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Image restoration

Image processing algorithms frequently amount to transforming an input
image into another (“better”) one. Main example: Image restoration

y���� = Hx���� + b����

algorithm
x̂ = estimate of x

NOTE: A more general formulation would be y ∼ P {y|Hx}.
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Image restoration

Standard approaches for image restoration

Bayesian: both x and y are random with known joint probability
Maximum a Posteriori x̂ = argmax

x
P {x|y}

Minimum MSE x̂ = E {x|y}
Regularization: Wiener/Tikhonov, total-variation, �1

min
x

�y −Hx�2 + λ�Dx��1

Filtering: Bilateral Filter, median

Patch-based: Non-Local Means, BM3D

etc.

Image restoration is usually viewed as an approximation problem on x.
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Bayesian denoising example

Assuming a Laplace prior P {x} =
�N

n=1
λ
2 e

−λ|xn| and additive Gaussian
white noise with variance σ2, these statistical approaches yield pointwise
thresholding involving T = λσ2:

MAP x̂n = softT (yn)

Wiener x̂n =
yn

1 + T 2

2σ2

MMSE x̂n = yn − T
e−λyn erfc

�
−yn+T
σ
√
2

�
− eλyn erfc

�
yn+T
σ
√
2

�

e−λyn erfc
�

−yn+T
σ
√
2

�
+ eλyn erfc

�
yn+T
σ
√
2

�

 

 

MAP
Wiener
MMSE

Thierry Blu Linear Expansion of Thresholds 6 / 38

Image Processing Algorithms
SURE-LET algorithms
Sparse LET restoration

A Functional formulation
Linear Expansion of Thresholds

Function Approximation

Instead of considering the restoration problem as an image approximation
problem, consider it as a function approximation problem:

find a “good” F(·) such that x̂ = F(y)

Lay the emphasis on how the restoration x̂ changes when the observation
y changes — not on the pixelwise description of x̂.

Use of standard linear approximation techniques to parametrize the
processing F(·) ❀ find a good representation basis.
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Linear approximation

Functions can often be efficiently approximated onto adapted bases.

Standard bases: wavelets (L2 functions), sinc kernels (bandlimited
functions), radial basis functions (scattered points interpolation), etc.

Example with the MMSE Laplace prior denoising function:

 

  Optimal MSE
 Approximated

≈ + +

a× y b× sign(y)
�
1− e

− y2

2T2
�

c× ye
− y2

2T2
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Linear Expansion of Thresholds

An approximation of the optimal denoising process as a (finite) linear
combination of elementary processes

F(y) =
K�

k=1

akFk(y)

In image denoising problems, Fk(y) are thresholding functions in some
sparse transformed domain.

The linear space approximation proves particularly useful when combined
with a quadratic optimization criterion (e.g., MSE or SURE), as the
optimization boils down to solving a linear system of equations.

The idea of LET is that a genuine approximation of the optimal
processing can be sufficient, while having useful linear properties.
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LET optimization

Several examples of use of this approximation of processings

Minimization of the MSE (or an estimate of) for
image denoising

image deconvolution

Iterative minimization of an �1 criterion
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Minimum MSE

The minimization of the MSE, �F(y)− x�2, for the LET coefficients ak
yields, for all k = 1, 2, . . . ,K

K�

l=1

Fk(y)
T
Fl(y) al = Fk(y)

T
x

This also boils down to solving a linear system of equations

a = M
−1

c
� where

�����
M =

�
Fk(y)

T
Fl(y)

�
1≤k,l≤K

c
� =

�
Fk(y)

T
x
�
1≤k≤K

But, how to evaluate the MSE, since x is unknown?

❀ Stein’s Unbiased Risk Estimate
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Stein’s Unbiased Risk Estimate (SURE)

MSE estimation

Consider the random variablea

SURE(y) =
1

N
�F(y)− y�2 + 2σ2

N
div {F(y)}− σ2

Under the additive white Gaussian noise hypothesis, this random variable
is an unbiased estimate of the MSE Stein et al. 1981

E {SURE(y)} = E
�
�F(y)− x�2/N

�

The SURE is all the closer to the MSE as N is larger.

aDivergence operator: div {F(y)} def
=

�
k

∂Fk(y)
∂yk

.

The original signal x may, or may not be random.
No assumptions on x are needed.
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Transform-domain denoising

Consider a “sparsifying” linear transformation D (DCT, wavelet, etc.)
and another linear transformation R such that RD = Id.

Transform-domain thresholding

y D

linear
decomposition

w = Dy
☛✡ ✟✠Θ

ŵ = Θ(w)

(nonlinear)
processing

R x̂ =

F(y)
� �� �
RΘ(Dy)

linear
reconstruction

✲
image domain

✲✛
transform domain

✛
image domain

The LET basis Fk(y) is then specified as follows

Θ(w) =
K�

k=1

akΘk(w) ❀ Fk(y) = RΘk(Dy)

NOTE: The transformations involved may or may not be redundant.
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Example: nonredundant wavelet thresholding

Choice of an orthonormal wavelet transform transform can be used (e.g.,
symlet 8). Then, the processing in subband j is a simple thresholding
ŵj,n = θj(wj,n) for each of the coordinates n = 1, 2, . . . , Nj of wj , and

SUREj(wj) =
1

Nj

� Nj�

n=1

��θj(wj,n)− wj,n

��2 + 2σ2θ�j(wj,n)
�
− σ2

SURE-LET simple threshold

A two-parameter zone-selection function

θj(w) = ajw + bjwe
− w2

12σ2

where aj and bj are obtained by minimizing SUREj(wj).

NOTE: SureShrink Donoho 1995 makes the choice θj(w) = softTj (w) and
minimizes SUREj(wj) for Tj .
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wavelet
decomposition−−−−−−−−−→

5 it
era

tio
ns

Noisy: PSNR = 18 dB ↓ simple thresholding

wavelet
reconstruction←−−−−−−−−−

Denoised: PSNR = 29.06 dB (SureShrink: PSNR = 28.73 dB)
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Example: undecimated wavelet thresholding

Hard-like1 thresholding rule

In each wavelet subband j, the noisy coefficients are thresholded using

θj(w) = ajw + bjw
�
1− e−( w

3σ )8
�

where (aj , bj) change from subband to subband — i.e., two parameters
per subband.

The optimal set of parameters {aj , bj} is then found by minimizing the
global image-domain SURE.

NOTE: For J iterations of the wavelet transform, J × 3× 2 LET
coefficients have to be found: 30 for 5 iterations.

1Hard threshold cannot be optimized using SURE (not differentiable).

Thierry Blu Linear Expansion of Thresholds 17 / 38

Image Processing Algorithms
SURE-LET algorithms
Sparse LET restoration

Image denoising
Image deconvolution

Undecimated results

Undecimated discrete symlet 8 transform

Noisy SureShrink SURE-LET

PSNR=18 dB PSNR=28.73 dB PSNR=31.15 dB

NOTE: Surprisingly, it is the simplest wavelet type (Haar) that works best.
Smallest support?
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Undecimated results

Undecimated discrete Haar wavelet transform

Noisy SureShrink SURE-LET

PSNR=18 dB PSNR=28.73 dB PSNR=31.91 dB

NOTE: Surprisingly, it is the simplest wavelet type (Haar) that works best.
Shortest support?
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Recapitulation of the SURE-LET approach

1 Instead of finding an approximation of the signal x, find an
approximation of the processing F(y) that transforms y into x̂;

2 Instead of minimizing the MSE between x̂ and x, minimize an
(unbiased) estimate of this MSE, based on y alone (SURE);

3 Express F(y) as a linear decomposition (LET)
�

k akFk(y) of basis
processings Fk(y) ❀ linear system of equations (fast, unique).

NOTE: The number K of elementary processings is chosen very small
(usually, K < 200), compared to the number of pixels N .
❀ faster algorithm, and better agreement between MSE and SURE.
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Extensions

Multivariate wavelet thresholding: taking into account both
interscale and local wavelet dependencies;

Thresholding (possibly multivariate) in a dictionary of transforms.

Multiframe video denoising: involving motion compensation;

Dictionary of two transforms (UWT Haar & 12× 12-BDCT)

Noisy SURE-LET Dictionary SURE-LET
Multivariate
Dictionary

PSNR=18 dB PSNR=28.41 dB PSNR=28.80 dB
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Extensions

Multivariate wavelet thresholding: taking into account both
interscale and local wavelet dependencies;

Thresholding (possibly multivariate) in a dictionary of transforms.

Multiframe video denoising: involving motion compensation;

Orthonormal discrete symlet 8 transform
Noisy Multiframe SURE-LET

PSNR=22.11 dB PSNR=30.85 dB
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Results: PSNR Comparisons

Peppers 256× 256 Coco 256× 256
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Multivariate SURE-LET (baseline) BM3D Dabov et al. 2007

NLmeans Buades et al. 2005 Fast TV Chambolle 2004

BLS-GSM Portilla et al. 2003 K-SVD Elad & Aharon 2006
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Results: PSNR Comparisons

Boat 512× 512 Goldhill 512× 512
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Results: Visual Comparisons

Original Noisy

Average SSIM: 1.000 Average SSIM: 0.263
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Results: Visual Comparisons

Original Multivariate SURE-LET

Average SSIM: 1.000 Average SSIM: 0.739
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Results: Visual Comparisons

NLmeans Multivariate SURE-LET

Average SSIM: 0.662 Average SSIM: 0.739
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Results: Visual Comparisons

Fast TV Multivariate SURE-LET

Average SSIM: 0.704 Average SSIM: 0.739
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Results: Visual Comparisons

BLS-GSM Multivariate SURE-LET

Average SSIM: 0.732 Average SSIM: 0.739
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Results: Visual Comparisons

K-SVD Multivariate SURE-LET

Average SSIM: 0.711 Average SSIM: 0.739
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Results: Visual Comparisons

BM3D Multivariate SURE-LET

Average SSIM: 0.754 Average SSIM: 0.739
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Convolution SURE

Consider H−1
β = (HT

H+ βST
S)−1

H
T an approximate inverse of H

where S is such1 that �H−1
β Hx− x� � �x� and β is a constant that

depends on the noise variance only.

MSE estimation

Under the additive white Gaussian noise hypothesis, the random variable

SURE(y) =
1

N
�F(y)−H

−1
β y�2 + 2σ2

N
div

�
H

−1
β F(y)

�
− σ2�H−1

β �2Fro

is such that: E {SURE(y)} ≈ E
�
�F(y)− x�2/N

�
.

NOTE: Contrary to the denoising application, it is necessary to add a
hypothesis on x to find a reliable estimate of the MSE.

1for usual images, the operator S is typically a high-pass filter (Laplacian).
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Example: Wiener Deconvolution

The result of the the �2 regularization problem �Hx− y�2 + λ�Sx�2 is

x̂ = F(y) = (HT
H+ λST

S)−1
H

T

� �� �
H

−1
λ

y

where the parameter λ should be optimized by minimizing the MSE
�x̂− x�2 or by minimizing the convolution SURE — non-linear
minimization.

However, it is also possible to approximate the processing F(·) as a LET
with K basis elements

Fk(y) = H
−1
λk

y, k = 1, 2, . . . ,K

where λk are fixed. Then, the SURE optimization yields a linear system
of equations and the MSE result is empirically equivalent to that of the
non-linear optimization.
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2

Observation y

PSNR = 20.97 dB

H
−1
λ1

H
−1
λ2

H
−1
λ3

F1(y), λ1 = 1× 10−4

F2(y), λ2 = 1× 10−3

F3(y), λ3 = 1× 10−2

× a1

× a2

× a3

✲�

PSNR = 23.41 dB

Multi-Wiener

Estimate F(y)

PSNR = 23.42 dB

Single-Wiener

Estimate with

λopt = 4.75× 10−4

H
−1
λopt

✻

DRAFT June 16, 2012
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SURE-LET Deconvolution

Principle

Apply several (typ. 3) Wiener filters with different (fixed) parameters

Perform undecimated Haar wavelet thresholding

Optimize the convolution SURE for the LET parameters

The LET basis corresponding to this algorithm are

Fk,l(y) = RΘl(DH
−1
λk

y)

involving two hard-like thresholding rules.

On the whole, we have three times more LET coefficients than for image
denoising plus three (low-pass coefficients): 93 for 5 iterations.

Typical results reach the state-of-the-art, while being much faster than
high-quality algorithms: 0.7 s for a 256× 256 image, 2.8 s for a 512× 512
image on a standard PC.
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1

Observation y

✲

PSNR = 22.93 dB

✲

✲ ✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

F1,1(y)

.

.

.

F1,J+1(y)

× a1,1

× a1,J+1

.

.

.

F2,1(y)

.

.

.

F2,J+1(y)

× a2,1

× a2,J+1

�

F3,1(y)

.

.

.

F3,J+1(y)

× a3,1

× a3,J+1

.

.

.

✲

Multi-Wiener

SURE-LET Estimate

PSNR = 30.48 dB

❄
Blurry and Noisy

Observation
✲ Multi-Wiener

Filtering
✲ Undecimated

Wavelet

Transform

✲
Subband-

Adaptive

Thresholding

✲ Individual

Subband

Reconstruction

✲ Regularized

SURE

Minimization

✻

Optimal

Linear

Combination

✻

June 16, 2012 DRAFT
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Results: PSNR comparisons

SA-DCT: 13.93dB

SURE-LET: 14.52dBBM3D: 14.09dB C-SALSA: 13.30dB

ForWaRD: 13.79dBBlurred noisy: 7.24dB
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Results: PSNR comparisons

BM3D: 29.19dB

SURE-LET: 29.40dBTV-MM: 29.45dB C-SALSA: 29.25dB

SA-DCT: 28.94dBBlurred noisy: 24.22dB
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Sparse restoration

A standard approach to restore images is to regularize the problem with a
sparsifying norm

ŵ = argmin
w

�y −HRw�2 + λ�w��1� �� �
J(w)

and x̂ = Rŵ.

Several iterative algorithms for solving this problem

IST: Iterative Shrinkage Algorithm Daubechies et al. 2004

FISTA Beck et al. 2009

SALSA Afonso et al. 2010

NOTE: It will be easier to express ŵ = F(y) in this setting.
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i -LET

The idea is to express F(y) as a LET and to minimize J(w) for the few
LET coefficients. However, in order to be able to refine the solution it is
necessary to make the basis change with the iteration order i

F
(i)(y) =

K�

k=1

akF
(i)
k (y)

The coefficients ak can very efficiently be obtained by, e.g., an iterated
reweighted least-squares (IRLS) algorithm.

How to ensure that the sequence F
(i)(y) converges to the final solution

of the sparse regularization problem when i → ∞?
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i -LET

Define ∇τJ(w) = w− softλτ/2
�
w− τRT

H
T(HRw−y)

�
where softλ(·)

is the soft-threshold with parameter λ, and τ is any positive number.

Convergence result

If F(i)
1 (y) = ŵ

(i−1) and F
(i)
2 (y) = ∇τJ(ŵ(i−1)) then the i-LET

algorithm converges unconditionally.
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cameraman, 9 × 9 uniform blur, BSNR = 30dB

 

 

τ = 0.5
τ = 5
τ = 50

NOTE: The IST would diverge for τ ≥ 1.
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i -LET

In practice, in order for the i-LET iterations to converge fastly in all
situations (high, or low noise level), we choose the following five LET
basis elements

F
(i)
0 (y) = ŵ

(i−2)

F
(i)
1 (y) = ŵ

(i−1)

F
(i)
2 (y) = ∇τJ(ŵ(i−1))

F
(i)
3 (y) = (RT

H
T
HR+ τ−1

Id)−1∇τJ(ŵ(i−1))

F
(i)
4 (y) = (RT

H
T
HR+ 10τ−1

Id)−1∇τJ(ŵ(i−1))
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Iterative LET basis

Results: nonredundant wavelets

NOTE: Results averaged over 10 trials. Computation times are in seconds.
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Iterative LET basis

Results: undecimated wavelets
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Conclusion

Thanks to

Florian Luisier : SURE-LET denoising (and PURE-LET etc.)

Feng Xue : SURE-LET deconvolution

Hanjie Pan : i-LET restoration
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Demos & Software
http://www.ee.cuhk.edu.hk/~tblu/demos/

http://scholar.harvard.edu/fluisier/software/image-denoising
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