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Image Processing Algorithms ) )
e g A& A Functional formulation

Image restoration

Image processing algorithms frequently amount to transforming an input
image into another (“better”) one. Main example: Image restoration

Hx + b

~—~

X = estimate of x

NoTe: A more general formulation would be y ~ 22 {y|Hx}.
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A Functional formulation
Linear Expansion of Thresholds

Image restoration

Image Processing Algorithms N .
ge L yocessing /\gor A Functional formulation

Linear Expansion of Thresholds

Bayesian denoising example

Standard approaches for image restoration
m Bayesian: both x and y are random with known joint probability
m Maximum a Posteriori % = argmax & {x|y}
m Minimum MSE X = o‘{x\;}
m Regularization: Wiener/Tikhonov, total-variation, 0
m)jn |y — Hx||? + \||Dx||
m Filtering: Bilateral Filter, median
m Patch-based: Non-Local Means, BM3D

m etc.

Image restoration is usually viewed as an approximation problem on x. )
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Assuming a Laplace prior &7 {x} = H::] %e*’\“"”‘ and additive Gaussian

white noise with variance o2, these statistical approaches yield pointwise
thresholding involving T' = Ao

MAP &, = softr(y,)

Wiener &,, = ——5
202 _ ) o m . P
e n erfe (%ﬁﬁl ) — M erfe <—7’U;§1 )
MMSE Ty = Yn — T -

—\Yn erfe (7y7,+T> Mn orfe [ ¥ntT
e erfc o +e erfc
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Function Approximation

Image Processing Algorithms A Functional formulation

Linear Expansion of Thresholds

Linear approximation

Instead of considering the restoration problem as an image approximation
problem, consider it as a function approximation problem:

find a “good” F(:) such that x = F(y)

Lay the emphasis on how the restoration X changes when the observation
y changes — not on the pixelwise description of %.

Use of standard linear approximation techniques to parametrize the
processing F(-) ~ find a good representation basis.
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Functions can often be efficiently approximated onto adapted bases.

Standard bases: wavelets (L* functions), sinc kernels (bandlimited
functions), radial basis functions (scattered points interpolation), etc.

Example with the MMSE Laplace prior denoising function:

= Optimal MSE
= Approximated

~ + T~ T~

y2 92
axy bxsign(y)(lfe_ﬁf> cxye 272
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Linear Expansion of Thresholds

An approximation of the optimal denoising process as a (finite) linear
combination of elementary processes
K
F(y) = axFi(y)

k=1

In image denoising problems, Fy(y) are thresholding functions in some
sparse transformed domain.

The linear space approximation proves particularly useful when combined
with a quadratic optimization criterion (e.g., MSE or SURE), as the
optimization boils down to solving a linear system of equations.

The idea of LET is that a genuine approximation of the optimal
processing can be sufficient, while having useful /inear properties.
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Linear Expansion of Thresholds

LET optimization

Several examples of use of this approximation of processings

m Minimization of the MSE (or an estimate of) for
m image denoising
m image deconvolution

m lterative minimization of an ¢! criterion
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SURE-LET algorithms onvolutior

Outline

SURE-LET algorithms

Minimum MSE

SURE-LET algorithms
m Image denoising
m Image deconvolution
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The minimization of the MSE, ||F(y) — x||?, for the LET coefficients a,
yields, for all k =1,2,..., K

K
D Fiy)Fily) e = Fily)'x
=1

This also boils down to solving a linear system of equations

M = [Fi(y) Fi(y)] 1<kI<K

a=M"'¢ where , :
[FMY) X]lgkg[&’

C

But, how to evaluate the MSE, since x is unknown?
~» Stein’s Unbiased Risk Estimate
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Image denoising

SURE-LET algorithms

Stein’s Unbiased Risk Estimate (SURE)

SURE-LET algorithms ez dlaneitin

Transform-domain denoising

Consider the random variable?

SURE(y) = - IIF(y) ~ ¥II? + 22div {F(y)} ~ o

Under the additive white Gaussian noise hypothesis, this random variable
is an unbiased estimate of the MSE Stein etal. 1981

& {SURE(y)} = & {|[F(y) — x|*/N}
The SURE is all the closer to the MSE as N is larger.

2Divergence operator: div{F(y)} = >k angiy)

The original signal x may, or may not be random.
No assumptions on x are needed.
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Consider a “sparsifying” linear transformation D (DCT, wavelet, etc.)
and another linear transformation R such that RD = Id.

Transform-domain thresholding

linear (nonline_ar) : linear F(y)
decomposition: processing ireconstruction

: A i o N—

image domain transform domain image domain

The LET basis Fy(y) is then specified as follows
K
O(w) =) a®(w) ~ Fi(y) = ROy(Dy)
k=1

NoTe: The transformations involved may or may not be redundant.
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SURE-LET algorithms Image denoising

Example: nonredundant wavelet thresholding

Choice of an orthonormal wavelet transform transform can be used (e.g.,
symlet 8). Then, the processing in subband j is a simple thresholding
Wjn = 0;(w,,) for each of the coordinates n =1,2,..., N; of w;, and
N,
1 ’ . .
SURE;(w;) = ﬁ( }Qj(u;j‘”) — wj_,,,|2 + 2029}(’11)},1,)) —o?
J 1

n—=

SURE-LET simple threshold

A two-parameter zone-selection function

2

_w?
0;(w) = ajw + bjwe™ 127

where a; and b; are obtained by minimizing SURE;(w;).

NoTE: SureShrink Donoho 1995 makes the choice ;(w) = softr, (w) and
minimizes SURE;(w ;) for T}.
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SURE-LET algorithms Image denoising

wavelet
decomposition

l simple thresholding

SR
=i
wavelet
reconstruction
%

Denoised: PSNR = 29.06dB  (SureShrink: PSNR = 28.73dB)
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SURE-LET algorithms :"‘age itz

Example: undecimated wavelet thresholding

Hard-like! thresholding rule

In each wavelet subband j, the noisy coefficients are thresholded using

/ 0;(w) = a;w + bw(l — e_(%)s)

where (a;,b;) change from subband to subband — i.e., two parameters
per subband.

The optimal set of parameters {a;, b;} is then found by minimizing the
global image-domain SURE.

NoTe: For J iterations of the wavelet transform, J x 3 x 2 LET
coefficients have to be found: 30 for 5 iterations.

'Hard threshold cannot be optimized using SURE (not differentiable).
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SURE-LET algorithms g

Undecimated results

Undecimated discrete symlet 8 transform

SureShrink

—_———— -
~

o

PSNR=18dB

PSNR=28.73dB

PSNR=31.15dB
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SURE-LET algorithms :'“age denoising

Undecimated results

SURE-LET algorithms 'h’"age dlziefislips

Undecimated discrete Haar wavelet transform

Noisy SureShrink SURE-LET

e

PSNR=18dB

PSNR=28.73dB PSNR=31.91dB

NoTe: Surprisingly, it is the simplest wavelet type (Haar) that works best.
Shortest support?
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Recapitulation of the SURE-LET approach

Instead of finding an approximation of the signal x, find an
approximation of the processing F(y) that transforms y into X;

Instead of minimizing the MSE between X and x, minimize an
(unbiased) estimate of this MSE, based on y alone (SURE);

Express F(y) as a linear decomposition (LET) ", a;F(y) of basis
processings F(y) ~ linear system of equations (fast, unique).

NoTe: The number K of elementary processings is chosen very small
(usually, K < 200), compared to the number of pixels N.
~> faster algorithm, and better agreement between MSE and SURE.
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Extensions

SURE-LET algorithms ez dlaneitin

m Multivariate wavelet thresholding: taking into account both
interscale and local wavelet dependencies;

m Thresholding (possibly multivariate) in a dictionary of transforms.

m Multiframe video denoising: involving motion compensation;
Dictionary of two transforms (UWT Haar & 12 x 12-BDCT)

Multivariate

Dictionar

7

Noisy SURE-LET Dictionary SURE-LET
i - i .

7

PSNR=18dB PSNR=28.41dB PSNR=28.80dB
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Extensions

m Multivariate wavelet thresholding: taking into account both
interscale and local wavelet dependencies;

m Thresholding (possibly multivariate) in a dictionary of transforms.

m Multiframe video denoising: involving motion compensation;

Orthonormal discrete symlet 8 transform

Nois Multiframe SURE-LET

PSNR=22.11dB PSNR=30.85dB
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SURE-LET algorithms Image denoising

Results: PSNR Comparisons

Peppers 256 x 256 %

0.5

Coco 256 x 256 ﬂ

Relative Output Gain [dB]
Relative Output Gain [dB]

10 1 30 10 1 30

5 20 25 5 20 25
Input PSNR [dB] Input PSNR [dB]
Multivariate SURE-LET (baseline) BM3D Dabov etal. 2007
NLmeans Buades etal. 2005 Fast TV Chambolle 2004
BLS-GSM Portilla etal. 2003 K-SVD Elad & Aharon 2006
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Results: PSNR Comparisons
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Multivariate SURE-LET (baseline)  BM3D Dabov etal. 2007
NLmeans Buades etal. 2005 Fast TV Chambolle 2004
BLS-GSM Portilla etal. 2003 K-SVD Elad & Aharon 2006

Thierry Blu Linear Expansion of Thresholds

N
M
@
&




Image denoising

SURE-LET algorithms

Results: Visual Comparisons

Original

Average SSIM: 1.000 Average SSIM: 0.263
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SURE-LET algorithms Image denoising

Results: Visual Comparisons

Original _ Multivariate SURE-LET

Average SSIM: 1.000 Average SSIM: 0.739
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SURE-LET algorithms ez dlaiefiis

Results: Visual Comparisons

NLmeans Multivariate SURE—LET

Average SSIM: 0.662 Average SSIM: 0.739
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Results: Visual Comparisons

Fast TV Multivariate SURE—LET

Average SSIM: 0.704 Average SSIM: 0.739
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Image denoising Image denoising

SURE-LET algorithms SURE-LET algorithms

Results: Visual Comparisons Results: Visual Comparisons

BLS-GSM K-SVD

Average SSIM: 0.732 Average SSIM: 0.739 Average SSIM: 0.711
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SURE-LET algorithms Image denoising SURE-LET algorithms

Image deconvolution

Results: Visual Comparisons Convolution SURE

Consider Hgl =(H'H+ BSTS)_1 H" an approximate inverse of H
where S is such! that ||Hngx— x|| < ||x|| and B is a constant that
depends on the noise variance only.

BM3D

MSE estimation

Under the additive white Gaussian noise hypothesis, the random variable
1 _ 202 . _ _
SURE(y) = ~-I[F(y) - Hj'y|[* + Z-div {H7'F(y) | - oI[H5" [,

is such that: & {SURE(y)} ~ & {|F(y) — x||*)/N}.

NoTe: Contrary to the denoising application, it is necessary to add a
hypothesis on x to find a reliable estimate of the MSE.

Average SSIM: 0.754

Lfor usual images, the operator S is typically a high-pass filter (Laplacian).
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SURE-LET algorithms Image deconvolution SURE-LET algorithms Image deconvolution

Example: Wiener Deconvolution Fi(y), A = 1x 10

The result of the the ¢2 regularization problem |Hx — y||? + A||Sx]|? is

Single-Wiener
Multi-Wiener Estimate with
Estimate F(y) Aopt = 4.75 x 1074

% =F(y)=(H'H{8'S)'H'y

Hy 1 Observation y

where the parameter A should be optimized by minimizing the MSE
|IX — x]|? or by minimizing the convolution SURE — non-linear
minimization.

However, it is also possible to approximate the processing F(-) as a LET PSNR — 20.97 dB
with K basis elements

PSNR =23.41dB  PSNR = 23.42dB

Fily)=H)'y, k=12,....K

where \;, are fixed. Then, the SURE optimization yields a linear system
of equations and the MSE result is empirically equivalent to that of the
non-linear optimization. L
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SURE-LET algorithms I demomvoration SURE-LET algorithms Image deconvolution

SURE-LET Deconvolution

m Apply several (typ. 3) Wiener filters with different (fixed) parameters

Fi1(y)
X ai1

F1,7+1(y)

'&ax =
|
Multi-Wiener

SURE-LET Estimate

m Perform undecimated Haar wavelet thresholding

~ Observation y

m Optimize the convolution SURE for the LET parameters
The LET basis corresponding to this algorithm are

Fs j11(y)

X az
4,ﬁ el

PSNR = 22.93 dB
involving two hard-like thresholding rules. B Sl - el

Fi.(y) = RO (DH,y)

" Optimal !
| Linear |
Combination !

On the whole, we have three times more LET coefficients than for image L]

denoising plus three (low-pass coefficients): 93 for 5 iterations. Fs 41(y

)
%ﬁ X aslj+1

Typical results reach the state-of-the-art, while being much faster than

ohe H H . H ! ) Lo ! Wi ! ! Undecimated | ' Subband- ' ! Individual ! ! Regularized !
!’ugh quality algorithms: 0.7s for a 256 x 256 image, 2.8s for a 512 x 512 | Blury and Noisy ‘ Mlgillul;(;egner b Wavelet i Adaptive 1+ Subband —  SURE |
image on a standard PC. Lo . i i Transform ; ; Thresholding ; : Reconstruction; —; Minimization ;
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SURE-LET algorithms

Image deconvolution

Results: PSNR comparisons

SURE-LET algorithms Image deconvolution

Results: PSNR comparisons

Blurred noisy: 7.24dB

ForWaRD: 13.79dB

pi v ft"a't-' are H
o say fii. |
SOl Cam S2

BM3D: 14.09dB C-SALSA: 13.30dB

f e are H

VY |

o sy .|
10k fip 52

SA-DCT: 13.93dB _
& fiae are b
yaay .|
T (R e

.

SURE-LET: 14.52dB
-'_ RC are H
R <, /i,

|
! 1011 Cin S2(
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Blurred noisy: 24.22dB SA-DCT: 28.94dB

-
£
|

TV-MM: 29.45dB C-SALSA: 29.25dB

SURE-LET: 29.40dB
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Sparse LET restoration

Outline

Sparse LET restoration
m lterative LET basis
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Sparse LET restoration

Sparse restoration

A standard approach to restore images is to regularize the problem with a
sparsifying norm

w = argmin ||y — HRw|> + \||w||
w

J(w)

and x = Rw.

Several iterative algorithms for solving this problem

m IST: lterative Shrinkage Algorithm Daubechies et al. 2004
m FISTA Beck et al. 2009
m SALSA Afonso et al. 2010

NoTe: It will be easier to express w = F(y) in this setting.
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Iterative LET basis

Sparse LET restoration

Iterative LET basis
Sparse LET restoration

The idea is to express F(y) as a LET and to minimize J(w) for the few
LET coefficients. However, in order to be able to refine the solution it is
necessary to make the basis change with the iteration order ¢

K
FO(y) =Y e} (y)
k=1

The coefficients ay can very efficiently be obtained by, e.g., an iterated
reweighted least-squares (IRLS) algorithm.

How to ensure that the sequence F(!)(y) converges to the final solution
of the sparse regularization problem when i — oco?

Thierry Blu Linear Expansion of Thresholds

Define V,J(w) = w — softy, /2 (w — TR"H'(HRw —y)) where soft,(-)
is the soft-threshold with parameter A, and 7 is any positive number.

Convergence result

If F{) (y) = w1 and F{(y) = V. J (WD) then the i-LET
algorithm converges unconditionally.

x10° cameraman, 9 x 9 uniform blur, BSNR = 30dB

)

Objective function value .J (Fa(™
5

0 100 200 300 400 500
Iteration Number

NoTe: The IST would diverge for 7 > 1.
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Iterative LET basis

Sparse LET restoration

In practice, in order for the i-LET iterations to converge fastly in all
situations (high, or low noise level), we choose the following five LET
basis elements

_ VAV(z'—Z)

_ VAV(z'—l)

— ﬁ.r,](\?v(i*l))

= (R"H'HR + 77'1d)" 'V, J(w(~1)
(R'H'HR + 1077 '1d) 'V, J(w(~1)

0 g H M H

AW N TSRO

RIS
\
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Iterative LET basis
Sparse LET restoration

Results: nonredundant wavelets

I BSNR [[ 10 | 15 | 20 | 25 [ 30 [ 35 [ 40 || 10 | 15 | 20 | 25 [ 30 | 35 | 40|
Method cameraman (256 X 256) type 1 blur Bank (512 X 512) type 1 blur
FISTA terations || 18 | 33 | 641 | 72 | 112 | 147 | 176 || 2L | 31 | 55 | 8 | 130 | 162 | 176
time|| 0.30 | 0.49 | 0.92 | 7.02 | 1.58 | 2.08 | 2.45 || 1.67 | 2.37 | .16 | 6.68 | 9.72 | 12.55 | 14.23
SALsa  _dterations |60 | 58 | 75 | a0 | 40 | 3L | 20 |[ 72 | 46 | 5L | 55 | s2 | 38 | 22
ume|| 7.26 | 1.28 | 1.57 | 0.86 | 0.9 | 0.66 | 0.46 || 7.65 | 4.78 | 5.31 | 5.7 | 5.44 | 3.99 | 2.39
1517 | 461 | 346 | 434 | 563 | 724 || 7412" | 848 | 44 | 39.1 | 486 | 613 | 765

PCD-SESOP-7 _terations

1.26
PN 74127 | 848 486 | 613
time || 10.82 | 7.19 2.19 1.64 2.05 2.64 3.39 ||165.92| 18.97 | 9.86 8.75 | 10.88 | 13.66 | 17.09
LET iterations 6 [ 7 [ 10 [ 8 [ 89 [ 92 [ 99 [ 7 [ 6 [_8 | 10 | 104 101 | 105
time || 0.28 | 0.29 | 0.40 | 0.32 | 0.35 | 0.36 | 0.39 1.42 | 1.23 | 1.57 | 1.93 | 2.03 | 1.98 | 2.04
Method cameraman (256 X 256) type 2 blur Bank (512 x 512) type 2 blur
FISTA terations || 9 | 14 | 18 | 22 | 36 | 52 | 6 | 9 | 13 | 16 | 19 | 25 | 4L | 53_
time || 0.16 0.2 0.27 0.33 0.53 0.7 0.90 0.7 1.05 1.26 1.49 1.93 3.37 4.32
SALSA iterations 19 | 1 |71 |1 [_6 4 18 13 9 6 4 4 | _3

time || 0.42 0.34 0.18 0.18 | 0.16 | 0.12 1.99 1.:‘70 1.09 0.78 | 0.60 | 0.59 | 0.48
74.1 1

36.2 16.6 10 102 11 2197 72.8 36.5

D-SESOP.7 _iterations 238 4 . 67 | 10 | 101 | 109
PCD-SESO! time || 11.10 | 3.59 | 1.73 | 0.80 | 0.48 | 0.49 | 0.53 || 48.85 | 16.30 | 8.20 | 3.78 | 2.26 | 2.29 | 2.45

ALET iterations 3 35 3 3 4 4 34 3 3 3 3 4 3
computation time || 0.14 | 0.16 | 0.14 | 0.13 | 0.17 | 0.17 | 0.15 || 0.65 | 0.65 | 0.65 | 0.65 | 0.66 | 0.85 | 0.66

Method cameraman (256 X 256) type 3 blur bank (512 X 512) type 3 blur
FISTA iterations 5 6 7 52 [ 1079 [ 1729 [ 2498 4 5 6 62 116

time || 0.09 | 0.10 | 0.11 | 0.75 | 1.5 | 243 | 3.48 || 0.37 | 0.45 | 0.51 | 0.66 | 4.66 | 9.39 | i3.42

SALSA iterations 21 5 54 93 109 | 107 18 8 4 3 34 52 52
time || 048 | 0.23 | 0.14 | 1.13 | 1.98 | 2.32 | 2.30 || 2.02 | 0.98 | 0.58 | 0.48 | 3.60 | 5.38 | 5.45
PCD-SESOP.7  —terations 1164 | 779 | 414 | 269 | 354 | 62 | 907 14 | 717 [ 42 | 248 | 278 | 544 | 776
time|| 5.54 | 3.76 | 1.94 | 1.27 | 1.68 | 2.96 | 4.28 || 25.43 | 16.09 | 9.42 | 5.59 | 6.27 | 12.31 | 17.41
-LET iterations 32 | 31 3 11| 162 | 186 | 194 3 31 | 21 [ 31 [ 112 [ 153 | 149

computation time || 0.15 | 0.15 | 0.14 | 0.44 | 0.61 | 0.71 | 0.7 0.64 0.67 | 0.49 | 0.67 | 2.21 | 2.94 | 2.86

NoTe: Results averaged over 10 trials. Computation times are in seconds.

Thierry Blu Linear Expansion of Thresholds 36 / 38




Sparse LET restoration

Iterative LET basis

Results: undecimated wavelets

BSNR 25 ] 30 35 [ 40
Method cameraman type 1 blur
iterations 640 733 8642 | 879.8
FISTA time || 60.11 | 68.86 | 81.89 | 82.8
SALSA iterations 880 575 410 252

time

143.04 | 93.52 | 66.98 | 40.96

PCD-SESOP-7 —iterations

time

636.

636.5 864
195.23222.42|265.39|275.87

5 | 71236 891.4

-LET iterations 154 | 1136 | 919 | 674
ion time || 34.88 | 25.63 | 20.77 | 15.17
Method cameraman type 2 blur
iterations 154 111 98 88
FISTA ion time || 14.47 | 10.56 | 9.25 | 8.38
SALSA iterations 83 25 10

time

13.62 | 4.24 | 1.80

PCD-SESOp-7 —iterations

time

134
41.51 | 30.56

2 98.5 103.6

i-LET iterations

234 | 15 | 57

©

&
~| ez (S
to|on | XS ||
< ~la (&

computation time || 5.96 | 1.84 | 1.42
Mecthod cameraman Type 3 blur
FISTA iterations 30.2 58 145 208.7
s time || 2.87 | 5.53 | 13.67 | 19.62
SALSA iterations 11 15 42 45

time

PCD-SESOP-7 iterations
time

i-LET iterations
computation time

Thierry Blu
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Iterative LET basis
Sparse LET restoration

Conclusion

Thanks to
m Florian Luisier : SURE-LET denoising (and PURE-LET etc.)
m Feng Xue : SURE-LET deconvolution
m Hanjie Pan : i-LET restoration
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Demos & Software
http://www.ee.cuhk.edu.hk/~tblu/demos/
http://scholar.harvard.edu/fluisier/software/image-denoising

Thierry Blu Linear Expansion of Thresholds 38/




