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3-D Shape Estimation of DNA Molecules From
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Projection-Steerable Snake
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Abstract—We introduce a three-dimensional (3-D) parametric
active contour algorithm for the shape estimation of DNA
molecules from stereo cryo-electron micrographs. We estimate the
shape by matching the projections of a 3-D global shape model
with the micrographs; we choose the global model as a 3-D filament
with a B-spline skeleton and a specified radial profile. The active
contour algorithm iteratively updates the B-spline coefficients,
which requires us to evaluate the projections and match them
with the micrographs at every iteration. Since the evaluation of
the projections of the global model is computationally expensive,
we propose a fast algorithm based on locally approximating it
by elongated blob-like templates. We introduce the concept of
projection-steerability and derive a projection-steerable elongated
template. Since the two-dimensional projections of such a blob
at any 3-D orientation can be expressed as a linear combination
of a few basis functions, matching the projections of such a 3-D
template involves evaluating a weighted sum of inner products
between the basis functions and the micrographs. The weights are
simple functions of the 3-D orientation and the inner-products are
evaluated efficiently by separable filtering. We choose an internal
energy term that penalizes the average curvature magnitude. Since
the exact length of the DNA molecule is known a priori, we intro-
duce a constraint energy term that forces the curve to have this
specified length. The sum of these energies along with the image
energy derived from the matching process is minimized using the
conjugate gradients algorithm. We validate the algorithm using
real, as well as simulated, data and show that it performs well.

Index Terms—Active contour, cryo, microscopy, ridge, sepa-
rable filtering, spline, steerable.

I. INTRODUCTION

RYO-ELECTRON microscopy is an approach used to
Cimage bio-molecules such as DNA filaments [1]-[3].
The molecules are suspended in a thin layer of liquid, which
is then cooled to a very low temperature. Thanks to the rapid
cooling (of the order of 10° K/s), the resulting specimen can
be considered to be a snapshot of its thermal oscillations.
As compared to other approaches such as classical electron
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microscopy and atomic force microscopy, where the molecules
are adsorbed onto supporting films, this method does not cause
shape deformation. In this paper, we address the three-dimen-
sional (3-D) reconstruction of the shape of a DNA molecule
from its stereo-micrographs (a typical pair of such images is
shown in Fig. 1). This data is useful in probing the physical
properties of the filament (such as its shape, stiffness, modes of
oscillations, shape variation due to protein-bindings, etc.) that
play important roles in various bio-molecular processes.

Since exposure to electron beams causes degradation of the
specimen, one usually restricts the number of views to two.
Due to physical constraints, the angular separation between the
views is limited to a maximum of 30°. The micrographs also
suffer from poor image contrast and low signal-to-noise ratio
(SNR) due to the low electron dose. All these aspects make the
reconstruction problem difficult.

The early approaches to this problem included manual recon-
struction [4] and a semi-automatic search algorithm called the
flying cylinder [5], [6]. In the manual scheme, the user clicks
on the images to introduce pairs of corresponding points that
define the curve; this is time consuming and not necessarily
reproducible. The flying cylinder algorithm detects the filament
by matching the projections (onto the image planes) of a 3-D
cylindrical template with the stereo images. Since deriving
the two-dimensional (2-D) projections of a 3-D cylinder (with
arbitrary orientation) was difficult, the authors approximated
them with oriented rectangles. To reduce the number of match-
ings required, they discretized the orientation space and used
a sequential search algorithm. The detected fragments were
then sorted and interpolated to obtain a continuous curve. The
performance of this algorithm is limited by the approximations,
angular discretization, and, the multistep strategy; in particular,
the interpolation of the curve is only based on the detected
fragments and is not necessarily consistent with the image
data, nor the global optimum.

We address these shortcomings and propose a new algorithm
that solves the 3-D reconstruction problem in a more exact and
consistent manner using projection-steerable templates and a
3-D active contour model. An outline of the full procedure is
given in Fig. 2. In an active contour framework, the estimation
of the shape is formulated as an energy minimization problem.
The snake energy is a linear combination of the image energy,
the internal energy and the constraint energy terms (we discuss
the details of the snake algorithm in Section IV). At each itera-
tion of the optimization algorithm, the curve model is evaluated

1057-7149/$20.00 © 2006 IEEE
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Fig. 1. Stereo views separated by 30° of a super-coiled DNA filament (1800
base pairs). Courtesy of E. Larquet, Pasteur Institute, France.

from its coefficients and the energy terms are computed based
on the model and image information. The curve coefficients are
then updated so that the system converges toward the minimum
of the energy function.

The image energy term, which is a crucial part of the snake
energy, is a measure of the fit of the curve model with the image
data. We consider a global model for the DNA filament whose
skeleton is a 3-D parametric B-spline curve with a certain ra-
dial profile. Ideally, we would project the global model onto
the projection planes and match the projections with the images
(we compute the sum of the inner-products between the projec-
tions and the images) to obtain the fitness measure. Thanks to
the linearity of the B-spline representation, the skeletons of the
2-D projections will be 2-D B-spline curves. However, its pro-
file will be different at different 2-D curve points, depending of
the orientation of the filament at the corresponding 3-D point.
Thus, the evaluation of the exact projections and performing
the matching operation is computationally very expensive. Note
that since we use an iterative optimization algorithm, the projec-
tions and matching procedure have to performed in a loop.

To reduce the computational complexity, we propose to
approximate the global 3-D model locally as an elongated
blob-like template. We introduce the concept of projec-
tion-steerablity, which is inspired by the work on 2-D orienta-
tion steerablity by Freeman et al. [7]-[9]. We assume the radial
profile! as a Gaussian and derive an elongated template in 3-D
that is projection-steerable, i.e., the 2-D projections of this
elongated template can be expressed as a linear combination
of a few basis functions. With this framework, the matching
of the projection of such a 3-D template can be performed
inexpensively as a weighted sum of the inner-products be-
tween the basis functions and the images. The weights are
simple functions of the orientation of the 3-D template and the
inner-products are evaluated efficiently by separable filtering.
We discuss the projection-steerable ridge detection in detail in
Section III.

We show that the cubic B-spline representation is optimal for
the description of smooth 3-D curve, provided it is parametrized
with a constant arc-length. We also use the constant arc-length
assumption to derive a simple expression for the internal en-
ergy. For this assumption to hold, we reparametrize the initial

Here, we approximate the DNA filament locally as an elongated Gaussian.
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Fig. 2. Outline of the global 3-D shape estimation algorithm.

curve (derived from user inputs) such that the curve knots are
uniformly spaced. Since the length of the DNA molecules are
known a priori, we use an additional constraint term that penal-
izes the curve for not having the specified length.

We use conjugate gradient algorithm for snake optimization.
This scheme requires the efficient evaluation of the partial
derivatives of the energy terms. Thanks to the projection-steer-
able templates and the curve representation using finitely
supported B-spline functions, they are computed exactly and
efficiently as shown in Section V.

II. MATHEMATICAL PRELIMINARIES

A. Parametric Representation of 3-D Curve

A 3-D curve (denoted as C) can be described in terms of an ar-
bitrary parameter ¢ as r(t) = (x(¢),y(¢), 2(¢)). When the curve
is closed, the function vector r(t) is periodic.

r(t) can be represented efficiently as a linear combination of
some basis functions. Here, we focus on the B-spline curve rep-
resentation [10]-[12] due to numerous advantages discussed in
Section IV-Cl1. Specifically, we represent the component func-
tions of a 3-D curve in a uniform B-spline basis as

r(t)=|y(t) | = > c(k)p"(t—Fk) (1)

k=—oc0

where c(k) = [cx(k), cy(k), c- (k)] is a sequence of coefficient
vectors; in computer graphics, these are often called the control
points [13]. The basis function 5" is the B-spline of degree n
[14]. If the period M is an integer, we have c(k) = c(k + M).
This reduces the infinite summation to

c(k)B, (t — k) (@)
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where 3] is the M—periodization of 5"

> Bt —kM). 3)

k=—o00

Note that the special case of n = 1 (linear splines) yields a curve
that is composed of line segments connecting the control points.

We denote the orthonormal basis vectors of the volume as (e,
ey, e.). The basis vectors of the 1 ith projection planeis (e, , e, ),
while the vector orthonormal to the plane is denoted by e,,. An
arbitrary vector r can be represented as

r =ze, +ye, + ze, “)
= xiexi + yieyi + Z’iezi . (5)

The projection of the vector r onto the plane is given by
r; = P;r = x;e,, + ze;, (6)

where P, are the orthogonal projection matrices. The recon-
struction algorithm requires projecting the curve model onto the
image planes. Thanks to the linearity of the representation, the
2-D curve projections are also B-spline curves. The 2-D curve
coefficients are

Cb(k> = PLC(k) (7)
Thus, the 2-D curve projections (we denote them by C;) are
given by

o= [P0 =S cwme-n  ®

k=0

where r;(t) = P,;r(t). The projection matrix P; can be thought
of as the composition of a rotation matrix and a simple projec-
tion operator P

1 0 0
Pi_[o 0 I}Ri. 9
~———
P

Note that P is the same for all P;, while the projection geom-
etry is specified by the rotation matrix R;, which performs the
coordinate transformation from (x, y, 2) to (x;, y;, ;).

For the projection geometry shown in Fig. 3 (g = —, a1 =
«), the rotation matrices are

cosa —sina 0
Ri=R.(a)=|sina cosa 0 (10)
0 0 1

and Ry = R.(—a).

B. Orthogonal Volume Projection

The image formation in cryo-electron microscopy can be
modeled as a parallel projection. The assumption of parallel
projection is justified by the large depth of field of the electron
microscope; it is a well-accepted hypothesis that has been used
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Fig. 3.

Three-dimensional curve and its 2-D projections.

implicitly in all 3-D reconstructions of macro-molecules since
1982 [15], [16].

Modeling the measurement process as a line integral, we
now obtain the expressions for the projection images from
the 3-D volume data. We denote the volume by f(r), where
r = (z,y, z). The projected images f; = P;f are represented
in the 2-D coordinate system where P; denotes the orthogonal
volume projection operator. Thus

fi(r) = / f (PTr; +ey,) dy. (11)

The above equation is easier to understand in the Fourier do-
main. The Fourier transform of f is given by

gl

where w = (w,,wy,w:). The Fourier transform of the func-
tion in the coordinate system (z;, ¥;, 2;) can be shown to be
f (RT w). The Fourier transform of the projection can be ob-
tained by setting w,, = 0 (or by substituting w = PTw;;
w; = (wa,w-,)) in f(RT w). Thus, the two-variable Fourier
transform of the image is given by

f(r)el W) dodydz (12)

8\8

A~

filw) = f (RTP"w;)

—f (PTw,). (13)

This expression can also be obtained using the Fourier-slice the-
orem [17].
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III. LocAL FILAMENT DETECTION

We have seen that the direct use of a global DNA model in the
optimization algorithm can lead to a high computational com-
plexity. Hence, we locally approximate the global model by an
elongated blob. In this section, we address the detection of elon-
gated blob-like structures in 3-D from their 2-D orthogonal pro-
jections (see Fig. 1). We addressed a similar problem in [18],
where we derived the optimal rotation-steerable filters for 2-D
feature detection. This method gave promising results for the de-
tection of 2-D line-like structures. In this section, we generalize
the concept of rotation-steerablity to projection-steerablity for
3-D filaments detection. This approach is well-suited for both
the local scheme (where the detection is performed indepen-
dently at each point) as well as the global approach (where the
optimal orientation is specified by a model whose parameters
are estimated).

A. Projection-Based Feature Detection

Suppose our task is to check for the presence of an elongated
3-D blob—denoted by f.(r);r € R*—with an unknown orien-
tation, at a particular position r. in a 3-D volume f. The volume
is known only through its orthogonal 2-D projections f; = P; f.
We formulate the detection procedure as a matched filtering; we
consider a 3-D detector and match its orthogonal projections
onto the image planes with the micrographs.

We choose the 3-D template? to be h(r) = f.(—r) and de-
note its rotated versions by hy(r) = h(Ryr), where Ry is a
3-D rotation matrix. We use the sum of the inner-products be-
tween the 2-D template projections and the micrographs as the
performance criterion

N-1
CV(rC) = Z <ft7 L( )> (rCJ) (14)

1=0

N-1
= (fz(rc z) * P; (hv< rc,i))) (15)

1=0
where P;; ¢ = 0... N — 1 are the orthogonal projection oper-

ators® and r.; = P;r.. Note that the criterion is a function of
the orientation vector v. If we perform the filament detection in-
dependently at each point, the optimal orientation vector v*(r)
and the likeliness measure r*(r) are given by

v*(r) = arg max (Cy(r))

lvl=1

r*(r) = Cy« ().

(16)
7)

For an arbitrary 3-D template, the computation of the projec-
tions P;(hy) are expensive. To obtain the optimal orientation
by numerical optimization, the template projections and their
inner-products with the micrographs have to computed for each
iteration; a direct implementation of the algorithm is not very
practical, unless simplifying assumptions are made.

2We choose h(r) = f.(—
lution filtering operation.

r), since we prefer to implement it using a convo-

3In our case, N = 2, but the scheme is applicable for the general case as well.
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B. Projection-Steerable Ridge Detection

To reduce the complexity in performing the projection
matched filter detection, we use an approach similar to rota-
tion-steerablity [7]-[9]. We would like to have a good 3-D
filament detector whose projections (for any spatial orientation)
are contained in a space spanned by a few basis functions.
For such a detector, the evaluation of the performance crite-
rion for each curve point simplifies to a weighted sum of the
inner-products of the basis functions with the micrographs.
The inner-products themselves can be efficiently precomputed
using 2-D filtering.

We now consider the family

V3D = spall {8ﬂvmg3<r7 0)7 ayyg3(r; 0)7 8zzg3<r; 0)7
azyQS(r;U)vangii(r;U)vayZQS(r;U)} (18)

where gp(r;0) = (1/(2r0)P/?) exp(—|r|?/20?) is a D-di-
mensonal Gaussian and 9., f(r) = (9% /9z0y)(f(r)). We now
show that any 3-D filter in this family is ideally suited for pro-
jection matched filter detection.

Proposition 1: The space Vsp is closed with respect to 3-D
rotations.

Proof: The Fourier transforms of the basis functions are

9

TTg3 r;

Q

yy93 r;

Q

zz.g3 r;

Q

zzg3 r;

I*i I*ﬁ I*i I“ﬁ I*ﬂ I“i

— (2m)’

— (2m)

— (2m):
(ZW)%wTwygg(w;J_l)
— (2m) -
— (2m)’

q
2 2 2 2 22

(

(

(
Dy g3 (T3

(

(

9

yzg3 r;

where w = [w,, wy,w,]T. Since the basis functions are the prod-
ucts of second degree monomials with a Gaussian in the Fourier
domain, an arbitrary function in V3p is a second-degree polyno-
mial multiplied by a Gaussian (the six homogenous monomials
is a basis of the space of homogeneous polynomials of degree
2). It can be written in a compact form as

h(w) =

Here, A is a symmetric 3 x 3 coefficient matrix that charac-
terizes the shape of h.# The Fourier transform of a R-rotated
version® of h is given by

(27)% (wT Aw)gs(w; o). (19)

h(Rw) = (27)° | w" RTARw | g3(w;o™")
AR

(20)

where R is the 3 X 3 rotation matrix. Note that in the above
step, we have used the isotropy of the function g. Since the new

4We have made use of the fact that the Fourier transform of a Gaussian func-
tion is, indeed, a Gaussian.

5We use the property that the rotation of the filter is equivalent to rotating its
Fourier transform.
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filter A(Rr) has the same form as (19) for any rotation matrix
R, it is still in V3p. [ |

Proposition 2: The orthogonal projection P; of the space
V3p onto a plane is the function space Vap ;

Vap,i = span {0y,z,92(ri;0),0z,2,92(vi;0), Or, 2, 92(vi;0) } -

2D

Proof: The Fourier transform of the projection of an arbi-
trary function in Vip is obtained by substituting (19) into (13)

~

hi(w;) = V2r | wl P;AP] w; | 2rg3 (Plwi;;071) . (22)
N—_—— ~ _

"
B; g2(wiso0—1)

Since the 2 x 2 matrix B; is symmetric, h; (w;) is a second-de-
gree polynomial in w;. This implies that h; is a linear com-
bination of the functions 0y;92(r;,0), Opyg2(ri,o) and
ayng(I‘i; U). Thus, Pi(VgD) C Vop,i.

We also have the relations P;(0z293) =  Ouiw; 92,
Pi(0:293) = 02,92 and P;(02.93) = Oq,-,92. They imply
that I/QD,i - ’PZ(V3D) Thus, we have ‘/QDyi = 7)1(‘/3])) |

We have seen that V3p is closed under 3-D rotations. Hence,
if we choose a 3-D detector in this space, its rotated versions
are guaranteed to be in the same space. We have also seen that
P;i(Vap) = Vap i, which implies that the projection of any ro-
tated version of the detector is in Vap ;. Moreover, since the
functions in Vap ; are bandpass, the detection scheme will not
be sensitive to smooth intensity variations that are common with
micrographs.®

In this paper, we have restricted ourselves to second order de-
tectors for simplicity. However, the concept of projection-steer-
ablity is more general: Any 3-D function that can be represented
as a linear combination of the differentials (up to a certain order)
of an isotropic function is projection-steerable.

C. Three-Dimensional Ridge Detection

We have seen that Vsp is ideally suited for projection-steer-
able matching. Hence, we would like to choose the most elon-
gated blob-like structure in this space as our local 3-D template.
We derive the optimally elongated local template in Appendix A
as

3 2
h(r) = % <ayy93(l‘, U) + 8zzg3(ra U) - gammgg(r,a)) .

(23)
See 3-D plots of this detector in Fig. 4.

6In traditional schemes, these variations are removed by a high-pass prepro-
cessing filter [5].
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Fig.4. (a), (b) Isosurface plots of the front (viewed from the -z plane) and top
(viewed from the -y plane) views of a 3-D detector oriented at 30° to the x axis
and 30° to the 2-y plane (6 = 30°, ¢ = 30°). In (c) and (d), the projections
of the 3-D filter onto the image planes are oriented at —15° and —15° to the y
axis.

Neglecting the normalization constant, we rewrite the expres-
sion for the optimal filter (23) oriented along the unit vector v
as

5
hy(r) = Sam + Oyy + 0:2)gs(r; U)J—gavvgg(r; o)

~~
Laplacian of g(r;o)

(24)

where Oyy f(r) = (0?/09%)f(r + vv). Note that the Fourier
transform of the filter is given by (19) with A = I3—(5/3)vv7T,
where I3 is the 3 X 3 identity matrix. By substituting (24) in
(22), and by performing the manipulations shown in Ap-
pendix B, we get

P; (hy(r)) = v7T [RZT Gi(ri; O')Ri] v (25)

as in (26), shown at the bottom of the page. In our application,
{R;},_; , are the rotation matrixes given by (10).

Note that, when R;v. = (1,0,0) (horizontal fila-
ment parallel to the image plane), we get Pi(hy) =

(az1z1 - %87'17‘1) g?(ri; U) 0 - (%81'121) gQ(ri; U)
Gi(ri; U) = 0 (aTiTi + 621'21') gZ(ri; U) 0 (26)
- (%aﬂhzl) gz(l‘i; U) 0 (azizi - %8@@) 92(1'1'; U)
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9z:2:(ri;0) — (2/3)9u;z,(ri;0)—an elongated detector.
On the other hand, if R;,v. = (0,1,0) (.e., the fila-
ment is orthogonal to the image plane so that its projec-
tion is an isotropic blob rather than a filament), we get
Pi(hy) = 9z,2.(ri;0) + gz,2, (r;; 0 )—the isotropic Laplacian
detector. In other words, we use different 2-D detectors on the
image planes, depending on the spatial orientation of the 3-D
template. We give some examples with the 3-D template and
their projections in Fig. 4.

Using (25), we simplify the expression (14) of Cy (r), which
is to be minimized, to

N-1
Cy(r) =vT lZ RIH;, (ri)Ri‘| v (27)
1=0
where Hsp(r)
Hfi(ri) = fi * Gi(l‘i; U). (28)

Here, we used the property G;(r) = G;(—r). Thus, we can
match the image locally with the projection of a 3-D blob
oriented along v by evaluating (27). To compute Hy, (r;) at
every point in the micrograph, we need to filter the image
with the templates corresponding to the five nonzero entries of
(26). Since these entries are linear combinations of the three
functions Oy,z,92(ri;0), 0s,2,92(ri;0) and Oy, ., go(r;; 0), it
is, in fact, sufficient to filter the images with three separable
templates. The entries of Hy, (r;) are linear combinations of
these filtered signals.

IV. CONSTRAINED RECONSTRUCTION OF DNA FILAMENTS
USING THE 3-D SNAKE MODEL

In the previous section, we have addressed the local detection
of elongated 3-D blobs. In this section, we combine the local
likeliness measures into the global model and estimate its pa-
rameters. Since the skeleton of the DNA molecule is represented
by a curve, the well-established framework of active contour
models [19], [20] is most appropriate for this purpose.

A. Active Contour Algorithm: Formulation

Traditionally, snakes or active contour models were intro-
duced for the segmentation of closed objects in images. The
popularity of these schemes may be attributed to their ability to
aid the segmentation process with a priori knowledge and user
interaction. Snakes, as introduced in the seminal work of Kass
et al., are smooth curve models that evolve from an initial guess
toward some boundary in the image such that some energy func-
tional is minimized [19], [20].

These models were extended to 3-D for the estimation of
coronary vessel centerlines from X-ray angiographic projec-
tions [21], [22]. This approach considers the evolution of a
3-D curve so that its 2-D projections onto the respective planes
match the images. The matching is performed using distance
maps or gradient vector flow fields and is done in the more
general setting of perspective projection.

Here, we propose a refined approach, which mainly differs
in the matching procedure and the curve representation used.
Our criterion is obtained by projecting the optimal templates,
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oriented along the curve tangents, onto the image planes and
matching them with the micrographs. Note that the shapes
of the template projections depend on the 3-D curve tangent
directions.

Before going into the details of the algorithm, we briefly
review the fundamentals of the snake algorithm. Since the
final shape is determined by the minimum of the snake energy,
its choice deserves proper attention. Similar to conventional
snakes, we choose the energy functional as a linear combination
of three separate terms:

1) the image energy, which is responsible for guiding the
snake toward the filament;
2) theinternal energy, which ensures that the extracted shape
of the filament is smooth;
3) the constraint energy, which enables the user to enforce
extra constraints such as the curve length.
The total energy of the snake is written as

Esnake(e) = Eimage(e) + /LintEint(e) + ll/constEconst (e)
(29)
where © is the collection of curve coefficients © = {c(k); k =
0,...M —1}. Here pint and piconst are weights used to balance
the different energy terms. The optimal curve parameters are
obtained as

O =arg Irgn Eonae(©). (30)
We describe the different energy terms in detail in the following
ssections.

B. Image Energy

The image energy term is a measure of the fit of the model
to the image data. Consider a point r(¢) on the planar curve
C. The tangent vector of the curve at r(t), given by dr(t) =
(dz(t)/dt, dy(t)/dt, dz(t)/dt)dt, defines the direction of the
elongated blob at that point. We define the likeliness of a blob
at the curve point r(¢), oriented along dr(t), as

Egoodncss (I‘) = dr(t)TH:;D (r)dr(t) .

Recall from Section III-B that this quantity is equivalent to pro-
jecting the optimal 3-D detector, oriented along dr, onto the pro-
jection planes and then computing the sum of the square errors
between the template projections and the micrographs. Note that
if dr = v* as in (16), we get Egoodness(r) = 7*(r) which is the
maximum possible value.

We obtain the likeliness of the entire curve by integrating the
goodness measures along the curve

M

Eimage(©) = — / (de(t)"Hsp(r)dr(t)) dt.  (32)
0

The negative sign is introduced since the curve evolution is
posed as an energy minimization problem. By using (30) to ob-
tain the optimal coefficients, we are jointly estimating the op-
timal orientations and magnitudes at the voxels through which
the curve passes. Note that the optimal orientation at each curve
point is dependent on the optimal coefficients indirectly through
the curve model (i.e., the tangent to the curve). Since the number
of curve coefficients is typically much less than the number of

3D
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TABLE 1
DIFFERENT ENERGY TERMS USED IN THE SNAKE OPTIMIZATION

Energy Type H Expression ‘

Eimage = — §, dr” Hsp (r) dr
(ref Eq. (32))
Bie = 25 [ e (1) dt
(ref Eq. (34))
M 2
Feonst ( T () dt — Length)
(ref Eq. (38))

Image Energy

Internal Energy

Length Constraint

= Z;&Jl mingepo,a |t () — re)?

(ref Eq. (39))

Point Constraint Feonst

voxels through which the curve passes, this scheme is more ro-
bust than a local approach. An advantage of the criterion (32)
is that it is independent of the curve parameter ¢. Evolving the
curve using such a measure will not cause the parametrization
to change during the optimization process, thus preserving the
curve stiffness.”

C. Internal Energy

The internal energy term is responsible for ensuring the
smoothness of the reconstructed shape. It is essentially a regu-
larization term that penalizes nonsmooth shapes, thus making
the reconstruction problem better conditioned. The smoothness
of the curve can be quantified by its total curvature magnitude;
a stiff curve will have a low value of mean curvature magnitude.
The curvature of the curve at a point r(¢) is defined as

2
r'(t) x r(t)
3

e’ (2)]
where r'(t) = (2'(¢),y'(t),2'(t)) is the derivative vector
and r’(t) = (2"(t),y"(t),2"(t)) is the vector of second
differentials. Using the expression of the average curvature
magnitude— fOM |k(r)|?>dt—directly as the internal energy
leads to complicated expressions for the partial derivatives.
Using standard results from differential geometry [23], we
simplify this term to (see also [12])

/|ﬂ 2dt = k2/| ")) dt

@) =k WVt

(x| = (33)

(34)

provided
(35)

that is, when the curve is parametrized by its curvilinear ab-
scissa. Here

2

1 M
b= /0 (1) dt (36)
—_—

Length
is the total length per unit value of the parameter.

TMany snake energies are parameter dependent, causing the curve knots to
accumulate at points of high-edge strength.
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Since the uniform B-spline curve has its knots at the integer
parameter values, (35) requires that the knots be uniformly
spaced on the curve. Thus, the smoothness term (34) is inversely
proportional to the fourth power of the distance between the
knots; the curve will be smooth if its knots are well separated.
We will see in Section V-B that the partial derivatives of the
(right hand side) r.h.s of (34) are much easier to compute than
those of its (left hand side) 1.h.s. To ensure that (35) hold, we
resample the initial curve (obtained by user initialization) such
that we have constant arc-length; the user input the initial curve
by entering corresponding pairs® of points on the stereo views.

1) Choice of the Basis Function: Using the well-known
variational properties of B-splines [24], we can show that the
minimization of §, [r”'|* subject to interpolation constraints
gives a cubic spline curve. Thus, the cubic B-spline represen-
tation appears to be the natural choice, for it gives minimum
curvature curves when the knots are uniformly spaced. The
use of spline curves also brings in additional gains due to the
existence of efficient algorithms [14], the local control of the
contour due to the finite support of the B-spline basis function,
and their good approximation properties [25].

2) Internal Energy Term: We reparametrize the initial curve
(derived from the interpolation of the user input points) so that
the knot points are uniformly spaced. Thanks to the param-
eter independent image energy term, we can safely assume that
the curve will remain approximately in the constant arc-length
parametrization. Hence, we choose the internal energy term as

1 M
2

B = 5 [ WO dr.
0

Recall from (34) that using this term as the internal energy is
equivalent to minimizing the average square magnitude of the
curvature.

(37

D. External Constraint Energy

As mentioned before, the external constraint energy is a
means for the user to enforce extra constraints on the recon-
struction. We use two constraint terms in our implementation.

1) Length Constraint: The length of the DNA filaments are
known a priori; this information can be imposed on the recon-
struction process to make it more robust. We introduce this con-
straint into the framework by penalizing the term

M 2

Eeonst = / |t/ (¢)| dt — Length (38)

where Length is the expected length of the molecule.

2) Point Constraint: We use a point constraint to enable the
user to aid the reconstruction process; he can specify a few 3-D
points that should lie on the final shape. This constraint is ba-
sically the sum of the distances between these points and the
closest points on the curve. The constraint energy is given by

N.—1

. 2
t) — T 39
> in |r(t) — re,il (39)

Econst =

8The corresponding pairs are constrained to have the save z value.
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wherer. ;;¢ = 0,..., N, — 1 are the constraints. This approach
can be thought of as introducing virtual springs that pull the
curve toward the desired points. One end of the spring is fixed
to the constraint point, while the other end slides on the curve.

V. CURVE EVOLUTION: THE OPTIMIZATION ALGORITHM

As mentioned before, the snake algorithm evolves the curve
from its initial position to the final shape using energy minimiza-
tion. Since the individual energy terms are nonlinear functions
of the curve coefficients, we require a numerical optimization
algorithm. We use the conjugate gradient algorithm to refine
the initial guess derived from the user inputs. The user speci-
fies pairs of corresponding points on the stereo images that are
then interpolated to derive the initial 3-D curve. This curve is
later resampled to a specified number of knot points (since the
approximation ability is decided by the number of knot points)
such that (35) is satisfied. A summary of the whole algorithm is
given in Fig. 5.

The optimization scheme requires the evaluation of the par-
tial derivatives of the snake energy. Since these quantities have
to be repeatedly evaluated in the iteration loop, their compu-
tational complexity will determine the time taken by the snake
algorithm. In this section, we derive efficient expressions for the
derivatives of the individual energy terms.

A. Partial Derivatives of the Image Energy
Differentiating (32) with respect to the coefficient c,.(k) and
applying the chain rule yields
7]
—Eima e
Ocy (k) &

_ /0 (AT (1) Hap x (v(0) de (DB (1 — ) dt - (40)

~ J
~~

Iy
where Hip  is a 3 X 3 matrix whose entries are the partial
derivatives of the corresponding entries of H3p with respect to
x. We now focus on obtaining the expression of H3p

15] ox; 5] 0z;
= R | —H; (r;)— Hy (ri)— | Ri (41
2R g M) gy 5 Ha () [ Ra (4D
Hy, 2, Hy, -,
N-1
ox;
= R'H; ., (rj)R;) —
L=0( i f7,-«7(r) ) o1
P,(0,0)
T 82;
(R Hf”L(rl)R) 9 (42)
<~
P, (1,0)

Micrographs

9

Computation of
Inner products with
2-D basis functions

(2-Dfiltering)
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User Initialization
Corresponding Points

. 4

Spline Interpolation
to obtain the curve
coefficients
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Resampling to the
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2 4

Compute the curve
from its coefficients

H User
constraints
Partial derivatives of Partial derivatives of Partial derivatives of

the Image Energy the Internal Energy the Constraint Energy

v o

Partial derivatives of
Snake energy

v

Update snake
coefﬁcients

Converged? —/

Final Curve

F“

Fig. 5. Block diagram of the snake optimization algorithm.

Here, the matrices Hy, ., and Hy, ., are shown in the equation
at bottom of the next page. Plugging (42) into the integral /; in
(43), we get

N—-1
I = Z [Pi(070)7Pi(170)]
1=0
M (deT(RTHy, ., (ri(t)) Ride(8) B2 (¢ — k) dt
M (deT(HRTHy, ., (ri(t) Rade (D)7t — k) dt
Thus, we get
Lo
dc, (k)
(k) Eimage
Bc. (k)
M
= 2 [ (dr(t) B (x(0) 3¢~ ) dt
0
o [ @ )RTHfl,zl (5(0)
o3 pr ><Rdr k)) dt @)
=0 ()Rz’THf7,Z7( (1))

xRidr(t)ﬁ; (t—Fk))dt
The evaluation of the matrices Hy, .., and Hy, ,. necessitates
the computation of the quantities (f; * gu, 2.0, )s (fi * Guiwiy, )
(fi* 9aiyiy: ) and (fi * Gy,y.y, ) for each micrograph. For the first
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term in (43), we require the matrix Hy,, which, in turn, needs
the quantities ( f; * gz,x, )s (fi * gu,y,) and (fi * gy, 4, ). Note that
all these quantities involve the convolution of f with the second
and third order partial derivatives of the 2-D Gaussian; they can
be precomputed efficiently using separable linear filtering. We
discretize the integrals for their evaluation. Thanks to the steer-
able implementation, the criterion and its partial derivatives can
be computed exactly and efficiently.

B. Partial Derivatives of the Internal Energy

The internal energy term can be rewritten as

M M

[P = [ (1w @F + 1 OF + 0P & @)

0 0

We now consider the term fOM |#” (t)|?dt and simplify it as fol-

lows:
M ) M-1M-1
[l @ra= 3 3 cbe
) k=0 1=0
M
x | Byt —k)By" (t —1)dt
/
M-1 o
= Z cx(k)ex (1)
1=0 k=—cc

X B (t — k)3 (t = 1)dt . (45)

a(k-1)

In the last step, we have used the periodicity of 3,"(t — [) to
extend the integral from —oo to oo and have transferred the
periodicity of 3" (t — k) to the coefficient sequence c. Thanks
to the curve representation using cubic B-splines, the sequence
q(k) is finitely supported and can be exactly computed. Thus,
we obtain the partial derivatives of the internal energy term as

12}

ac%(k) oo | cx(k)

dey (k) Ein = Z cy(k) | q(k —1).
9 k=—o00 Cz(li})

dc. (k)

The above equation amounts to a simple filtering of the coeffi-
cient sequence by the filter ¢(n), assuming periodic boundary
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C. Fartial Derivatives of the Constraint Energy

1) Length Constraint: Differentiating (38) with respect to
c. (k) gives

b M ,
mEconst =2 /0 |I' (t)| dt — Length

v
Error

T2/ (H)B(t — k)
) / /(1))

oo

_ "l (t+ k)BM (1)
=2 Error / —|r’(t ) dt.

dt

(46)

Here, error is the difference between the current length of the
curve and the expected one; the partial derivatives of the con-
straint energy is zero when the current length is the same as
the expected one. The partial derivatives (9/9¢y(k))Econst and
(0/0¢c,(k))Econst is computed in a similar fashion.

Evolving the curve with this term alone will cause its length
to decrease or increase, (depending on the sign of error) until
Error = 0. Note that the integral (46) is limited over the support
of the spline function. We discretize the integral for its evalua-
tion.

2) Point Constraint: Computing the partial derivatives of
(39) in all generality would give a very complicated expression.
To make the problem more tractable and to reduce its compu-
tational complexity, we make the assumption that the optimal
constraint locations, (t;;¢ = 0... N, — 1), are known. In this
case, (39) gets simplified to

Ne—1
Eo= 3 fr(t) - vesl®
=0

and its partial derivatives are given by

IE. Ne—1 (t:)

9ce k Te,i T\l n

Sk = = B (ti — k). (48)
|- 5 (Ge]- B s
Using the finite support of the scaling functions, we limit the
sum to the relevant indices (we need to evaluate it only for
{#|0 < (t; — k) < N.}). We resort to a two-step strategy, where
the snake is evolved using the above formulas for the derivatives,

for a given t;. The optimal parameters ¢; are then re-estimated
within the loop as

(47)

conditions. ti = argten[g)i’l]r\;[] [r(®) = reil; #=0...Ne—1. “49)
[ (azizizi N %a‘”i‘”izi) 0 - (%aﬂwxq‘zq‘)
Hfi-,l'i (rl) = f * 0 (811'11'11' + aa:izizi) 0 g2(r2; J)
L - (%811-11-4-) 0 (axlxlxl - %8Iizizi)
i (azizizi - %a"l:i:l:izi) 0 - (%azizizi)
Hfzwzq' (ri) =f= B 0 (8zizizi + azizizi) 0 gz(ri; U)
- (%axizizi) 0 (89-"11"1»21 - %azizizi)
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(a) (b)

(c) (d)

Fig. 6. Simulated data for different noise standard deviations. The projection data is corrupted with gaussian noise of specified standard deviations and then
convolved with a filter whose magnitude response is matched to the power spectral density of the micrograph noise. For real micrographs, the noise standard
deviation is in the range 50-60. (a) Original image. (b) STD = 40. (c) STD = 55.(d) STD = 70.

TABLE 1I

COMPARISON WITH THE REFERENCE CURVE FOR SIMULATED MICROGRAPHS AT DIFFERENT NOISE LEVELS.
NOTE THAT THE IN-PLANE ERRORS REMAIN AT THE SUB-PIXEL RANGE FOR MOST CASES

Noise STD H

20

40

55

70

85

User input

3-D errors

1.3158 £ 0.3804

2.0780 £ 0.6532

2.2590 + 0.5990

2.8530 £ 0.8340

4.0182 £ 1.3940

6.5430 £ 1.6570

Inplane errors

0.6656 £ 0.0604

0.7244 £ 0.0908

0.7888 £ 0.1245

0.8697 £ 0.2341

1.2979 £ 0.5479

3.0925 £ 0.5759

VI. EXPERIMENTS

In this section, we evaluate the performance of the snake algo-
rithm using simulated images (since we do not have the ground
truth available with the real data). We consider a 3-D curve
(specified by a user) and imitate the image formation process.
We generate a 3-D volume from the curve samples (we assume
the filament to have a Gaussian cross section) and project the
volume onto the image planes. To account for the noise and the
contrast transfer function of the microscope, we add Gaussian
white noise of a specified standard deviation to the images and
then filter® them. Some examples of simulated data and the cor-
responding real micrographs are shown in Fig. 6. We use the
snake algorithm to reconstruct the shape which is then compared
with the ground truth.

To compare two 3-D curves C, and Cp, we choose the error
metric

M,
1 1
D(Ca,Cb) = 5 ﬁ / D (ra(t),Cb) dt
0

M,
1
o / D (ry(t),Ca)dt | (50)
0

where C, = r,(t); t € [0,M,] and Cy, = rp(¢); t € [0, My].
The distance between a point r,(¢) and a curve C;, (denoted in
the above equation as D(r,(t),Cs)) is defined as the distance
between r,(¢) and the closest point on Cy,
D (r4(t),Cp) = mi () —1(D)]] .
(ra(0).C) = min [lra(t) = (0]
We evaluate the distance metric by discretizing both curves.
The reconstructions were performed on six stereo pairs,
starting with user specified initialization. Two independent

(51

9We use a filter whose magnitude response is the square root of the power
spectral density of the micrograph noise and a constant phase response.

users performed five trials each for every stereo pair; they were
instructed to use the graphical interface to specify of the order
of ten corresponding pairs of points per curve which would
then be interpolated to provide a good starting point for the
algorithm (user input). The results were compared with the
corresponding reference curves to obtain the absolute errors in
3-D, as well as on the micrograph planes. The average errors
are given in Table II. Note that the in-plane reconstruction
errors are not very sensitive to micrograph noise; they remain in
the subpixel range for reasonable noise levels. In comparison,
the 3-D errors are more sensitive to noise but are significantly
lower than the manual tracings. Also note that the standard
deviation of the errors are much lower than the ones associated
with the manual tracings; this indicates that the reconstruction
process is quite reproducible.

To study the sensitivity of the algorithm to initialization, we
randomly perturbed the initial curve projections by adding cor-
related noise to the reference B-spline coefficients.!? The results
of the comparisons for input perturbations of different standard
deviations are shown in Fig. 7. Note that in this case too, the
in-plane errors remain at subpixel level, irrespective of the ini-
tialization. The curves are almost flat indicating the low sensi-
tivity of the algorithm to initial conditions.

Some examples of 3-D reconstructions obtained by applying
our algorithm to real data are shown in Figs. 8 and 9. This illus-
trates the wide range of DNA configurations that may occur in
nature as well as the difficulty of the problem.

VII. CONCLUSION

We have presented a carefully engineered solution for the 3-D
shape estimation of DNA molecules from stereo cryo-electron
micrographs. We used a global 3-D model for the DNA filament

10To simulate the user initialization.
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Fig. 7. Study of the sensitivity of the algorithm to initialization. The algorithm is initialized using random perturbations of the actual curve projections and the
reconstructions are compared with the original data. We used the standard deviation of the 3-D template as 2.5 pixels. The plots shows the reconstruction errors as
a function of the input errors for different levels of image noise (denoted by o—the standard deviation of the noise added). Note that the reconstructions are robust
to initial conditions; there is a factor of 3—4 decrease in the inplane errors while the 3-D errors are lower approximately by a factor of 2. (a) 3-D error. (b) In-plane

(a) (b) (©) (d)

Fig. 8. Reconstructed filaments for the micrograph pair in Fig. 1 at different viewing angles around the vertical axis. (a) and (b) correspond to the left and the
right micrographs in Fig. 1. The algorithm started from the user-specified initialization and generated the reconstructions in 6.7 s on a 667-MHz Macintosh G4.
The values of the parameters ftint and piconst Were 0.4 and 0.15, respectively. (a) —15°. (b) 15°. (c) 60°. (d) 90°.

(a) (b) (c) (d)

Fig. 9. Reconstructed filaments for the micrograph Fig. 6 at different viewing angles around the vertical axis. (a) to the micrograph in Fig. 6(a). The algorithm
started from the user-specified initialization and generated the reconstructions in 5.3 s on a 667-MHz Macintosh G4. The values of the parameters ftint and flconst

were 0.4 and 0.15, respectively. (a) —15°. (b) 15°. (c) 60°. (d) 90°.

and optimized its parameters such that its 2-D orthogonal pro-
jections matched with the micrographs. Since a direct imple-
mentation of this algorithm is computationally expensive, we
approximated the model locally using elongated blobs.

To solve the local detection problem, we introduced the con-
cept of projection-steerablity. Specifically, we derived a projec-
tion-steerable elongated blob template whose 2-D projections
can be represented as a linear combination of few basis func-
tions. We also developed an efficient algorithm for obtaining the
likeliness of such a blob with a specific orientation at a certain
point in 3-D space.

We used a 3-D B-spline curve model for the representation
of the skeleton of the global DNA model. We showed that
the B-spline representation is optimal for the representation
of smooth 3-D curves, if described in the constant arc-length
parameterization. Using the constant arc-length assumption,
we obtained a simple expression for an internal energy term
that penalizes the average curvature magnitude.

We used a conjugate gradients algorithm for the optimization
of the curve parameters. Thanks to the projection-steerable blob
detection algorithm and curve representation using compactly
supported B-spline functions, all the directional derivatives of
the snake energies are computed exactly and efficiently.

APPENDIX

A. Design of the 3-D Projection-Steerable Elongated Blob

We now derive a 3-D detector in V3 that is optimized for the
detection of a filament with a specific orientation (say along the
z axis). Since the template is rotation-steerable by construction,
we can steer it shape to any orientation exactly. An arbitrary
function in V3p is given by

h= ag azz93+alayy93+a28zzg3+a3 azyg3+a4ang3+a5ayzg3 -
(52)
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Since a one-dimensional (1-D) ridge oriented along the x axis
is an even function along the axes, the terms 0,93, J,-g3 and
0y-g3 (they are odd functions) will not contribute to the ridge
signal. Hence, we set a3, a4, and aj to zero.

We like to have a detector that is elongated along the z axis
and narrow along the y and the z axis. The elongation along the
axes can be measured by the magnitude of the second derivatives
of h at the origin. For the detector to be maximally elongated
along the z axis, we set 0y ho,0,0 to zero

1
Dy h(1)r=(0,0,0) = F(?’ao +a1+a2)=0. (53)

For the filter to be narrow along 4 and the z axes, we have to
maximize the quantities

Oyyh(r)|r=(0,0,0) = (a0 + 3a1 + as)
azzh(l')|1r=(0,0,0) = (ao + a1 + 3as).

(54)
(55)

We maximize 9y, h|0,0,0+9::h|0,0,0 subject to (53) and the unit
energy constraint

|h(x)||> = 3a2 +3a2 +3a3 +2aga1 + 2apaz+2a1a, =1. (56)

We have removed the constants in all the above equations to
simplify the formulas. The constants will not affect the shape of
the detector. From (53), we have aq + as = —3ag. With this
condition, we have to maximize

Oyyh(r) |r=(0,0,0) + 0.:h(r) |r=(0,0,0)

= (2(10 + 4da1 + 4(12) 57
= —10(10 (58)
subject to (56)
Ih(r)I* =35 +3  (a} + a3)
———
(“1+a2)242’(“1*a2)2
+ 2&0 (a1 + ag) + 2&1@2 (59)
N—— ~——
—3ag (nv1+ﬂf2)2;("v1*"2)2
=15a2 + (a1 — az)* = 1. (60)
Thus, the solution is a9 = —1/+v/15 and a; = a9, which sim-

plifies to a1 = 3/2v/15, as = 3/2+/15; the expression for the
detector is given by

3

h(r) = 20

2
<ayyg3(r7 U) + azzg3(r7 U) - gaa:xg?)(r*, J)) -
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B. Projection of the Optimal 3-D Detector

The expression of the optimal filament detector, oriented
along v, is given by

5
h(r) = gau (150) + g4y (150) + 922 (r); 0 — 2 gov (13 0).

Laplacian of g(r)
(62)
Note that, in this case, A = I3 — (5/3)vv’, where I is the 3
x 3 identity matrix.
Now, using (22), we obtain the corresponding B; matrix as

5

B, =P/P, -~ (P,v)(P;v)" (63)
N—— 3 N——

I, V.,V;;[

which implies that the Fourier transform of the 2-D projection
of the template is given by

hi(wi) = — <||“’i||2 - g(wi;VﬁZ) gwio™h).  (64)

The above expression can also be written as

ho(w:) = — 22, Wi we s | |
it == [l = 37| 55 = v |
w:t;T
(65)
Since [|v;||* + vZ, = ||v]|* = 1, we rewrite this expression as
. w2 +w? 0
o = = (ol 4[5 5 g g o
5 T (4)3 We, Wz, =1
~3Vi {wxiwzi w?, vi Jolwso)

w2 —2(4.)2 —éw w
—<||w7;||2v§,—v? [ oo }v)

_gw-Tiwzi w-T»i - ngi
X g(wi; o) (66)
which is then modified to
. w? —2w37 0 —%wm7w77
hi(w;)=—|vIR; 0 w2 +w? 0 R;v
— %wmlwzi 0 wi - %wgz
xg(wi; o™ (67)

where R; is the rotation matrix given by (10). Finally, by com-
puting the inverse Fourier transform, we get (68), shown at the

(61) Dbottom of the page.
(8z1-z1- %amimi) 0 - (%81'1Z1)
Pi (hy(r)) = v' R, 0 (O, + 0,2, 0 g3(ri;0) | Riv (68)
- (%827727) 0 (az z; %8;177177)
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