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ABSTRACT

Super-resolution is the art of recovering spikes from their low-
pass projections. Over the last decade specifically, several significant
advancements linked with mathematical guarantees and recovery al-
gorithms have been made. Most super-resolution algorithms rely
on a two-step procedure: deconvolution followed by high-resolution
frequency estimation. However, for this to work, exact bandwidth
of low-pass filter must be known; an assumption that is central to
the mathematical model of super-resolution. On the flip side, when
it comes to practice, smoothness rather than bandlimitedness is a
much more applicable property. Since smooth pulses decay quickly,
one may still capitalize on the existing super-resolution algorithms
provided that the essential bandwidth is known. This problem has
not been discussed in literature and is the theme of our work. In this
paper, we start with an experiment to show that super-resolution in
the presence of noise is sensitive to bandwidth selection. This raises
the question of how to select the optimal bandwidth. To this end, we
propose a bandwidth selection criterion which works by minimiz-
ing a proxy of estimation error that is dependent of bandwidth. Our
criterion is easy to compute, and gives reasonable results for experi-
mentally acquired data, thus opening interesting avenues for further
investigation, for instance the relationship to Cramér-Rao bounds.

Index Terms— Sampling theory, sparsity, super-resolution,
spectral estimation, sparse deconvolution, bandwidth.

1. INTRODUCTION

Recovering spikes from low-pass projections is a classical problem
that arises in a variety of applications. In the field of signal process-
ing, this problem is widely studied under the theme of (a) sparse-
deconvolution [1], (b) sparse or finite rate of innovation sampling
[2,3] and, (c) super-resolution [4]. Given N time-domain, sampled
measurements, y (nT) ,n = 0,..., N — 1 of the continuous signal

K—1

y(t) =) cxd(t—te), ()
the super-resolution problem seeks to recover the 2K unknowns
{ck, tk}i{:_ol assuming that [1-4]: (A1) K and ¢ are known; and
(A2) ¢ is bandlimited (its Fourier transform is compactly supported).
The notion of sparsity naturally finds its way in the super-resolution
problem because y (t) = (¢ * s) (t) where s is a continuous-time,
K -sparse signal

s =" "adt—t), telom). @)

Clearly when the consecutive ¢;’s are close to each other, the overlap
between cx ¢ (t — tr) and cp4+1¢ (t — tr+1) makes the identification
of {c, tk}fzfol challenging and hence one must “super-resolve.”
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Over the course of time, several efforts have been made to un-
derstand the theoretical aspects of this problem which have also im-
proved the algorithmic machinery linked with the super-resolution
problem (cf. [5]). That said, from a practical perspective, physical
models underlying the super-resolution problem make the applica-
tion of theory, as is, challenging. By working with experimental data
in several bands of the electro-magnetic spectrum, we have observed
that the current model specified in (1) may be too simple to explain
the experimental data. To elaborate on this aspect, we provide two
concrete examples where deviations from the de-facto mathemati-
cal model (1) arise. In practice the pulse ¢ may be distorted due to
propagation or transmission and hence the data is better explained
by overlapping templates {ci¢r (¢ — ti)} where each ¢y, is related
to some basic pulse ¢. This aspect was studied in the time-varying
model discussed in [6]. Other models addressing the same issue
were considered in [7,8]. Even when (1) is a valid model, the pulse
¢ may be non-parameteric or arbitrary. This aspect was covered
in [9] where the requirement was that ¢ reproduces trigonometric
moments.

1.1. Super-resolution is Sensitive to Bandwidth

Central to the problem of super-resolution is the assumption that ¢
is bandlimited [1-4]. The notion of exact bandlimitedness is far
from practice and a better suited model would be the one that con-
siders smooth pulses. From classical Fourier analysis, we know
that smoothness in time-domain imposes a decay constraint on the
Fourier coefficients and hence, bandlimited approximation (cf. Fig. 3
in [10]) is a viable solution. While smooth pulses are approximately
bandlimited, choosing the correct bandwidth in presence of noise
and model mismatch is a non-trivial aspect. This is the main theme
of this paper.

To clarify this point, consider the Fourier domain version of
(1). Let ¥ (w) denote the Fourier transform of y(¢). Then, from the
convolution—product theorem, we have, ¥ (w) = ¢ (w) § (w) where
S (w) is a sum of complex exponentials, or,

K—-1

S@) =2, e, 3
and equivalently, with sampled measurements, one has {7 (nwo) }_

with wg = 27 /7. Typical recovery procedure in the super-resolution
problem exploits the structure in (3). This is done in two steps:

1. Deconvolution. Here 5 (nwy) is estimated by using,

S (nwo) = g//\(nwo)’ nwo € [—8, Q] 4)

¢ (nwo)

where €2 is the bandwidth of ¢.
ICASSP 2019



(@) Experimentally Calibrated Pulse in Time Domain

~20F

Amplitude (a.u
IS

0 0.5 1 1.5 2 2.5 3
Time (secs) «107

(b) Fourier Spectrum

_ -
o N

Amplitude (dB)
o)

6 B

4 By

o s . Bs . .

-150 -100 -50 0 50 100 150

Frequency Samples f/fo

Fig. 1: (a) Time-domain samples of pulse {¢ (nT)}‘}f:ﬁil calibrated using time-resolved sensor in [10]. Note that the pulse is smooth and asymmetric. (b)
Fourier domain samples. Here By, = [—Qy, Q] , k = 1,2, 3 are possible bandwidths (for deconvolution) that can be used for super-resolving spikes.

2. Parameter Estimation. Once 5 (nwy) is computed, its para-
metric form in (3) is then used for estimating unknowns
{ck, tk}fgol. To do so, one first estimates {tk}f;(f using
high resolution spectral estimation methods [12] or fitting
approaches [5]. With {t;}5— " known, {c;}r_,' are esti-
mated by solving least-squares problem in (3). The estimates

K—1 . :
{ck,tr},_, correspond to the sparse signal in (2).

When ¢ is a smooth pulse, as is often the case in practice (cf. ex-
perimental examples in [6, 10, 13]) the selection criterion for band-
width parameter €2 is unclear. Consider the case when measure-
ments incorporate noise and read,

m(t) =y (t) +e(t) (5)

where e (t) is the contribution due to bounded noise.

In context of the experimentally calibrated pulse shown in
Fig. 1(a), a reasonable method to choose {2 (equivalently, the spec-
tral window B = [, Q]), entails the largest, contiguous set of
frequencies for which $ (nwo) is away from zero (see red samples
in Fig. 1(b)). For the moment, let us denote this heuristic value
of bandwidth by €2¢. Varying 2 arbitrarily, leads to the following
scenarios.

e When Q2 is such that N < 2K, the parameter estimation by fitting
(3) will fail as the system is under-determined.

e Gradually increasing €2 such that 2K wy < Q < Qg leads to over-
sampling and hence to performance enhancement of the spec-
tral estimation methods. The benefits of over-sampling are well
known in literature. For instance, both Cadzow’s method [14]
and the matrix pencil method introduced by Hua and Sarkar [11]
improves the performance of parameter estimation. This is also
consistent with the Cramér-Rao bounds developed in [3].

e Understandably, when €2 approaches the heuristically chosen 2,
the deconvolution step in (4) becomes ill-posed. This is because
smoothness of the pulse ¢ causes its spectrum to decay and the
values of QAS (nwo) start approaching the noise floor. This causes
the denominator in (4) to blow up.

The above observation is verified through a thought experiment
in Fig. 2(a). Given noisy measurements m(t) in (5) of a signal with
K = 2 spikes separated by A = |t2 — t1| = 12.6 ns, and convolved
with the kernel in Fig. 1(a), further corrupted by 15 dB additive white

Gaussian noise, we deconvolve and estimate {Ek, ?k }::_01 using the
matrix pencil method [11], by sweeping the bandwidth parameter
2. Based on the estimates, we plot the maximal estimation error
maxXge(o,K —1] }fk —tx | Corresponding to the above three possibil-
ities, we choose 21 = 2K wp, 22 which minimizes the estimation
error above, and {23 is arbitrarily chosen to demonstrate the effect

of reconstruction when deconvolution is unstable. While the case of
€, suffers from not having enough samples to combat the effect of
noise, the case of 23 fails because unstable deconvolution leads to
estimation of erroneous frequencies in (3), hence adversely affecting
the reconstruction.

Clearly, Q22 leads to the optimal performance and benefits from
over-sampling. Nonetheless, this is a result of brute-force search
over all Q with {t;}7' known. In practice, one does not have ac-
cess to the ground truth {tk}f:_ol and this necessitates a bandwidth
selection criterion which will lead to an optimal performance. To
the best of our knowledge, such a result in context of sparse super-
resolution has not been studied in literature (cf. [1-4] and follow up
work) and here we take a step towards this direction. In the remain-
der of this work, we develop and present our main result.

2. TOWARDS A BANDWIDTH SELECTION PRINCIPLE

In order to estimate the optimal bandwidth €22, the blowup of the
deconvolution error due to the vanishing denominator in (4) (as 2
increases from €27 to €23) must be balanced with the performance
enhancement of the parameter estimation problem (3). While the
former is directly related to the decay of EB, the latter is in general an
open problem in the theory of spectral estimation, especially in the fi-
nite sample case. Important progress in this direction has been made
in recent years, starting with the seminal paper by Donoho [15],
emphasizing a-priori stability estimates for the problem of super-
resolution. Below we demonstrate how to use such kind of estimates
for the problem of bandwidth selection.

To be more concrete, consider the model (2), and suppose that
we are given the frequency domain measurements of the signal m ()
in (5), where e(t) is a bounded, white-noise process with |e(t)| < 7.
Dividing m(w) by # (i.e. deconvolving), and using (4), we obtain

(W) = ety |~
(Z(w) = ; cre +ep(w), |w <N (6)
A ;7((‘;)) < (mingeo b)) @

=€Q

For smooth pulses ¢(t), the quantity e will grow rapidly with Q.
This is because ngS decays quickly (due to smoothness). On the other
hand, increasing the sampling bandwidth in (6) also increases the ac-
curacy of estimating ¢, however, the exact form of this dependency
is both kernel and signal dependent. It is exactly at this point that the
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Fig. 2: Super-resolution is sensitive to bandwidth selection. (a) Estimation
error as a function of bandwidth €2. Let ’tvk’Q be the estimated spike support
for a given 2. The metric for error is chosen to be max Ifkyg — tg| where
t is the ground truth and the spikes are separated by A = |to — t1]| = 12.6
ns. Given noisy measurements m(t) (5) corrupted by 15 dB additive white
Gaussian noise, this plot is obtained by sweeping bandwidth €2 in the range
wo € [2K, N] and averaged over 200 realizations. The optimal bandwidth
in this case amounts minimum value of the error curve. (b) Corresponding
reconstruction for three scenarios: (1) Critical sampling with Q1 /wo = 2K.
Here, the reconstruction fails because of noise. (2) Optimal 22 obtained by
sweeping €2 and observing the minimum of the error in (a). This scheme ben-
efits from over-sampling. (3) Excessive over-sampling when {23 approaches
the noise floor. Here reconstruction fails because unstable deconvolution
leads to erroneous estimates of sinusoidal parameters in (3). We use matrix
pencil method [11] for frequency estimation.

importance of a-priori stability bounds for super-resolution becomes
apparent.

2.1. Super-resolution condition number

In order to bound the possible error in resolving the spike locations
{tr} from the noisy data (6), we consider the noise amplification
factor, or, in the language of numerical analysis, the condition num-
ber for the problem. In the following definition (first used in [16] in
a somewhat heuristic way) we propose a certain quantity, which can
be thought of as a first-order proxy for the stability of the nonlinear
least squares fit of the sum-of-exponentials model from noisy data
with arbitrary bounded noise.

Definition 2.1. Let 0 := [co, to,...,cx—1,tx 1] € R*< be an
unknown parameter vector, and denote by F (@) : R** — ¢V +1
the parametric mapping

K-—1
— —Jnwoty
Fo= {Zk:o cre }\n|<N' ®)

For each ¢ = 1,...,2K, the linearized condition number corre-
sponding to the i’th parameter, k) (F) is the £; norm of the i-th
row of the matrix J¥, where J is the Jacobian matrix of Fg, and ()"
is the Moore-Penrose pseudo-inverse.

Remark 2.1. It can be shown that the deterministic condition num-
bers k@ are equivalent to the Cramér-Rao Lower Bounds (CRLB)
for the parameter identification problem (6), (7) in the particular case
when €, (w) is white Gaussian noise. Unfortunately, the CRLB
do not appear to be easily applicable for our question—estimating
the accuracy of recovering ty—as we numerically demonstrate in
Fig. 3(b). See related works [9, 17].

Proposition 2.1. Suppose that n in (7) is sufficiently small', and
consider the solution of the nonlinear least squares problem

91 — arg ménz [Fo (n) — 5(nwo)l3 .

[n|<N

=£(8)

Then, in the sufficiently small neighborhood of the original parame-
ter vector 6 = Q(O) and n = 0, we have, for some constant ¢ > 0,
the following upper bound for each component of the solution:

HELS) — 950)‘ < cn(i)egn. )

Proof outline. In the neighborhood of the optimal value 09, the
least squares loss function ¢(6) is twice continuously differentiable.
Furthermore, the Hessian matrix H of £(0) is precisely H = J* 7,
where J is the Jacobian matrix of the “realification” of the map Fg
from (8) (i.e. replacing each complex coordinate with corresponding
two real coordinates). It can be verified that 7 is full-rank when-
ever the spike locations are pairwise different and the amplitudes
are bounded from zero. Therefore, H is positive definite. Using
the stability theory of nonlinear programming (see e.g. [18, Corol-
lary 3.2.3], based on the implicit function theorem), there exists a
unique continuously differentiable solution function 6> (of both
0 and n) whose gradient vector w.r.t 7, V,ﬂ("s) can be shown to
be H ' - J* -V, 5(nwo), and therefore its 4-th entry is bounded by
the ¢1 norm of the corresponding row of 7 t. Since J T and JT are
related (cf. [19]) it can be shown that there exists a constant ¢ such
that
’VUG(LS)M:O‘_ < ereq.
K3

The bound (9) follows by Taylor expansion of 8> w.r.t. 7. O

2.2. The bandwidth selection criterion

The condition numbers ) will in general depend on both 2 and the
point 8. However, provided some a-priori knowledge on the possible
parameter ranges of the components of 6, it is sometimes possible
to obtain bounds which are uniform over these ranges. We shall
consider several examples in the next section, but let us now return
to the bandwidth selection problem.

"Here ) is considered as a small parameter such that all the relevant quan-
tities are differentiable with respect to it. For futher details see [18].
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Fig. 3: In order to demonstrate our method of optimal bandwidth selection,
we have generated synthetic signals using the ToF kernel, with K = 2 spikes
separated by A = 9.8 ns, and corrupted by bounded noise with SNR = 20
dB. (a) The curves corresponding to 1) e (red), the blowup of the deconvo-
lution error (6), 2) the actual condition number k() (yellow) obtained from
the Definition 2.1, and 3) the simplified bound G(£2) combining (11) and
(12) (blue). (b) The actual error |t~k’Q — tg| (blue), and the bound G(Q)eq
(magenta), obtained from multiplying the corresponding curves in (a). The
Rayleigh threshold is approximately 32 samples. We can see that both the ac-
tual optimal bandwidth, and the predicted one, are pretty close to each other,
and both of them are below the Rayleigh limit. For comparison, the CRLB for
the parameter identification problem m (nwo) = $(nwo)§(nwo) +e(nwo),
with |n| < Q/wo and e(t) white Gaussian noise, is shown in red, and it is
difficult to identify the optimal value of €2 based on it alone. The divergence
of CRLB from the actual error may be partly due to the fact that the noise
covariance matrix of €4 in (7) becomes badly conditioned for large €2, and
matrix pencil being non-optimal in such a regime.

For simplicity, suppose that we are only interested in recovery
of the spike locations (¢ = 2k + 1, for k = 0,..., K — 1). Using
(9) and (7), and assuming that there exists an explicitly computable
function G(€2, D) such that

sup n<2k+1)(g, Q) <G(Q,D),
0eD,k=0,..., K—1

uniformly in some parameter domain § € D C R*¥, we finally
introduce the bandwidth selection criterion:

QOP‘(D) = arg H}%H {G(Q7 D) : EQ} ) (10)

where eq is defined in (7). For shortness of notation, we shall omit
D and write G(Q2), when D should be obvious from the context (for
instance, one such D is explicitly defined in Theorem 2.1 below).

2.3. Simple bounds on G(f2)

Obtaining tight bounds on the stability of the super-resolution prob-
lem is a hard theoretical question, considered in various forms in
many publications [4, 15,20-22], including by the first author [16,
23-27]. By now it is well-understood that there exist two very differ-
ent stability regimes, depending on whether the minimal separation
between the spikes is above or below the Rayleigh threshold é
Here we present a certain simple version of such a bound for
£ defined above, based on the recent results in [16]. A more gen-
eral result, for “partially clustered” configurations, is proved in the
forthcoming paper [26], using recent progress made in [27].

Theorem 2.1. Suppose that for all 0 in the domain D C R*¥| the
amplitudes are bounded: 0 < A1 < |cx| < Ao, and also that
the minimal distance between the Diracs is bounded by A, that is
minjzy [t; — tx| > A > 0. There exist constants c1, ¢z, c3, de-
pending on A1, As, K, such that the following bounds hold.

1. If A > 32 (well-separated regime), then
n(“g%, i=1,3,...,2K — 1. (11

2nK

2. Ifmax;xy |t; — ti| < %5 (single cluster regime), then

0 c3 1 2K -2
K SQ(QA) , 1=13,...,2K—-1. (12)
Outline of proof. The bound (11) follows directly from the first part
of Theorem 6.1 in [16]. To prove (12), we factorize the Jacobian ma-
trix of Fy into a Pascal-Vandermonde matrix U (close relative of the
confluent Vandermonde matrix, [23]) and a simple block-diagonal
term. Then we can use Gautschi’s estimates for the row-wise norms
of Uy 1 (where Uy is an appropriate square Pascal-Vandermonde
matrix) from [28], combining it with the “decimation” technique de-
veloped in [16]. Full details of the proof shall be provided later. [

Remark 2.2. Under the minimal separation assumption (correspond-
ing to (11)), the super-resolution problem can be solved with prov-
able guarantees by a variety of methods, including non-parametric
and parametric spectral estimation [12], and more recently convex
programming techniques [4]. Under the single cluster scenario, a
nearly-optimal algorithm is presented in [29] using the “decimation”
technique.

Remark 2.3. The factor ﬁ is called the “super-resolution factor”
(SRF) in the literature, and it quantifies the difficulty of super-
resolution under sparsity constraints. The bound (12) depends
polynomially on SRE, but exponentially on K (cf. [30].) Still, pro-
vided the perturbation bound 7 is small enough, super-resolution is
possible, and it is an important open problem to quantify exactly
how large is n allowed to be. Initial results have been presented
in [25], and further details will be available in [26].

The usefulness of the above bounds is demonstrated numeri-
cally, see Fig. 3.

3. CONCLUSIONS AND FUTURE WORK

Inspired by practical applications where spikes are filtered with
smooth pulses (as opposed to exact bandlimited kernels), in this
work we posed the problem of optimal bandwidth selection. The
notion of optimal or essential bandwidth allows for extending the
utility of off-the-shelf super-resolution algorithms to the case of
smooth filters. By devising a bandwidth selection criterion which
is easy to compute and provides reasonable performance, we take
a first step towards the direction of achieving optimal performance
limits, especially in the finite sample/sub-Rayleigh case. The re-
sults presented in this work and empirical studies performed on
experimental data raise a number of interesting questions for future
investigation. On the theoretical side, the relationship between our
bounds and Cramér-Rao Lower Bounds (CRLB) is an interesting
open question. Another important issue is to develop robust selec-
tion criteria, which will allow stable recovery even when the a-priori
parameter domain D is known only approximately (such as in a
Bayesian framework), and incorporating possible information about
the noise distribution (note a related recent study of super-resolution
from the angle of numerical analytic continuation [31]). From an
applications standpoint, tailoring our work to other applications
such as source localization and direction-of-arrival estimation [32]
are interesting future directions.
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