; 5, = 2—1’/%(2—1’3; — k). This
sharp, asymptotically optimal upper bounds for the least-squares  g,gqests that we can estimate the wavelet approximation error

approximation error. Another contribution is the application b dvi h - fth .
of these results to B-splines and Daubechies scaling functions,”s — sil[2 by studying the properties of the projector operator
£ £

which yields explicit asymptotic developments and upper bounds.

Thanks to these explicit expressions, we can quantify the im- 75T8($) = Z {/ 3(5)¢<_ _ n) d—} (p(f _ n) 2)
provement that can be obtained by using B-splines instead of T
Daubechies wavelets. In other words, we can use a coarser

spline sampling and achieve the same reconstruction accuracy simply becauses; = P,:s. This problem therefore clearly
as Daubechies: Specifically, we show that this sampling 9ain ¢4i5 into the general framework of the companion paper [17],
converges tor as the order tends to infinity. . . . . )
except that the present situation is more constrained: The
functions¢ and ¢ are biorthonormal and both satisfy a two-
scale relation. From what is known in approximation theory,
HE NOTION of order is at the heart of wavelet theorywe would expect higher order wavelets to provide better
The standard requirement for a wavelet transform of ordapproximations of piecewise smooth functions, at least in the
L if that the refinement filteH (=) on the synthesis side hasL?-sense. The price to pay is that higher order basis functions
a built-in factor (1 + 2 1) [1]-[3]. For filter designers, this tend to be less localized: They require more computations
imposes a multiple-zeros constraintat= =, which is the and can induce Gibbs-like oscillations around sharp signal
only property that distinguishes wavelet filters from the morgansitions. Those limitations notwithstanding, it is of great
conventional perfect reconstruction filterbanks [4], [5]. Thigterest to compare wavelet transforms from the point of view
order constraint has some remarkable consequences, suchfdbeir approximation properties.
the vanishing moments of the analysis wavelet, the ability of This kind of investigation was initiated by Swelder$
the scaling function to reproduce polynomials of degreg al. [13], [14]. They derived some upper bound constants
L —1 (approximation property), and the special eigenstructufer the asymptotic error and used them to compare various
of the two-scale transition operator [3, ch. 7]. The order hagavelet transforms. They also proved that the asymptotic error
also a strong influence on the smoothness of the underlyidigpends on the order properties of the primary representation
basis functions: Most wavelet families exhibit a regularitgpace only (synthesis) and not on how the complementary
index = that is roughly proportional td. (typically, » = oL, wavelet spaces are chosen [13]. Their main conclusion was that
with o < 1). It is therefore quite natural to index commaorspline wavelets (irrespective of their kind) had by far the best
families of wavelets (Daubechies [6], orthogonal splines [7pproximation properties. The main problem with Sweldens’
[8], semi-orthogonal splines [9], [10], biorthonormal splinegnalysis was its complexity and its lack of numerical effi-
[11], coiflets, etc.) by the order parametér ciency, mainly because it was entirely done with wavelets

The other remarkable consequence of the order constrainliig., the ¢>-expression in (1)]. Some progress was achieved
that the residual error of a scale-truncated wavelet expansion reformulating the problem, as has just been done above,
will decrease like theLth power of that scale [12]-[15]. and studying the error behavior of the more general projection

Manuscri . o _operatorﬁT [15]. This work resulted in an exact asymptotic
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that they generally have no closed-form representation, whichderstandable form to the results. Writifdz) = o(z"™)
implies that we cannot simply apply the error formulee a@s equivalent to writinglimsup,_,o |f(z)/z™ = 0; in
they appear in [17]. While it is conceivable to evaluate thine same spirit, writingf(z) = O(z™) is equivalent to
approximation kernelE(w) (cf. Section II-C) using infinite limsup,_,q |f(z)/2™| < oo (not necessarily).

products, obtaining the various derivatives and extrema that
are required by the theory is less obvious. The purpose of I
this paper is to show how we can circumvent this difficulty
and use the two-scale relation to our full advantage to deriveln this section, we summarize the results obtained in the
much simpler equations for the bound constants. This leadsc@mpanion paper [17]; refer either to this paper or to [18] for
much more direct and explicit wavelet computations than thodt¢ more technical developments and proofs.

found in the general theory. For instance, we will be able to

exhibit closed-form error formulze for spline and Daubechigs The Approximation Scheme

wavelets of any order. . We want to approximate a giveh? function by a linear
‘The paper is organized as follows. In Section Il, we staghmbpination of uniformly shifted functions(. —n) at a given
with a brief review of the approximation results that werg.1e7. One of the most general approximating opera@ys

presented in [17]. All these results make use of a NeY4iisfying these conditions takes the form
quantity—the approximation kernel—which was defined in

[18]. In Section lIl, we review some not-so-well known results Qrs(e) =S cnw(i _ n) 3)

in wavelet theory. These will be needed to develop com- - r

putational solutions for the exact evaluation of some of the

basic quantities (inner products, moments) that are requir‘é’ﬂh

by our formulation. In Section IV, we enunciate theorems (¢

that provide the asymptotic development of the error as well Cn = /5(5) ¢ <T - ”)

as some upper bounds. Finally, we illustrate the theory in

Section V, with the useful examples of splines and Daubechighere ¢ is a distribution that we shall term “sampling dis-

wavelets and provide general formulee for all quantities @fibution” or “sampling function.” It can be shown [18] that

interest. this expression has a meaning (i.e., it converges in a stable
In this respect, our most notable finding concerns the supgay toward anL? function) when the following standard

riority of splines over Daubechies wavelets: Asymptoticallhypotheses are made on the functions involved.

when the approximation order tends to infinity, we obtain 1) {¢(. = n)}nez is a Riesz basis, i.e., there exists two

the same approximation quality as the latter by using spline ~ positive finite constant®$ > A > 0 such that
wavelets of the same order with a sampling step thedvé&sser -
Z Cn(P( - 7’L)

by a factorn exactly.
. . 2) sup,cr|@(w)| < oo, which includes the Dirac delta
The notations are the same as in [17]. We recall them below * jistribution but not its derivatives.

for the sake of self consistency. 3) s € W5, wherer > L (this implies thats is continuous
The conventional inner producf s;(z)s2(z) dz between but not much more)
) . ; ; .
two L” functionssy, s, is denoted(s, s;), and the associated Although there is na priori requirement on the support of

Euclidean norm iz we will consider only compactly supported functions because

The Fourier transform of(z) is $(w). Let r be a positive h . handle in th i \ution f K
real number; the Sobolev spa¥€} is defined as the collectiont €y are easier to handle n t e mu t|_reso ution framework.
' 2 It is known [20] that (5) is satisfied ifi < a,(w) < B for

. L Sert Al 2|2 :
of functions satisfying/(1 + &*)"|$(w)|" dw < occ. In line almost everyw € [—w, 7|, whered,, is the Fourier transform

with this definition of regularity, we extend|s™|p> to .
noninteger values of by equating it to the square root ofOf the autocorrelation sequenée(v), (x — n)) ez

£ [ |w|*"|5(w)|? dw. The smoothness of a functiaifz) can .. —inw " 2
tQﬁui |be| c|ha(1re2(|:terized by the maximunsuch that?ﬁe )W”; Gp(w) = zn:«p(x)’ ple=n))e N zn: ¢l + 2nml

this regularity exponent,,, indicates thats(x) has |r] (6)
derivatives inL? for all » < r.... There is also a direct This function will play a central role in our argument; it has the
connection wittpointwisesmoothness: 1§ € W with » > % nice feature of being easy to compute for compactly supported
thens(z) has at leastr — 5| continuous derivatives [19].  refinable wavelets (see Subsection [1I-C).

. SAMPLING, APPROXIMATION, AND INTERPOLATION

az (4)

Allelle < < Bl (9)

L2
A. Notations

The Riemann zeta function is defined@s) = >, n~°. In this paper, we consider thelL? approximation
Discrete filters are either described by their impulse rerror ||s — Qrsl|rz. In addition, we will essentially
sponse, (lowercase letters) or by theirtransformH (z) = limit our investigations to biorthonormal schemes, i.e.,

> hnz™" (uppercase letters). (e — k), p(x —1)) = bp— for all k,I € Z. Although

Most of the asymptotic expansions are presented withe quasibiorthonormal framework considered in [18] is
“o(-)” and “O(-)" terms, which allows a more compact andnuch more general, and although we shall briefly deal with
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quasiinterpolation (see Section IV-C), the present restricti@bviously, E£,,;,(w) is the main expression to consider since
contains most cases of interest for wavelets. it is the least-squares approximation kernel.
« oblique (or biorthonormal) projectio®; = P, [11],  The theorem proved in [18] states thiat — Qrs|lL: =
[21], [15], [22]. This includes the most general waveletss(1") + o(1™) whenevers belongs to W3. Some other

generated by perfect reconstruction filter banks. nice features (average theorem, stochastic theorem [17]) lend
« least-squares approximati@; = Pr. That is, orthogo- confidence in the choice of as a faithful estimate of the true
nal projection, for whichp = &, such that approximation error.
. Specific applications of this theorem lead to asymptotic
N (D) i dsh bounds of th imati
Palw) = - . (7) expansions and sharp upper bounds of the approximation error
(W) as a function of the sampling stép. We now show how

Using this function—also called “dual”—on the analysighese theoretical results can be efficiently exploited when the
side yields the smallesk.? approximation error. This functions¢ and ¢ satisfy a two-scale relation.

corresponds to the case of orthogonal [6], [23] and semi-
orthogonal wavelets [9], [10]. M

* interpolation @r = Zz. That is, with the property that ) . o
Zrs(kT) = s(kT) by choosings = ¢;, where Our goal in this section is to present selected results on
dyadic wavelets that will be needed by our determinations. In
or(w) = _ ! = 1 . (8) particular, we will show how to compute the key quantities
Do Pwt2nm)" h(w)* required by our formulation (autocorrelation, moments, etc.);
. . - ' . however, we will not expose the general multiresolution theory
This is th? myerse of a digital FlR filter sm@(@ — of the wavelet transform. Instead, see [1]-[4] and [28] for a
> one(n)e™. A particular case is the spline mterpo—clear and complete exposition
lator, which is investigated in [24] and [25]. Computing '
such an interpolation provides a consistent way of ini-

tializing the wavelet transform at the finer resolutiof TWo-Scale Difference Equation

. DYADIC MULTIRESOLUTION ANALYSIS

level. A dyadic “father” wavelet (or “scaling function) satisfies
a linear equation relating its values at a given resolution to its
B. Approximation Order and Strang—Fix Theory values at twice the same resolution [1], [6], [19], [28], [29]

A crucial notion in approximation theory is the order of _ ]
approximation describing the rate of decay |jof— Qr s||r> wlw) = ZILW(% — k)
as the sampling step goes to zero. The fundamental result in »
this area, due to Strang and Fix [16], is that the minimum erTghd is such thaf = 1. Most of the time, the considered filter
(i.e., foro = ¢4) has anLth-order decay|s — Prs|lL> < T j, is FIR, which implies that the solution of (13) is compactly
if and only if supported: This is our assumption throughout the paper.

Another aspect of (13) is its Fourier equivalent

#(0)£0 and ¢™(2nr)=0 for {ng [ P 13) d

=0... H(eZ%) w H(ezziﬂ)
9 b, = — 5l = = _—
) P(w) 5 <p( 5 ) H 5 (14)

=1

(13)

This powerful equivalence was initially proven for compactly
supportedy; it also holds with fewer restrictions (e.g., Poly-The convergence of the infinite product on the right-hand side

nomial decay, multiple generators) [18], [26], [27]. is ensured whenevei (1) = 2 [30]; this assumption is always
o made in practice.
C. Approximation Theorem Most often, this kind of implicit equation defines a non-

The main result emphasized in [17] is that the approximatidgular function, that is, a function or even a distribution
error ||s — Qrs||> can be evaluated in a very accurate wathat does not belong th2. It is also known that the factor

by computing expression 1+ 271 is narrowly linked to the regularity [19], [30], [31].
L To be more precise(,l*'%l)H(z) defines a smoother scaling
n.(T) = {i / |3(w) |2 E(Tw) dw} (10) function, which is the differencé”__ (&) d¢ — [*7" o(¢) de
2m between the integral af and its translate. Thus, we can build
where E(w) is a kernel that depends only gnand ¢ regular functions by multiplying an initial filter by a sufficient

. 1+z71)
Blw) = [1- é(w)*@(w)ﬁ N |$(w)|2 Z (B + 20 number of regularity factoréQ—. From now on, we shall
assume that at least one such factor dividgs).

n#0
SN2 (1) B. Strang—Fix Conditions
—1— |¢(w)| ~ ~ 2 2 12 . . .
= i) + ap(W)|p(w) = ga(w)]” . (12)  The Strang—Fix conditions (9) carry over mechanically from
: Fven () the function ¢ to its generating polynomialH(z). Since

Emin(w) ¢ satisfies the Riesz condition (5), we have the following
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property: that we cannot knowy exactly at most real points (the case
of B-splines is a noteworthy exception) [3, p. 396]. For this
purpose, we assume thatand $ H(¢') have the MacLaurin

¢ satisfies the Strang-F?
development

conditions of order_

H(z) is divisible by (1 + z=1)% (15)
and H(l)=2. Ll )
_ . _ Pw) = arw® +o(w") (19)
This property can, for example, be obtained as a special case k=0
of [18, Lemma 3] (see also [32] and [33]).
and
C. Interpolation Property H(c™) K
[ . -
The two-scale difference equation (13) implies that it is 5 = > A + o(w™) (20)
possible to compute iteratively the value pfat any dyadic k=0
int th les at the int k . Specifically, .
svcglnhsa\?gce © samples at the Integers are known. Specl ICavs%ere we know thatyy = 1 (becausef ¢ = 1). Using (14),
n we end up with the induction equation
<P(§> = zk:gj,k¢(” —k) (16) | n
whereg; ,, is a discrete sequence defined by inductionjon 2r—1 k=0

Gon = 6p ANAg 41,0 = >4 Gn—219;,k (Se€ [19] for a detailed _ _ _
ana'ysis)_ We now show that it is possib|e to Compqa(@) for n Z 1. The induction onn pI’OVIdes a method for
exactlyfrom the FIR filterH since the problem can be writtencomputing the desired moments.
as a linear system of equations [19], [30], [31].

Letz = n in (13), and letn take every integer value on the
support ofep. We can rewrite (see [19], [30], and [31]) the set
of corresponding equations into the matrix form

IV. APPROXIMATION RESULTS FORWAVELETS

We now resume our study of the approximation error and
apply the results of [17] to the special case of dyadic wavelets.

Y =HY (17) We consider the most general FIR filters such thaatisfies
] o o the Strang-Fix conditions of ordet. The examples of B-
where H is a square matrix with coefficienx; = hak—1,  gplines and Daubechies wavelets will be treated in Section V.
and whereY,, = ¢(n). If H(z) = hyz=" + -+ hyz"", Here, we will provide two main results. The first one

then it is easy to show that the supportofis included in  gyresses the asymptotic form of the approximation error for
[M, N] so that the indices of the matri¥d run from M + 1 pigrthonormal wavelets, and the second gives upper bounds
to N — 1 (if ¢ is continuouso(M) = ¢(N) = 0). To ensure ¢o (semi-)orthonormal wavelets (i.e., least-squares approxima-
the normalizationf ¢ = 1, we must add another equation tgjon) These bounds are not only sharp but also asymptotically
this system, namely)_,, ¢(n) = 1. In vector notation, this ontimal when the sampling step tends to zero. They are also
becomes*Y” = 1, whereU' = (1,1,...,1)". easy to compute, especially for orthonormal refinement filters.
Note that even if we do not compute the exact value of " js iy fact, the two-scale relation (13) that makes it
¢(n), we can use the canonical sequepgg to approximate pacticable to derive results that depend on the generating
¢(37) since this discrete sequence always converges When fiver f7(») only. This is not obviousa priori, given that
_H'c'>|der continuous. This convergence is exponential as shoyya only explicit form of the functions defined by (13) is
in [19]. ) _an infinite product. Moreover, (13) allows the exact compu-
Once p(n) has been computed, we build the polynomighyion of quasi-interpolating prefilters (needed to initialize a
B(z) = 3., ¢(n)z", which is linked to the interpolation filter \ayelet transform) or of the shift-invariance error [17] that
b, in (8) throughb,,(w) = B(e'). In fact, the matrix equation characterizes the approximation space. Finally, we show how
(17) is equivalent to the polynomial two-scale relation dyadic schemes converge toward their limit functions and how
2y _ _ _ the rate of convergence can be improved by using adequate
2B(+") = H(z)B(z) + H(=2)B(==2). (18) approximation functions. These results are straightforward by-
The same technique also works for the exact computationfgpducts of the main approximation theorems [17, Th. 1 and
the autocorrelation filtedi, (w) by taking note that this filter is Th. 2]: The extended range of the problems solved shows the
built out of |¢(w)|? (instead of3(w) for the interpolation filter) power of this approach.
and that the corresponding autocorrelation function is solution

of a two-scale equation generated lj)ﬁ(z)H(z_l) [3]. A. Asymptotic Development of the Error
We gave in [18] the explicit form of the asymptotic de-
D. Moments ofp velopment of the least-squares error Hs— 0. Here, we

It is also possible to compute exactly the moments ogfine this result and provide the explicit development of the
@—or, equivalently, the MacLaurin development@ffrom biorthonormal projection errdfs — Prs||.> when the analysis
the coefficients ofH; this is a rather pleasing result, giverfunction ¢ is of orderLZ < L.
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Theorem 1: Assume that ands?%) are inL? and that the 10" , )
scaling functiongp, ) are generated by two FIR biorthonor- LT S
mal filters (H (» ), H(z)). Moreover, assume thép, ) are of . o

order L and L, respectively, withL > g We then have the

£
[v]
asymptotic development 210 .
[&] x
, 2L—1 S
o= Puslis = 3 a2,
k=L X
2L—1 g
+ 20 WLt ot @) g
k=L+L '§10‘5 r
&
<

where~; and @, are defined by the MacLaurin developments

Pi‘:) 10,10 ,
gt )| H(=) | v
Gp\W T T —¢ _ 2k Sobolev exponent
= ‘ 23 0 p
W) | 2 2 e @) |
k>0 Fig. 1. Scatterplot ofC_ (log-scale) as a functionof the Sobolev regu-
H( ) I—NI larity exponent: A total of 10000 randomfilterd of degree 19, having
Z ka (24) approximation order iS. = 10, have been computed.
k>0
and where), are determined by, as in expression: [ |§(w)|?|d,.(wT)|? dw up to the corresponding
power, which ultimately leads to (22). O
2k Bop_ .0 Given a filter H(z), it is obviously possible to compute
A = Z (22— —1)(2n — 1) (25 the coefficientgx, Ax) exactly. This is also true foy; since
n=0 a,(w) can be known as well (see Section IlI-C).
Note that the order hypotheses imply that= 0 for all k < L For the least-squares error case where: ¢4, we clearly

and that, = A\, = Oforall k < L+ L. If L < :’)) then havel = L. Thus, the asymptotic development reduces to the
(22) still holds with a remainder of lower power, name|yf|rst summation in (22), which was the result initially reported
0(T3(L+L))_ in [18]. Equation (22) also confirms the result of Sweldehs
Proof: We start with (12). We have shown in [18] howal- [14], who proved that the expansions of the biorthonormal
to develop the first ternk,,,;,, of the kernel into power seriesand the orthonormal error should match up to (not including)
up to order4Z. The result provides the first sum of the rightthe powerZ>(’+7); however, these authors did not give the
hand side of (22). The second term of (12), namély,,, can explicit form of the developments.
be rewritten asl_EﬁH — P — Eoin|?. Sincey and ¢ are An essential contribution of (22) is that we now have an

biorthonormal]l —G@* = ) o <Aﬁ(~—2ﬂ7r)<P( —2n7)*, which explicit form for the the first order equivaledt defined in
is thusO(wL+i). In addition, we know thaEmh[1 = O(w?h). [15]

Thus, we haveF,., = |1 — ¢¢*|> + O(w*L) if L < L. Q=D au(m)
On the other hand, using (14), we find a two-scale induction Co = W (26)
relation satisfied byl, = 1 — g¢*

~ e where H(z) = [%}LQ(;:). Using this simplified formula,
dp(2w) = do(w) + (1 — do(w)) <1 _ H(c™)H(™) ) we illustrate the link between the Sobolev regularity and
4 C that was surmised in [15]. For this purpose, we have esti-
. . H(—c™)H(—c)* mated both the constant and the regularity exponent (using the
=dy(w)+ (1 —d,(w)) exact formula given in [3] and [19]) for a large—10 000—set

H(— et H (— e )* ! ) of randomly designed filters that have ten zeros at —1.
=d(w)+ (ze™)H(=c™) + O (w1, As can be seen in Fig. 1, the first-order asymptotic constant
4 decreases roughly exponentially as the Sobolev regularity
Thus, if dy(w) = 3,50 04w", then (2 — 1)8), = 6, for INCreases.

First-Order Interpolation Error: The technique used in the

9 proof of Theorem 1 can also be exploited in the interpolation
the development oﬁd@' to the powers of that are less than case. We show below how to obtain the first order of the

4.L since this is the highest power of the developmenE.gfn. corresponding error. First, we rewrite the error kernel from
given in [18]. Thus, two cases should be considered: Elth(?n 1) and put it under the form

L < % which ensures that the accuracy of the developme
of |d,|? (namely,3(L + L)) is less thadL, or L > L, and

k=0...2(L+ L) — 1, according to (24). We must restrict

2

then we should ponsider only the firsL coefficients of the Ew)=11- fp(w) + (;(W)QEmin(w)
development ofd,|*. In both cases, we have to develop the by (w) [be(w)]
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wherei)@ is the interpolation filter (8). We know from above TABLE |
thatEmm(w) — (C;)Qwﬂ‘, whereC; is given by (26). Thus, WAVELET UPPER BOUNDS AND SHIFT-INVARIANCE ERROR
we can concentrate on the first term Bf which is denoted order Daubechies splines
lu(w)|?. Using both the Fourier two-scale relation (14) and . c o, | o» o o | -
(18), we have A 7 Z & | s
1 05 | 57% | 0.577 05 | 57% | 0.577
w(2w) =1 — :(2“)) 27) 2 0154 | 72% | 0.446 || 0.120 | 56% | 0.273
b (2w) 3 || 0.0595 | 83% | 0.392 || 0.0399 | 57% | 0.159
—u(w) + P(w) H(—e )8 (w+m) (28) 4 | 0.0254 | 91% | 0.360 || 0.0126 | 57% | 0.0959
l;@(w) b, (2w) ' 5 || 0.0115 | 95% | 0.339 | 0.00401 | 57% | 0.0585
6 || 0.00536 | 98% | 0.323 || 0.00128 | 57% | 0.036
We know thatu(w)r: O(wr?{ and we rwapt to fipdc 7| 0.00256 | 99% | 0.31 || 0.000406 | 57% | 0.0222
?:J;;]Lg](&;%(f‘)) = cw” + O™, Thus, 2" aw™ = cw’ + 8 | 0.00123|99% | 03 || 0.00013 | 57% | 0.0137

b,(m) at the first order inw. After some rear-
rangements, we finally get

~ As a result, the upper bound in (30) is all the more sharp as
_7 — - 28+ 1 |b(m)|* oy L the second term in the argument of the square root is smaller
s = ZrsllLe = Co /1 + 5F - T"||s™ |l : .
2L —1 a,(m) with respect to the first one.
o In order to estimate the upper value of 2L E(w) for
o ” w € [—w,n], we use (13) and the two-scale induction equation
+ O T). (29)  4a,(2w) = |H(e™ |24, (w)+|H(—¢*|2d,(w+). After some

algebra, we obtaiF(2w) — E(w) = p(w)(1 — F(w)), where

is gi by (23); this implies thab'(2w) < E
insist that this is true only wherp satisfies a two-scale plw) is given by (23); this implies (20) < (w)—i;;;((—g

equation. For the centered B-splines of even ottidi.e., of SiNCeE(w) is positive. Then, we defind/ = sup,., <z 5z
odd degree), we check thiit, ()| = (2)£2¢(L)(1 — 27%), and get by inductiorE(w) < AL w?E. Finally, (30) yields
and thus, using (29), we géti™ = C /1 + 244((2% , which

provides an explicit relation for the constant introduced in [34].

This formula is valid for even order splines only. Note that, ||s — Prs|jre < [
asymptotically, wherL — oo, we haveCiiflt = \/30; .

Therefore, C* = C7 if and only if 3@(7r) = 0; we

M2
47 -1

+ C7(r2L:| H (L)H TL (31)

B. Upper Bound This new bound, and the “sharpness percenta&ga” have

A general expression for upper bounds that are asymptdieen computed for Daubechies and B-spline wavelets (see
cally optimal (up to a given order) was given in [17]. Whermable I). A sharpness percentage of 100% indicates that there
¢ satisfies a two-scale equation, we show that we can giaee signals for which the inequality (31) is an equality; lower
an explicit expression of the constants involved in the generadlues of this percentage indicate that (31) is strict as well
formula. We first apply the technique to the lower order uppes indicating how tight it is. We observe in particular that
bound calculation; then, we show how to obtain higher ordetbe bounds for Daubechies wavelets are very sharp and that

Asymptotically optimal upper bounds follow. their sharpness tends to 100% when the approximation order

First-Order Upper Bound: The first-order bound given in increases. By contrast, the bounds for spline wavelets are less
[17] takes the following form: sharp, and their sharpness depends only loosely on the order.

N Higher Order Bounds:Higher orders can be obtained by
Gl ? bounding the remainder of the MacLaurin serie§t.) (see
E I [17, (28)]). The use of the two-scale relation also yields an
(w)  ¢(2L) (L) L L ;
|s = QrsllLe < | sup —~ +—5- | ||s"|| T explicit form of this sharpened bound.
lwol<m @ T Theorem 2: Assume that0 < N < L; then, we have
the upper bound for the least-squares approximation error by
o dyadic wavelets
(30)
-, _ls = Prs]lr
Moreover, the smallest constait,, that satisfies (30) is 1
. 0 . . .. L+N-—-1 2
necessarily greater thafi;, which is the minimum constant Z & (R)||2 2k
over the subclass of Nyquist-bandlimited functions (cf. [17, | 4 TN HL2
Sec. IV-B]). This implies that b= , .
My CRL+2N)17 (nam) L+N
_ T
CgTL < sup Is — Qrsllv + [4r,+1\f 1 A2L+2N HS L2

sz [Isp. (32)
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TABLE I D. Shift-Invariance Error

WAVELET QUASI-INTERPOLANT PREFILTERS . . . .
Except for ideal unrealizable functions such as the Nyquist

order L splines interpolator, the approximation spategenerated by integer
1 TR shifts of ¢ is not globally shift invariant. Thus, ity & Z,
2 R T o we havey(z — xzo) ¢ V in general. However, the results
3 TN given in [17] allow us to compute the average value over all
P 7/2402" — 17/607 + 181/1202% — 17/605 + 7/240 the possible real shiftgy of the approximation error when

projecting ¢,, (x) = ¢(x — o) orthogonally ontoV. This is
a consequence of [17, Th. 2], which yields

order L Daubechies
1 lzy! 2 ! 2
2< T 32 —
05 = | [em = Priwy |2 dao
2 —0.11622 + 0.8662 + 0.25 0
3 —0.061992% + 0.9287432 + 0.145885 — 0.012638: 1 _ 1 / o) (1- |o(w)]? o
4 | 0.00942592% — 0056753523 + 0.11641632% 4+ 0.9051175z + 0.0257938 27 (W)

Here, we show that this equation can be rewritten in a form
where My is a constant obtained by Ehat is suitablt? for exact computation. Specifically, if we let
to(w) = 3, |¢(w + 2n7)|*, and then

L+N-1 2k - N
2 plw) =D 0l MW 2 i N _ ép(w) d 34
My = |i|u§p§ —aL42N (33) T =5 a (W) io(@) w. (34)

o . Note that as fora,.(w), é.(w) can be computed exactly;
and where(p(w), i) have the same definition as in (23). it corresponds to the integer samples of the dyadic wavelet
The proof follows the same steps as for the first order ag@nerated by the filteg H(z)2H(>~1)? (see Section III-C).
is a direct consequence of the two-scale relation (13). Notigcgt ys denote byA(z) and C(z) the FIR filters defined by
that (32) contains (31) if we leN = 0. A(e™™) = a,(w) andC(e~™) = ¢&,(w), respectively. Then,
imation error have thesame asymptotic developmentthe

neighborhood of/” = 0 up to the powefl’"+~. We can thus o2 = g — e C(=) dx (35)
say that (32) is asymptotically optimal up to the order @ 247 Con 2A(2)

this provides a new series of unreported bounds with optimal ) o )

characteristics. whereC/q 1) is the unit circle (in the complex plane) centered

on 0. We then know, by Cauchy’s residues theorem, that the
integral on the right-hand side equals the sum of the residues
of i(i) for the poles lyingstrictly insideC'q 1). Of course, a
Unless the scaling function already satisfies a so-calleshjor simplification occurs wheg is orthonormal, that is to
quasi-interpolation property [35], it is advisable to use say, wheni,(w) = 1. In that specific case, we simply have
prefilter to compute the fine scale expansion coefficient # 2 = 1 — ¢.
(3), given the discrete values of the functie(nI’). Some In Table I, we give the reduced vallﬁg‘lr—z for Daubechies
examples of wavelet prefiltering algorithms are discussed &nd spline wavelets of order 1 to 8. We observe that the
[34] and [36]. ‘ X Daubechies ones have a much slower decrease toward 0 than
The problem amounts to finding a prefiltBYc™) = p(w) the splines as the order increases. This trend was confirmed
such that|s — Qrs|lf» has the same asymptotic developmemy further investigation: We computeg?— for the first 100
2 N o el
as||s — Prsllf. whenT tends to zero, up to the ord&”". qrders and observed that the shift-invariance error seems to de-

This problem has been explicitly solved in [17, (36)], whergrease as a polynomial ih for Daubechies wavelets (roughly
it was shown that it is equivalent to chooge such that 2. . 7-045]5e7) and as an exponential for splines

» . nooo lelly 2
P(c*) = ¢q(w) + O(w™). Since we can compute exactly| L o INL s o
) . roughly —— £)%). This indicates that the approximation
d, (see Section IlI-C) and since we have the exact value %P 9T > (2)7) bp

‘P||L2
the moments ofy (see Section IlI-D), we can express thePaces generated by Daubechie_s \_Nave_lets converges mL_JCh
X o more slowly than splines to a shift-invariant space, as their
exact MacLaurin development d?(¢*’) up to the orderNV. order tends to infinity
As naoticed in [17], this condition is satisfied by an infinite '
collection of filters having various length and delay.

In Table Il, we give quasi-interpolant prefilters for (non
centered) B-splines and Daubechies wavelets of various apThe function defined by (13) is, in general, not known
proximation orderd.: Using these filters as sampling distribu-exactly everywhere; in particular, irrational valueswotan be
tions ensures thats — Qrs||: = ||s — Prs||lrz + O(T**1). obtained only through an infinite number of iterations of the
Moreover, we have chosen the filters so that the resultingerpolation scheme described in Section IlI-C. If we restrict
approximation kernels are well-behaved away from:- 0. ourselves toj iterations, the iterated two-scale difference

C. Initialization Filters for the Wavelet Transform

E. Convergence Rate of Dyadic Schemes
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equation reads 1) Asymptotic Expansions:
Theorem 3:The first 4. coefficients of the asymptotic
o(z) = Zgij(zix — k) development of the least-squares spline approximation error
& is given by

where g, , is defined as in (16). This form suggests a way Dosli2, — Lt 2C(2L + 2k) (2L + 2k —1
to approximate the limit functiog: We can simply define a Is = Prslliz = Z (2 )2L+2k 2k
sequence of functiong;(x) as in [37] by k=0

x ||sEHR|| T, TR L Oo(TE). (37)

. _ . J o
vilz) = zk:g],kx(Z v—k) (36) Proof: Writing down the expression o, (w), we
have
where the compactly supported functignis chosen so that wa(w)
the error||¢ — ¢;||L> tends to zero ag — oo. Interestingly, EB(w) = T+ walw) (38)

the study of this error also falls within the scope of the
present paper: It suffices to observe that we can rewrite (36herea(w) is defined a§n¢0(w+2n7r)_2". In this sum, we
asy; = Qy-s, WhereQr is defined by the couple of sam-develop each ternw + 2k7) 2% into convergent MacLaurin

pling/approximation functionga, x): This is a consequenceseries and exchange the summations. This yields
of the equalityg;,,, = [ ¢(z)pa(x2’ — n)dz2’.

For our results to apply, we assume thate W% with aw) =Y 2«#;35)(2L+2k - 1>w2k' (39)
r > . We thus have = (2m) 2k
1 ' 1/2 ' This development is uniformly convergent for any €
le — @l = [2—/|¢(w)|2E(2]w) dw +0o(277").  ]-2m,2x[. The proof now follows easily from (38), which
T shows thatF(w) = w?"a(w) + O(w*"). O

The first coefficient of this development appeared previously
in [15], where it was expressed with a Bernoulli number
instead of a zeta function. The next terms of the development
are new and provide a finer asymptotic characterization of the
expansion error.

2) Upper Bounds:

Theorem 4: The least-squares polynomial spline approxi-
mation error is bounded as follows:

Since the second term on the right-hand side does mpotori
decrease faster thar?"" if +/ > r, we cannot hope to have
a convergence rate higher thanMoreover, ifw=2"E(w) is
bounded, they € W}, implies that the first term on the right-
hand side i€)(277"). This means that if we choogesuch that
E(w) = O(w?), then the convergence rate of to ¢ will be
at least2=/". Whenr > 1, this is a significant improvement
over the usual rate, namel2~’, which would drive the

convergence process if we had performed the approximation 1 Ly I

with a classical step function. From (12), we see that the Is = Prs|lu: < <L 20(21) - QHS 1" (40)
constraint onFE is satisfied iff x satisfies the Strang—Fix ] ) ]

conditions of ordetV = [r], and %(w) = ¢(w) + O(w™). Moreover, we can find asymptotically optimal upper bounds.

A related result appears in [37] and [38] in the (mordf 1 < NV < L, we have
general) case of/g-adic schemes, i.e., rational up-sampling s—Prs||rz
iterated schemes: It was shown that under the same conditions

1
2

on x as above, the convergence rateder theL> norm of = 2¢(2L+2k) (2042k—1 Lk |2 2Lk
the approximating functiong; is 2=/, whereh is the Holder = Z W( 2% )HS HLzT
regularity exponent of. Clearly, theL?> approximation error k=0
decreases faster than tlie* error, due to the well-known + V2 (L+N)||  pL+N (41)
inequality A < r [3], [19]. gl+N L= '
Proof: We consider again the exact expression (38) of
V. EXAMPLES: SPLINES AND DAUBECHIES WAVELETS E(w). Our first task is to bound—2LE(w). Let us define

_ b(w) = a(w) — (w—2m)72F = 2onzo,—1(w + 2nm) 720, 1t

A. B-Splines is easy to check thatla(w) is strictly negative for every
Non-centered B-splines are piecewise polynomials that sat-€]—=, [ and, thus, that(w) is strictly decreasing over

isfy a two-scale relation (13); the generating filtetdg (z) = this same interval. In particular, ®# < w < =, we have

27+ (71 4 1)E. We thus havep(w) = [2=1F, which 0 < b(w) < b(0) = 2252, Using (38), we find

solves the induction equation (14) explicitly. In this case, we

can get the exact minimal approximating kerrngl,;,(w). oL b(w)—l-m 1
- | - (@) S — 70 <H(0)+
Even though the two-scale technique used in the precedind 14—t w?L 4 (w — 27)2L
sections applies to splines as well, we shall, however, consider 2(2’2_;’_)1
this exact kernel since it makes it easier to obtain our bounds 1+ =0
and asymptotic developments. - 2x2L
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T exactly by the formula (see Meyer, quoted by [3, p. 168])
10° +r1—— exact error :
--- kernel error

--- upper bounds

) 4w
|Dp(e™)]? = CL/ sin?tt g da (42)
0

oy
o,
o
T

where Cp, = 4~ 1L,

1) Asymptotic ExpansionsiVe apply here the results of
Section IV-A. Since Daubechies wavelets are orthonormal, we
simply havea,(w) = 1 so that, are the coefficients of the
development of Dz (—¢*)|? up to the orderL as specified
by (23). The expression dfDz(—c*)|> can be obtained by
substitutingw to w + 7 in (42).

Theorem 5: The first 4L coefficients of the asymptotic
development of the least-squares approximation error by
Daubechies wavelets are given by

.2
Fig. 2. Least-squares approximation of a Gaussian) = e T using of—1 I
cubic splines(L = 4), as a function of the sampling st&p The solid line 2 CLdk (K)[|2 2k 4L
is the exact error, whereas the dashed line is the error computed using (1 JS - 7)TSHLZ = Z m”s HLzT + O(T )
and involving the kernel (12). The oblique dash-dotted lines are the upper k=L
bounds computed with (40), and (41) fof = 1, 2, 3,4. When the ordefV (43)
increases, the bounds get closer to the exact curvé'far1. The horizontal
dash-dotted line is the trivial upper bound given |psf|y.z.

Approximation error
2
o
5

—
o
&

0.1 0.2 0.5 1
Sampling step T

where the coefficientsiZ are defined by the MacLaurin

development ofin?“~!(z)
A final simplification occurs if we use the inequality

2ED-1 < ¢(2L) — 1. Applying (30), we end with the sin® " (x) =) dfa?t (44)
first-order bound (40). k>0

Finding the asymptotically optimal bounds is hardly differ-
ent. Let us denote by y(w) the first N terms of the devel-
opment (39) ofa(w). The remaindery(w) = w
is strictly positive, as is obvious from (39). Moreover, sinc
this expansion is uniformly convergent ovpr2w,2#[ and
since all its coefficients are strictly positivey is a strictly h
increasing function ofv; thus,»y(w) < rx(7). Using (38),

Proof: Note thatdf = 0 for all k£ < L. The link between

the coefficientsy, of (23) andd; of (44) is straightforward

gy using (42). We find that;, = Cg,‘ff. Thus, applying (22),

we find (43). O

The coefficientsd; are easy to obtain. For example, we
2L—1

avedf =1 anddf, , = —2L=%, which implies that

these remarks lead to C
, , s = Prslife = 7 |[s)| . 7%
B(w) — w?ay(w) < W 2N py(w) < 0?LT2Ne (7). 8L(4F —1)
. Cr(2L -1 2
We have thatr?Nry () < a(r) — a(0), wherea(0) anda(r) T BT Jf(l)(4L+1)_ ) [Eaad Y
can be computed exactly, as dii0) = ?ggfg (the first-order Lo,

asymptotic), and(n) = —[2¢(2L)(1-4~%)—1]. Moreover,
using the definition of the zeta function, a close inspectian particular, this expression provides a closed form for the
shows thatr?“(a(m) — a(0)) < 2 — ((2L + 2N). Thus, we first-order asymptotic constant. This improves the previously
finally get (41). O  reported expression of the first-order asymptotic constant,
Note that the simplified form (40) is only slightly less shargvhich was given as the limit of an infinite summation [15].
than the bound that would be obtained directly from (31¥his exact expression makes it easy to compare theoreti-
For example, the relative difference between (40) and (3dally the constants arising in Daubechies and spline wavelet
is approximately6 - 1072,107%,3 - 10=* and 7 - 10~* for approximations.
L =1,2,3,4, respectively. Ad. tends to infinity, this relative  Theorem 6: The first-order asymptotic constant of
difference quickly vanishes. Daubechies wavelets is given by
Fig. 2 shows how sharp our new bounds are in the particular
case of the approximation of a Gaussdaﬁ%—z by cubic splines (QrL)
(see caption for details). As can be observed, the quality of 2(1 —4-F)

the bound improves a4 increases for sampling steps lesser _ . . . .
than 1; in turn, the upper bound worsens for higher valuesg?reover’ the asymptotic sampling density required by using
al

Cpoy =47F (45)

the sampling step because of the polynomial behavior of (4I): _ubechles wavelets te.nd.s to be exattymes larger than .the
splines, as. — oo, that is, if Ip,, and7;,,; are the sampling
steps necessary for Daubechies and spline wavelets to provide

B. Daubechies Wavelets ) L
) ) ) the same (asymptotical) approximation error, then
The Daubechies filters [6], which we denote By.(z), T )
Dau

are the shortest orthonormal filters that contaifregularity” lim - . (46)
factors1+~~1. The productD(z)Dr,(2~1) can be computed Looo Topp 7
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Proof: We concentrate on the second part of the theoremere is that they are valigrespective of the amplitude of the
since (45) is a direct consequence of Theorem 5. sampling stepThis contrasts with most results in approxima-
The relation betweenZn,, and 1., is obviously tion theory that concentrate essentially on the limit when the
o ) . . .
C5. Tk, = C-TE. It follows that TTD [SenL /L, sampl!ng step t_ends to zero. In S|gr_1al processing, indeed, the
prst =p! < sampling step is most often given in advance and cannot be

~
~

‘Dau
Using the Stirling formula(n! 2rnn™e”™), we find

L - L~
(%) = = Thus,Cp,, & 7= @sL — cc. On the other
side, ol N % since((n) ~ 1 asn — oo. The limit

result (46) then follows immediately. O

Finding the precise factor in this context is rather unex-
pected. Our result confirms the previous reports [14], [15] tha
splines are superior to Daubechies wavelets for the approxi-
mation of smooth functions.

2) Upper Bounds:

Theorem 7: A first-order upper bound of the Ieast-squares[1]
approximation error with Daubechies wavelets is
[2]

(3]
(4]

Proof: Here we can use the results of Section IV-B. Theys)
definition (42) of Dy, shows that

Cr ¥ . o1
= sin?l1 ¢ dz.
4 Jo

Thus, sincesinz| < |z|, we haveMZ = $E, whereM, was

defined by (33). The application of (32), and a rearrangement
using the value oCS;l, provides (47). o O

Since the second term is smaller than the first one, and sinog
it is asymptotically negligible with respect to the first term (as
shown by Theorem 6), it appears that the upper bound fgf
Daubechies filters is very close to the asymptotic first order
equivalent: This shows how sharp our first bound is and thatdtz]
is consistent with the indications of sharpness found in Table'I.

The higher orders in (32) provide even sharper bound$3!
However, the constant in (47) is already so close to the optimal
asymptotic value that there is not much benefit in refining thes]
bound further.

2
[sD|| T (47)

1| O
s = Prslle < Coauy| 1+ 5| 52

(6l
(7]
(8]

p(w)

[15]

VI, (16]

In this second paper, we have shown how easy it is
to compute various quantities (asymptotics, bounds, shift/]
invariance error, etc.) linked to the approximation error once
we assume the basis functions satisfy a scaling relation. Di4&l
to the explicit connection between these quantities and the
generating filter, our expressions help to solve optimizatigmo]
problems, such as filter design, whenever optimized approﬁb]
mation characteristics are desired.

The results given here can be extended to the case of ar-
bitrary (integer) scaling factors. The case of fractional scalir{ﬁl]
factors [39] is currently under investigation by one of us:
This study reveals that after some (nontrivial) adaptations, tf&l
formulee take the same qualitative form. 23]

We expect that our investigations in approximation theory
will be helpful in signal processing since interpolation (se
Shannon’s celebrated theorem [40]) is such a common t %‘f]

CONCLUSION

made smaller.

ACKNOWLEDGMENT

The authors thank Dr. P. Eenaz of the Swiss Federal
Institute of Technology for his kind and thorough proofreading
of this paper.

REFERENCES

|. Daubechies,Ten Lectures on WaveletsPhiladelphia, PA: SIAM,
1992.

S. Mallat, A Wavelet Tour of Signal Processing San Diego, CA:
Academic, 1998.

G. Strang and T. Q. NguyeWavelets and Filter Banks Cambridge,
MA: Wellesley-Cambridge, 1996.

M. Vetterli and J. Kovaévic, Wavelets and Subband CodingEngle-
wood Cliffs, NJ: Prentice-Hall, 1995.

P. P. VaidyanathanMultirate Systems and Filter Banks Englewood
Cliffs, NJ: Prentice-Hall, 1992.

|. Daubechies, “Orthonormal bases of compactly supported wavelets,”
Commun. Pure Appl. Mathvol. XLI, pp. 909-996, Nov. 1988.

G. Battle, “A block spin construction of wavelets. Part |: Lengari
functions,” Commun. Math. Physvol. 110, no. 4, pp. 601-615, 1987.
A. Aldroubi and M. Unser, “Families of multiresolution and wavelet
spaces with optimal propertiedNumer. Funct. Anal. Optvol. 14, nos.
5-6, pp. 417-446, 1993.

M. Unser, A. Aldroubi, and M. Eden, “A family of polynomial spline
wavelet transforms,Signal Process.vol. 30, pp. 141-162, 1993.

C. K. Chui and J. Z. Wang, “On compactly supported spline wavelets
and a duality principle, Trans. Amer. Math. Socvol. 330, no. 2, pp.
903-915, 1992.

A. Cohen, I. Daubechies, and J. C. Feauveau, “Biorthogonal basis of
compactly supported waveletsCommun. Pure Appl. Mathvol. 45,

no. 5, pp. 485-560, 1992.

G. Strang, “Wavelets and dilation equations: A brief introducti@AM
Rev, vol. 31, pp. 613-627, 1989.

W. Sweldens and R. Piessens, “Quadrature formulae and asymptotic
error expansions for wavelet approximations of smooth functions,”
SIAM J. Math. Anal.vol. 31, no. 4, pp. 1240-1264, 1994.

, “Asymptotic error expansions for wavelet approximations of
smooth functions II,"Numer. Math, vol. 68, no. 3, pp. 377—401, 1994.
M. Unser, “Approximation power of biorthogonal wavelet expansions,”
IEEE Trans. Signal Processingol. 44, pp. 519-527, Mar. 1996.

G. Strang and G. Fix, “A Fourier analysis of the finite element
variational method,” inConstructive Aspects of Functional Analysis
Cremonese, Ed. Rome, ltaly: 1971, pp. 796-830.

T. Blu and M. Unser, “Quantitative Fourier analysis of approximation
techniques: Part |—Interpolators and projectosEE Trans. Signal
Processing this issue, pp. 2783-2795.

T. Blu and M. Unser, “Approximation error for quasiinterpolators and
(multi-)wavelet expansions Appl. Comput. Harmon. Analvol. 6, no.

2, pp. 219-251, Mar. 1999.

O. Rioul, “Simple regularity criteria for subdivision schemeSJ/AM J.
Math. Anal, vol. 23, no. 6, pp. 1544-1576, Nov. 1992.

A. Aldroubi and M. Unser, “Sampling procedures in function spaces
and asymptotic equivalence with Shannon’s sampling thedyrher.
Funct. Anal. Opt.vol. 15, nos. 1-2, pp. 1-21, Feb. 1994.

M. Vetterli and C. Herley, “Wavelets and filter banks: Theory and
design,”IEEE Trans. Signal Processingol. 40, pp. 2207-2232, Sept.
1992.

A. Aldroubi, “Oblique projections in atomic spaces,” Proc. Amer.
Math. Soc. July 1996, vol. 124, no. 7, pp. 2051-2060.

O. Rioul and P. Duhamel, “A Remez exchange algorithm for orthonor-
mal wavelets,"IEEE Trans. Circuits Systvol. 41, pp. 550-560, Aug.
1994.

M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: Part
I—Theory,” IEEE Trans. Signal Processingol. 41, pp. 821-832, Feb.

here. The advantage of the theorems that have been presented1993.



2806

[25]

[26]
[27]

[28]
[29]

(30]

(31]

[32]

(33]

(34]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 10, OCTOBER 1999

plications,” IEEE Trans. Signal Processingol. 41, pp. 834-848, Feb.
1993.

E. W. Cheney and W. A. Light, “Quasiinterpolation with basis functions
having noncompact supportConstr. Approx.vol. 8, pp. 35-48, 1992.

C. de Boor, R. A. Devore, and A. Ron, “Approximation from shift[37]

invariant subspaces &?(R?),” Trans. Amer. Math. Socvol. 341, no.

2, pp. 787-806, Feb. 1994.

Y. Meyer, Ondelettes Paris, France: Hermann, 1990, in French.

S. Mallat, “A theory for multiresolution signal decomposition: The
wavelet decompositionfEEE Trans. Pattern Anal. Machine Intelizol.
11, pp. 674-693, July 1989.

|. Daubechies and J. Lagarias, “Two-scale difference equations |. Exis-
tence and global regularity of solutionsSIAM J. Math. Anal.vol. 22,
no. 5, pp. 1388-1410, Sept. 1991.

, “Two-scale difference equations Il. Local regularity, infinite
products of matrices and fractalsSIAM J. Math. Anal. vol. 23, no.
4, pp. 1031-1079, July 1992.

A. Cohen, |. Daubechies, and G. Plonka, “Regularity of refinable

(36]

(38]

(39]

[40]

, “B-spline signal processing: Part |lI—Efficient design and ap{35] M. Unser, “Quasiorthogonality and gquasiprojection&ppl. Comput.

Harmon. Anal, vol. 3, pp. 201-214, 1996.

P. Abry and P. Flandrin, “On the initialization of the discrete wavelet
transform algorithm,IEEE Signal Processing Lettvol. 1, pp. 32-34,
Feb. 1994.

O. Rioul and T. Blu, “Simple regularity criteria for subdivision schemes
Il. The rational case,” submitted for publication.

T. Blu, “Bancs de filtres #fés en fraction d’octave—Application au
Codage de Son,” Ph.D. thesiEcole Nat. Suprieure Elecommun.,
Paris, France, 1996, in French.

, “Iterated filter banks with rational rate changes—Connection
with discrete wavelet transformslEEE Trans. Signal Processingol.

41, pp. 3232-3244, Dec. 1993.

C. E. Shannon, “Communication in the presence of noiBegt. IRE
vol. 37, pp. 10-21, Jan. 1949.

function vectors,”J. Fourier Anal. Appl, vol. 3, no. 3, pp. 295-324, Thierry Blu (M'96), for a photograph and biography, see this issue, p. 2795.

1997.
C. Heil, G. Strang, and V. Strela, “Approximation by translates of
refinable functions,’Numer. Math, vol. 73, pp. 75-94, 1996.

M. Unser and |. Daubechies, “On the approximation power of
convolution-based least-squares versus interpolatidBEE Trans.
Signal Processingvol. 45, pp. 1697-1711, July 1997.

Michael Unser (M'89-SM'94-F'99), for a photograph and biography, see
this issue, p. 2795.



