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A B S T R A C T   

Purpose: Two-dimensional (2D) fast spin echo (FSE) techniques play a central role in the clinical magnetic 
resonance imaging (MRI) of knee joints. Moreover, three-dimensional (3D) FSE provides high-isotropic- 
resolution magnetic resonance (MR) images of knee joints, but it has a reduced signal-to-noise ratio compared 
to 2D FSE. Deep-learning denoising methods are a promising approach for denoising MR images, but they are 
often trained using synthetic noise due to challenges in obtaining true noise distributions for MR images. In this 
study, inherent true noise information from two number of excitations (2-NEX) acquisition was used to develop a 
deep-learning model based on residual learning of convolutional neural network (CNN), and this model was used 
to suppress the noise in 3D FSE MR images of knee joints. 
Methods: A deep learning-based denoising method was developed. The proposed CNN used two-step residual 
learning over parallel transporting and residual blocks and was designed to comprehensively learn real noise 
features from 2-NEX training data. 
Results: The results of an ablation study validated the network design. The new method achieved improved 
denoising performance of 3D FSE knee MR images compared with current state-of-the-art methods, based on the 
peak signal-to-noise ratio and structural similarity index measure. The improved image quality after denoising 
using the new method was verified by radiological evaluation. 
Conclusion: A deep CNN using the inherent spatial-varying noise information in 2-NEX acquisitions was devel-
oped. This method showed promise for clinical MRI assessments of the knee, and has potential applications for 
the assessment of other anatomical structures.   

1. Introduction 

The knee is the largest joint in the human body, with a complex and 
frequently injured anatomical structure [1]. It is a synovial hinge joint, 
and its stability is maintained by ligaments, tendons, a joint capsule, and 
menisci. Magnetic resonance imaging (MRI) is the most prominent 
non-invasive diagnostic modality, and its excellent visualization of soft 
tissue characteristics means it provides optimal imaging of the knee joint 
[2]. Fast spin echo/turbo spin echo (FSE/TSE) [3], the commercial 

implementation of rapid acquisition with relaxation enhancement 
(RARE) [4], plays a central role in clinical knee MRI. Current knee MRI 
protocols often consist of two-dimensional (2D) FSE sequences repeated 
in multiple planes to observe overall anatomical structure. However, 
this process is time-consuming and its low through-plane resolution 
results in partial volume effects. Compared to 2D FSE, three-dimensional 
(3D) FSE can be used to generate thinner sections due to its volumetric 
acquisitions and thus reduced partial volume effects. Consequently, 3D 
FSE can be acquired with high isotropic resolution and reformatted into 
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an arbitrary plane to visualize complex anatomical structures. The 
application of 3D isotropic FSE in clinical practice may therefore 
markedly decrease the total time required for MR imaging examination 
[5]. 

Commercial 3D FSE sequences typically use long echo trains with 
variable flip angles to achieve a reasonable scan time without excessive 
blurring [6]. As short T2 tissues are dominant in knee joints, image 
blurring often remains in 3D FSE MR images of the knee if long echo 
trains are used. The approaches used to reduce image blurring without 
increasing scan time, such as reducing the minimum flip angle of the 
echo train, are often accompanied by a reduced signal-to-noise ratio 
(SNR) [7]. In addition, high isotropic resolution in 3D images is often 
obtained at the cost of the SNR. Therefore, denoising is desirable when 
3D FSE is used for clinical MR imaging of the knee. 

Traditional denoising methods have been commonly used for de-
cades and include bilateral filtering [8], total variation (TV)-based 
regularization [9], nonlocal means (NLM) [10], and K-singular value 
decomposition (K-SVD) [11]. Block-matching 3D collaborative filtering 
(BM3D) [12] is a state-of-the-art denoising method [13] with a sub-
stantial number of applications in the MRI domain [14–16]. However, 
this denoising method’s long calculation time and requirement for a 
carefully designed prior [17] have prevented its routine use in clinical 
MRI settings. 

Convolutional neural networks (CNNs) [18] use a series of convo-
lution and non-linear activation operations, and thus show good flexi-
bility and capability for learning a hierarchy of features, which makes 
them useful in image denoising. However, when a CNN goes to a certain 
depth, its gradient tends to vanish, causing a degradation in perfor-
mance. To address this problem in deep CNNs, He et al. developed a 
residual learning (RL) approach that involves adding skip connections to 
a convolution block to connect low-level features directly to high-level 
representations [19]. RL allows for considerable increases in the depth 
and width of a network, and it has been shown to be efficient at image 
processing including classification [20], single image super-resolution 
[21], and denoising [22]. 

It is easier to predict the residual difference between the desired 
output and the input for a given stack of nonlinear layers in deep- 
learning models than to directly optimize the original mapping [19]. 
Many existing image denoising networks attempt to apply RL to 
approximate residual noise [22–28], based on the assumption that a 
noisy observation may be expressed as a combination of a clean image 
and noise. Zhang et al. [22] were the first to use RL with batch 
normalization (BN) in neural networks to generate denoising DnCNN, 
which are capable of blind Gaussian denoising of natural images. The 
application of DnCNN in the MRI field has also achieved remarkable 
results, such as removing artificial Rician noise [23] and real noise in 
diffusion-weighted brain MR images [24]. In addition to DnCNN, 
various other RL-based denoising CNNs have been developed for MRI 
applications. Xie et al. [25] improved denoising performance in arterial 
spin labeling (ASL) MRI by preserving the spatial resolution of input 
images during model learning. Li et al. [26] used Rician denoising to 
process synthetic and clinical brain MR images. RL combined with a 
fully convolutional network (FCN) by Ulas et al. [27], and an 
encoder-decoder structure by Tripathi et al. [28] were also used to 
denoise MR images. 

Given the limited amount of available data, many MRI denoising 
networks have been trained using synthetic data with a given noise 
variance over an entire image. However, the noise distributions in actual 
MR images are often more complicated than those in these synthetic 
data-based approaches. For example, reconstruction methods such as 
sensitivity encoding (SENSE) and generalized autocalibrating partial 
parallel acquisition (GRAPPA) contribute to the non-stationarity of the 
noise variance. In this study, we explored deep learning-based methods 
for denoising 3D FSE MR images based on real noise distributions. 

It is a common practice to increase the SNR (i.e., denoise) of MR 
images using time integration methods [29], such as by adjusting the 

number of excitations (NEX). As SNR is calculated as the mean signal 
over the standard deviation of the noise [30], the SNR of MR images is 
generally proportional to the square root of the NEX (

̅̅̅̅̅̅̅̅̅̅
NEX

√
). Although 

higher-quality images are obtained by increasing the NEX, a time pen-
alty results. Thus, to restrict imaging time within reasonable ranges, 
typical NEX values need to be adjusted to obtain an acceptable tradeoff 
between time and image quality [31]. 

In this study, we assumed that spatial-varying noise information can 
be extracted from 2-NEX acquisitions. This enabled us to use 2-NEX 
acquisitions to achieve denoising that generated a much higher SNR 
gain than that generated by the standard method, which uses the time 
integral of 2-NEX images. The scan time penalty was controlled by 
replacing a 1-NEX acquisition protocol with rapid low-SNR 2-NEX ac-
quisitions with protocol optimization. We also developed a CNN model 
to make use of the inherent noise map embedded in these 2-NEX ac-
quisitions, and thereby achieved significantly improved denoising per-
formance compared to that without the CNN model. Overall, under the 
framework of RL designed for 2-NEX images, we demonstrated that our 
developed CNN model outperformed state-of-the-art denoising methods 
in the 3D FSE MRI of knee joints. 

2. Methods 

2.1. Spatial-varying noise distribution in 3D FSE MRI 

It is commonly accepted that both the real and imaginary parts of the 
original signal from a single-coil MR acquisition are corrupted with 
uncorrelated zero-mean and equal-variance Gaussian noise in the fre-
quency domain. After complex Fourier transform, a linear trans-
formation method, the Gaussian characteristics of noise in real and 
imaginary images, denoted by N(0,σ0

2), are preserved. Consequently, if 
the MR acquisition is repeated, a second complex-valued image is ob-
tained; then, arithmetic can be performed on the two complex-valued 
images, as their signals can be assumed to be the same. Specifically, a 
complex-valued signal-strengthened map, also referred as the 2-NEX 
image in this paper, can be obtained by summing MR image data and 
a complex-valued noise map can be obtained by subtracting MR image 
data. The real and imaginary components of this signal-strengthened 
map and the noise map continue to exhibit a Gaussian distribution, 
denoted by N(0,σ2), where σ =

̅̅̅
2

√
σ0. 

The magnitude image of the signal-strengthened map therefore fol-
lows a Rician distribution and approximates a Gaussian distribution 
when the signal is sufficiently high [32]. In contrast, the magnitude 
image of the noise map follows a Rayleigh distribution, with the mean 
and variance given by Eq. (1), as follows. 

μR = σ
̅̅̅
π
2

√

and σ2
R =

(
2 −

π
2

)
σ2 (1) 

Phased array coils with multiple coil elements, in which the complex 
Gaussian assumption of noise is valid in each coil in the frequency 
domain, are commonly used in MRI. If the k-space is fully sampled, the 
final composite magnitude image will follow a Rayleigh distribution in 
the background noise-only region, or a noncentral chi (nc − χ) distri-
bution, which take the signal intensities, but not the noise correlations, 
into consideration [30]. 

However, in addition to the non-negligible correlations in phased 
array systems, the commonly employed k-space undersampling and 
reconstruction algorithms used in fast MRI increases the complexity of 
noise distributions [33]. To illustrate this in 3D FSE MRI, we used an 
eight-channel knee coil with a SENSE acceleration factor of 2 to acquire 
3D FSE images. Fig. 1 shows two signal-strengthened magnitude images 
and the corresponding noise maps calculated using the aforementioned 
method. We generated the histograms of noise and fitted them with a 
Rayleigh distribution. If the noise follows an nc − χ distribution, its 
square will follow a noncentral chi-squared (nc − χ2) distribution [34]. It 
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can be seen in Fig. 1 that the noise showed a non-stationary pattern and 
did not exactly follow either a simple Rayleigh distribution or an nc− χ 
distribution. We also calculated the local variance of the noise maps in 
patches of 3 × 3 pixels (Fig. 1), which revealed an obvious spatial 
variation in the noise variance. Thus, based on the assumption that noise 
is non-stationary in a given set of MR images, we considered that it 
would be more appropriate to use real MR images with a true noise 
distribution than simple synthetic noise to train a denoising network. 

2.2. Network architecture 

A key aspect in the development of our proposed network was to use 

RL to learn the inherent real noise distribution in a dual-NEX acquisi-
tion, and thereby realize denoising of MR images that was superior to 
that obtainable with existing methods. The overall pipeline of our 
method, with some intermediate features of a typical slice, is illustrated 
in Fig. 2. 

The CNN consists of three modules: a feature extraction module, a 
bridge module, and an assembly module. The whole network has about 
1.6 M trainable parameters.  

• Feature extraction module. The first six 128-kernel convolutional 
layers serve as the feature extraction module, which extracts certain 

Fig. 1. Two typical slices of 2-NEX images. From left to right: signal-strengthened images, noise maps, histograms of the noise with corresponding fitted Rayleigh 
probability density functions, histograms of the noise squared with noncentral chi-squared distribution probability density functions, and local variance maps 
of noise. 

Fig. 2. Our novel convolutional neural network (CNN) architecture (I) and an illustration of some of the channel features at some layers of a typical slice (II). Our 
CNN can manage both dual-input (solid line (a)) and single-input (dashed line (a’)) data. 

S. Zhao et al.                                                                                                                                                                                                                                    



Computers in Biology and Medicine 151 (2022) 106295

4

low-level features (b) of the noise from the 2-NEX input (a). Our CNN 
is able to handle both dual-input (a) and single-input data (a’).  

• Bridge module. This module further optimizes the noise features 
using two parallel blocks: a transporting block and a residual block. 
The transporting block uses a 64-kernel convolutional layer with BN 
to maintain the flow of the original 2-NEX input information. The 
residual block provides a coarse evaluation of the denoised image by 
implementing the first stage of RL on the original 2-NEX inputs. An 
intermediate RL output (d) is then obtained by summing the first- 
stage residual difference (c) and a skip connection from the 
average of the 2-NEX input (a’). The residual filter feature maps (e) 
show features from the preliminary denoised intermediate RL output 
(d), while the transporting block feature maps (f) mostly inherit 
noise features from the feature extraction module.  

• Assembly module. In this module, another convolutional layer is 
applied to consolidate the concatenated residual block feature maps 
(e) and transport the block feature maps (f). The remaining five 
convolution layers employ 128 kernels to generate high-level noise 
features. A sophisticated evaluation of the noise is then generated as 
the second residual difference (g). This residual difference and the 
previous coarsely denoised intermediate RL output (d) are summed 
to obtain the final denoised output (h). 

2.3. Two-step residual learning for 2-NEX images 

The noise map for 2-NEX images may be calculated as the difference 
between two individual NEX images, and thus we assumed that keeping 
each NEX image separated in the network would facilitate the deter-
mination of the inherent noise information. General RL models used for 
denoising requires the consistency of format between the input and the 
target output due to direct application of skip connections. Some vari-
ants of RL models, such as DL-ASL [25], does not have this limit after 
adding convolution to skip connections. These methods, however, are 
initially proposed for single input. In our network we designed RL to 
process two independent NEX images as input to use the inherent noise 
information in 2-NEX data for residual difference prediction and used 
their average for the skip connection. 

We implemented RL in two stages in our network. The first stage of 
RL calculated a coarse residual difference and built its skip connection 
on the average of 2-NEX inputs, with its output denoted as the inter-
mediate RL output. The second stage of RL generated a more sophisti-
cated second-stage residual difference using features from both the 2- 
NEX input and the intermediate RL output. The final output was ob-
tained from the second-stage residual difference with a skip connection 
to the intermediate RL output. This RL design ensured that the network 
made full use of both the strengthened signal and the inherent noise 
information from 2-NEX images. 

2.4. Loss function 

The mean squared error, l2, is probably the most widespread and 
convenient error measure used in image processing. However, it is 
widely accepted that l2 does not correlate well with human perception of 
image quality [35]. The structural similarity index measure (SSIM) [36] 
is a commonly used reference-based index that evaluates images while 
accounting for the fact that the human visual system is sensitive to 
changes in local structure [37]. We thus combined l2 loss and SSIM loss 
to generate an output with sharper edges and clearer details than either 
loss alone, as described in Eq. (2) below. 

argminf ||f (I2NEX) − I8NEX ||
2
2 ∗ (1 − SSIM(f (I2NEX), I8NEX ) ) (2)  

2.5. Evaluation methods 

The image denoising performance of our method was measured 
using the peak signal-to-noise ratio (PSNR) and the SSIM value. The 

PSNR describes the denoising quality, and the SSIM is determined by 
modeling any image distortion as a combination of brightness, contrast, 
and structure correlation [38]. 

Given a reference image f and a test image g, with mean luminance μf 

and μg, respectively, standard deviation σf and σg, respectively, and 
covariance σfg between f and g, the PSNR and SSIM between f and g are 
defined by Eqs (3) and (4), as follows: 

PSNR(f , g)= 10 log10

(
2552

MSE(f , g)

)

(3)  

SSIM(f , g) =
(
2μf μg + C1

)(
2σfg + C2

)

(
μf

2 + μg
2 + C1

)(
σf

2 + σg
2 + C2

) (4)  

where MSE is the mean square error between f and g, and C1 and C2 are 
constants used to avoid division by zero. A higher PSNR indicates a 
higher image quality, and the closer that the SSIM value of two images is 
to 1, the more similar are the two structures. In our experiments, the 
SSIM is locally calculated by an 11 × 11 Gaussian window and the mean 
value is used as the final measure. Matlab R2021a (Mathworks, Natick, 
MA, USA) was used for image analysis. 

The quality of the patient datasets was independently reviewed for 
perceived SNR, overall image quality, and structure visibility by a 
radiologist with specialty fellowship training in musculoskeletal radi-
ology. The key anatomical structures of the knee that were evaluated 
were the cartilage, anterior cruciate ligament, posterior cruciate liga-
ment, medial collateral ligament, lateral collateral ligament, medial 
meniscus, lateral meniscus, extensor tendons, and bone. 

2.6. Methods for comparison and training settings 

The performance of our method was evaluated and compared with 
the following state-of-the-art methods: BM3D [12], DnCNN [22], 
DL-ASL [25], and RicianNet [26]. For the 2-NEX input, the concatena-
tion of two individual complex-valued images was denoted as 
dual-input, while the use of their average as the input was denoted as 
single-input. The real noise distribution was inherently present in the 
dual-input scenario but was absent from the single-input scenario. 
Because BM3D and DnCNN can only process single inputs, dual-input 
results were not obtained for these two methods. The paired t-test was 
applied to compare the difference. The p-value of less than 0.05 indi-
cated a significant difference. We also trained separated networks on 
three different imaging planes; i.e., the axial, coronal, and sagittal 
planes. We performed slice-by-slice denoising in 2D instead of direct 3D 
denoising for all denoising methods compared in this study, including 
our novel method. 

Our CNN has 14 layers, and each convolution has filter size of 3× 3, 
stride 1, and padding 1. In addition, it employs BN and the rectified 
linear unit (ReLU) [39] activation function. We used the Adam optimizer 
and the ReduceLROnPlateau monitor with an initial learning rate of 
0.0001, which is decayed by a factor of 0.2 when the loss stops 
decreasing for 10 epochs. The entire 214 × 214 images were used as 
inputs, with a batch size of eight. All of the models were optimized using 
the loss function, as described in Eq. (2). As more kernels allow the CNN 
to capture more features [40,41], we doubled the number of convolution 
filters in each layer in the DnCNN (from 64 to 128) to enable a fair 
comparison of these methods. All experiments were implemented in 
Python 3.9.7 with Pytorch 1.10.0 on four NVIDIA TITAN V GPUs (12 
GB). 

2.7. Data acquisition 

The datasets were collected using a 3D proton density-weighted FSE/ 
TSE VISTA™ pulse sequence on a Philips Achieva TX 3.0 T MRI in-
strument (Philips Healthcare, Best, Netherlands) with an eight-channel 
receiver knee coil (Invivo, Gainesville, FL, USA). All MRI examinations 
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were conducted under the approval of the Institutional Review Board. 
The MRI parameters were as follows: a repetition time/echo time of 
900/33.6 ms; excitation flip angle 90; spectral attenuated inversion re-
covery (SPAIR) for fat suppression; FOV 160 × 160 × 120 mm3 [3]; 150 
slices with an isotropic resolution of 0.8 × 0.8 × 0.8 mm3; an echo train 
length of 42; and a SENSE acceleration factor of 2. The imaging acqui-
sition time per NEX was approximately 2.9 min. We collected high-SNR 
images (which served as the target images) from the 8-NEX acquisition, 
and the first 2-NEX provided the input of the network. Datasets 
including 8-NEX 3D FSE MRI data were collected from 67 healthy vol-
unteers. 50 of these datasets were used for training and 17 were used for 
testing. An additional 40 3D FSE MRI datasets with 2-NEX were 
collected from 40 patients (categorized into the four Kellegren and 
Lawrence (KL) grades for the classification of osteoarthritis, with KL4 
being the most severe) exhibiting various stages of osteoarthritis, and 
these datasets were used for testing. The subjects recruited in MRI exams 
include 51 males (age 36.9 ± 17.9) and 56 females (age 43.4± 19.5). 

3. Results 

3.1. Network performance with single-input and dual-input data 

Table 1 shows the average PSNR and SSIM results for the sagittal 
plane testing of healthy volunteer datasets. We denoted 2NEX-avg as the 
standard results after averaging two complex-valued images of 2-NEX 
acquisitions. The four deep-learning models were superior to the tradi-
tional denoising method, BM3D, and our novel model using dual-input 
images achieved the best performance. 

Although the single-input and dual-input training data were from the 
same batch, with equal acquisition times, the denoising performance 
with the dual-input data was always superior to that with the single- 
input data. This was because our RL method for 2-NEX images was 
designed to take advantage of the noise information from 2-NEX images, 
which enabled our model to process dual-input data with better 
denoising ability than single-input data. Results of the paired samples t- 
test demonstrate a statistically significant improvement (p < 0.05) in the 
performance of all three models (DL-ASL, RicianNet, and our model) 
using dual-input data compared to using single-input data. Also note our 
model shows a statistically significant improvement in performance (p 
< 0.05) compared to DL-ASL and RicianNet when using dual-input data. 

Fig. 3 shows the results from a representative test subject and the cor-
responding 8-NEX ground truth. The use of the dual-input data resulted 
in greater similarity to the 8-NEX ground truth than the use of the single- 
input data. Of all the methods tested, our model with dual-input data 
suppressed noise most uniformly, even in regions with high noise levels. 
Facilitated by the separation and concatenation operations of the par-
allel transporting and residual blocks, the RL design for 2-NEX images 
ensured that the final output used both original and residual features. 

3.2. Network performance for denoising in 3D datasets 

Table 2 shows the mean PSNR and SSIM denoising results from 
healthy volunteer testing datasets in the axial, coronal, and sagittal 
planes. Fig. 4 shows the result of denoising the data of one healthy test 
subject in these three planes. The noise level and the distribution of 
2NEX-avg images differed in each plane, even for the same knee, which 
is consistent with the spatially variant characteristics of noise. As we 
trained our model using MR images containing real noise, our method 
achieved denoising performance in all three planes that was superior to 
that achieved by standard averaging methods. Moreover, our denoising 
method clearly denoised MR images of critical structures, including 
bone, cartilage, menisci, and the anterior cruciate ligament. 

The patient cohort group comprised 40 patients with varying se-
verities of osteoarthritis of the knee. The implementation of our 
denoising approach afforded MR images of all anatomical structures that 
had superior perceived SNR and improved overall image quality relative 
to standard averaging method. The result from a representative patient 
test dataset is shown in Fig. 5. This subject had KL4 osteoarthritis, and 
the characteristic radiological findings seen in osteoarthritis, such as 
cartilage thinning, osteophytosis, bone marrow cysts, bone marrow 
edema, joint effusions, and para-labral cysts, were all clearly identifiable 
following noise suppression using our method. 

The performance of our method using data from both healthy 
volunteer and osteoarthritis patient datasets implies that our CNN is able 
to simultaneously denoise and retain anatomical structures. The bene-
ficial reduction in overall patient scan time in three planes combined 
with improved image quality highlights its potential clinical utility. 

3.3. Ablation study 

The feature extraction module and the assembly module constitute 
the nonremovable skeleton in our CNN. Thus, ablation studies were used 
to investigate the design of the bridge module. The modified network 
structure and the corresponding denoising results on the same test 
datasets are shown in Fig. 6. Model-Tra represents our CNN with only a 
transporting block in the bridge module, and Model-Res corresponds to 
the CNN with only a residual block. Table 3 shows the mean PSNR and 
SSIM values of the three models for the healthy volunteer test datasets. 
Our model showed increased denoising performance compared to both 
the Model-Tra and Model-Res models. In particular, the transporting 
block preserved the overall noise information from the original 2-NEX 
input, and the residual block extracted more subtle noise information 
from the already coarsely denoised intermediate residual output. The 
parallel block structure thus provided sufficient information for our 
novel CNN, contributing to its improved performance in both PSNR and 
SSIM metrics. 

3.4. Network performance for denoising synthetic noise 

To further illustrate that our proposed network can learn non- 
stationary noise, we synthesized MR images with known spatial noise 
distribution and performed denoising on these synthetic images. Fig. 7 
shows the comparison of the given and the predicated noise distribution 
using the proposed method. The predicted noise distribution is calcu-
lated as the difference between the images after denoising and the input. 
Note the proposed method can learn the spatial noise distribution. 

Table 1 
Mean PSNR and SSIM values indicating the performance of denoising methods in 
the sagittal plane. The BM3D and DnCNN methods only process single inputs.   

PSNR SSIM 

Single- 
input 

Dual- 
input 

pb Single- 
input 

Dual- 
input 

pb 

2NEX- 
avg 

31.4114 ± 2.2761 – 0.86612 ± 0.03834 – 

BM3Da 32.2920 
± 2.3124 

– – 0.88810 
±

0.03103 

– – 

DnCNNa 34.0181 
± 2.2646 

– – 0.91976 
±

0.02026 

– – 

DL-ASL 34.0692 
± 2.2068 

34.4133 
± 2.1456 

0.000 0.92052 
±

0.02125 

0.92367 
±

0.02047 

0.000 

RicianNet 34.0455 
± 2.2154 

34.5632 
± 2.2042 

0.000 0.92055 
±

0.02066 

0.92388 
±

0.02031 

0.000 

Our 
Model 

34.1432 
± 2.2244 

34.7233  
± 2.2108 

0.000 0.92054 
±

0.02123 

0.92459  
± 
0.02047 

0.000  

a BM3D and DnCNN only process single input. 
b The p value is the significance level of Paired Sample t-Test comparing the 

means between models’ performance with single-input and dual-input. All p 
values here are less than 0.05, indicating a significant difference of the data. 
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4. Discussion 

3D FSE shows clinical potential for MRI-based assessments of artic-
ular cartilage, menisci, ligaments, tendons, and nerves [42,43]. To 
further utilize 3D FSE high-through-plane resolution to visualize 

complex anatomical structures, we developed a method for 3D FSE knee 
joint MR image denoising. 

Prior knowledge of a noise distribution facilitates denoising; how-
ever, real noise distributions of typical 3D MR images often have spatial 
variations and are difficult to characterize. Li et al. [6] obtained a 3D 
FSE MRI noise map using additional noise-only acquisition with radio-
frequency (RF) excitations switched off and by following a routine 
reconstruction pipeline. Instead, we used 2-NEX acquisition to provide a 
network with inherent noise information. As the traditional denoising 
methods often compromise the image details, a deep learning denoising 
method was employed in this experiment to minimize such side effects 
by its data-driven feature exaction. Our CNN was specifically designed 
for dual-input data, and it contains feature extraction, bridge, and as-
sembly modules to extract, integrate, and transfer the features of the 
2-NEX input. Assisted by the L2 norm and SSIM loss, our CNN’s two-step 
RL parallel transporting and residual block design ensured that it can 
learn real noise information from the 2-NEX input and the high-SNR 
training target data. The experimental results suggest that our method 

Fig. 3. Denoising results of a typical slice of the volunteer test dataset. The first row shows (a) the single-input 2NEX-avg and its corresponding denoised output using 
(b) BM3D, (c) DnCNN, and (d) our model. The third row shows the denoised outputs from a dual-input 2-NEX using (i) DL-ASL, (j) RicianNet, (k) our model, and (l) 
the ground truth. The second and fourth rows are residual differences between corresponding images and the 8-NEX ground truth. 2NEX-avg = the standard results 
after averaging two complex-valued images of 2-NEX acquisitions. 

Table 2 
Mean PSNR and SSIM values of the test datasets denoised in the axial, coronal, 
and sagittal planes.   

PSNR SSIM 

2NEX-avg Our Model 2NEX-avg Our Model 

axial 31.1043 ±
2.6417 

33.4544 ±
2.4321 

0.86473 ±
0.05759 

0.91581 ±
0.03581 

coronal 33.2752 ±
2.2388 

35.8279 ±
2.3827 

0.91528 ±
0.02548 

0.94977 ±
0.01524 

sagittal 31.4160 ±
2.2530 

34.7236 ±
2.1836 

0.86614 ±
0.03823 

0.92463 ±
0.02046  
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was superior to state-of-the-art denoising networks. Specifically, the 
overall improvement in the quality of 3D FSE MR images of osteoar-
thritis patients’ knees processed by our method compared with the 
quality of images processed with standard averaging methods demon-
strates the clinical potential of our approach. 

FSE acquisition plays a central role in clinical MRI and is used for 
various anatomical structures. In this study, we focused on denoising 3D 

FSE MR images of knee joints. This method may be extended to 3D FSE 
imaging of other anatomical structures and imaging applications based 
on 3D FSE acquisitions. Moreover, quantitative analysis based on 3D FSE 
may also benefit from image denoising. Magnetization-prepared 3D FSE 
has been used for fast 3D quantitative parametric MRI [44,45] due to its 
high SNR efficiency and insensitivity to T1 relaxation effects during FSE 
readout under the Carr–Purcell–Meiboom–Gill condition. As accurate 

Fig. 4. Results of denoising typical slices from different planes of the volunteer test dataset. From top to bottom row: the axial, coronal, and sagittal planes. From left 
to right: a ground truth 8-NEX image, an input 2NEX-avg image, an image denoised using our model, the residual difference between the 2NEX-avg input and the 
ground truth, and the residual difference between the denoised image and the ground truth. 2NEX-avg = the standard results after averaging two complex-valued 
images of 2-NEX acquisitions. 

Fig. 5. Results of denoising typical slices from different planes of an osteoarthritis patient test dataset. From top to bottom row: the axial, coronal, and sagittal planes. 
From left to right: an input 2NEX-avg image and the image denoised using our model. The image in the white box is enlarged to highlight the fine structural in-
formation. 2NEX-avg = the standard results after averaging two complex-valued images of 2-NEX acquisitions. 
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MRI quantification depends on the noise characteristics in quantifica-
tion models, our method is potentially beneficial to quantitative MRI 
based on 3D FSE acquisitions. In addition, our deep-learning denoising 
CNN is likely to be generalizable to other MRI pulse sequences using the 

multi-NEX acquisition method, such as 2D FSE. 
For protocols that use multi-NEX during FSE acquisition, there is no 

scan time penalty when applying our method for denoising. For pro-
tocols with 1-NEX acquisition, a 2-NEX scan of simply two repeated 1- 
NEX scans doubles the scan time. For 3D FSE, there is the flexibility of 
adjusting the pulse sequence parameters to achieve a tradeoff between 
scan time and SNR. The scan time can be reduced by increasing the echo 
train length (i.e., the number of refocusing RF pulses in one train). 
However, increasing the echo train may also increase image blurring. 
The flip angle train can be designed (i.e., by reducing the minimum 
refocusing flip angle) to reduce blurring. The train duration can also be 
reduced by increasing the readout bandwidth, thus reducing image 
blurring resulting from the increased echo train length. In addition, the 

Fig. 6. Our convolutional neural network (a) and its variants, Model-Tra (b) and Model-Res (c).  

Table 3 
Mean PSNR and SSIM values of the ablation study models used to test the per-
formance of the models in the sagittal plane.   

PSNR SSIM 

Model 34.7233 ± 2.2108 0.92459 ± 0.02047 
Model-Tra 34.5816 ± 2.2452 0.92308 ± 0.02157 
Model-Res 34.6493 ± 2.1935 0.92320 ± 0.02115  

Fig. 7. An illustration of the denoising performance on the synthetic images with two non-stationary noise patterns (c) (g). (a) (e) are the original synthetic images, 
(b) (f) correspond to the denoised output of our proposed model, and (d) (h) are the corresponding predicted noise distributions using our proposed model. 
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scan time can be reduced by performing greater undersampling of the k- 
space. However, the scan time reduction for such a protocol adjustment 
comes at the cost of the SNR. Thus, the scan time penalty of a 2-NEX scan 
involves a tradeoff with an SNR penalty. A final denoised image ob-
tained by our method therefore has a much higher SNR than the sum of 
the 2-NEX acquisitions which is expected to have SNR similar to 1-NEX 
acquisition with comparable scan time. 

There are several limitations to this study. First, our method was a 
supervised approach. Thus, if the imaging protocol is changed, resulting 
in a substantial change in the real noise distribution, the network may 
need to be retrained with target images acquired using the corre-
sponding protocol. It is thus important to investigate approaches that 
require few target images to train the network, under the same principle 
proposed in this work; namely, using the inherent real noise in a dual- 
input complex-valued image. Second, our training data were all from 
healthy subjects, and thus our method may be relatively weak at pro-
cessing real patient data. That is, except for the reconstruction methods, 
dielectric and inductive losses in a sample may also influence the noise 
distribution [46]. Tissues with different water content may contribute 
differently to noise [47]. This emphasizes the need to use real MR im-
ages of different anatomical structures and inhomogeneous dielectric 
properties for network training. Third, we used 8-NEX 3D FSE images as 
the ground truth for training. The acquisition of these images requires a 
long scan time, and thus it should be investigated whether images 
obtainable via other shorter acquisitions can be used as the ground truth. 
Fourth, we performed denoising slice-by-slice using a 2D network. Given 
the redundancy of 3D data, it should be explored whether our CNN can 
be extend to 3D complex-valued CNN [48], as this would enable 
exploration of the 3D noise features of complex-valued MRI data and the 
development of more convenient applications. 

5. Conclusion 

We developed an RL-based CNN that uses the spatial-variant noise 
information from dual-NEX acquisition to denoise MR images. This 
approach achieved significantly improved SNR gain compared to stan-
dard methods of averaging multi-NEX acquisition. Our method also 
outperformed existing methods in the denoising of 3D FSE MR images of 
knee joints. The results from patients exhibiting various stages of oste-
oarthritis show that our method has potential clinical utility for knee 
joint MR imaging and provides a new perspective for MRI denoising 
tasks. 
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