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ABSTRACT

Frequency domain optical coherence tomography (FDOCT)

is a new technique that is well-suited for fast imaging of bi-

ological specimens, as well as non-biological objects. The

measurements are in the frequency domain, and the objec-

tive is to retrieve an artifact-free spatial domain description

of the specimen. In this paper, we develop a new technique

for model-based retrieval of spatial domain data from the fre-

quency domain data. We use a piecewise-constant model for

the refractive index profile that is suitable for multi-layered

specimens. We show that the estimation of the layered struc-

ture parameters can be mapped into a harmonic retrieval prob-
lem, which enables us to use high-resolution spectrum esti-

mation techniques. The new technique that we propose is ef-

ficient and requires few measurements. We also analyze the

effect of additive measurement noise on the algorithm per-

formance. The experimental results show that the technique

gives highly accurate parameter estimates. For example, at

25dB signal-to-noise ratio, the mean square error in the posi-

tion estimate is about 0.01% of the actual value.

Index Terms : frequency domain optical coherence tomog-

raphy, harmonic retrieval, annihilating filter, high-resolution

method.

1. INTRODUCTION

Optical coherence tomography (OCT) is becoming an increas-

ingly popular tool for imaging the three-dimensional structure

of layered biological as well as non-biological specimens.

FDOCT is a recent alternative to the already established time

domain OCT (TDOCT). FDOCT systems have two advan-

tages: (1) They are much faster than TDOCT because the ac-

quisition is done without scanning and (2) They offer greater

sensitivity with a detection threshold well above 80dB, even

in situations with low light levels [1]. The first medical appli-

cation of FDOCT is described in [2], and the first in-vivo im-

ages are reported in [3, 4]. The FDOCT measurements are in

the frequency domain and the conventional reconstruction ap-

proach is to apply an inverse Fourier transform. However, this
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Fig. 1. Schematic of the FDOCT system experimental setup

technique has shortcomings and is known to introduce arti-

facts [5]. Also, it is not suitable if we are interested in accurate

estimates of the specimen parameters. Given the nascency of

the field, not much research has gone into the signal process-

ing aspects of the technique. The most recent result in this

direction is the use of minimum-phase functions to develop a

Fienup-like iterative reconstruction algorithm [6].

In this paper, we take a model-based approach and de-

velop a new technique for accurate parameter retrieval from

the FDOCT measurements.

2. FDOCT SIGNAL ACQUISITION

The FDOCT experimental setup is shown in Fig.1. The out-

put of a broadband light source is split into two beams. Each

beam is directed towards one arm of a Michelson interfer-

ometer. The light reflected from the broadband mirror serves

as the reference signal. The reference and the light reflected

from the object are combined in a collinear fashion by the

fiber coupler and directed towards an optical spectrum ana-

lyzer. The signal from the object consists of many elementary

waves emanating from different depths z within the object.

The measured interference signal I(ν) is given by:

I(ν) = S(ν)
∣∣∣∣aRej2kr +

∫ ∞

0

b(z)ej2k[r+n(z)z]dz

∣∣∣∣
2

(1)
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where,

k = wave number; k = 2π
λ = 2πν

c , where λ is the wave-

length, ν is the frequency and c is the speed of light in

vacuum.

2r = pathlength in the reference arm,

2(r + z) = pathlength in the object arm

2z = pathlength in the object arm measured from the refer-

ence plane

z0 = offset distance between the reference plane and the ob-

ject surface

n(z) = refractive index as a function of the depth z

aR = reference wave amplitude

b(z) = amplitude of the wave backscattered from the object

S(ν) = spectral intensity distribution of the broadband light

source

Without loss of generality, we set aR = 1 and rewrite (1) as:

I(ν) = S(ν)
∣∣∣∣1 +

∫ ∞

0

b(z)ej2kn(z)zdz

∣∣∣∣
2

(2)

From the intensity measurements, one can extract the path-

length differences, which is the information that we are inter-

ested in. Specifically, given I(ν), we want to recover b(z).
This is the fundamental inverse problem in FDOCT. The term

B(ν) =
∫∞
0

b(z)ej2kn(z)zdz is the frequency response of the

specimen. Therefore, we have: I(ν) = S(ν) |1 + B(ν)|2
with B(ν) unknown, which is a non-linear estimation prob-

lem.

3. THE MULTILAYER SPECIMEN MODEL

We model the specimen as a concatenation of layers, each

having a fixed refractive index. Thus, we have a piecewise-

constant refractive index profile n(z). The light propagating

through the specimen gets reflected at the interfaces because

of the change in refractive index. The reflected light intensity

therefore can be written as a sum of Dirac-delta impulses,

each impulse corresponding to a discontinuity in the refrac-

tive index profile. This constitutes our model of the impulse

response of the object, whose unknown parameters are the

positions b� and the weights a� of the Dirac impulses. In the

Fourier domain, the problem now reduces to the following:

Fit the frequency domain intensity measurements with a func-

tion of the form:

I(ν) = S(ν)

∣∣∣∣∣1 +
L∑

�=0

a�e
i2πb�ν

∣∣∣∣∣
2

(3)

by making an appropriate choice of the parameters {a�, b�, � =
0, 1, 2, ..., L}. In terms of the notation that we introduced in

Sec. 2, we have B(ν) =
∑L

�=0 a�e
i2πb�ν . The source power

spectrum S(ν) can either be measured by blocking the object

arm fully or estimated by averaging over an ensemble of inde-

pendent lateral scans or measurements. Thus, we can assume

that it is known a priori.

Our objective is to estimate the parameters a� and b� as ac-

curately as possible. This will enable us to compute the speci-

men parameters such as the refractive index and the thickness

of each layer accurately.

4. THE INVERSE PROBLEM AND HARMONIC
RETRIEVAL

We consider the observations I(ν), normalized with respect

to the source power spectrum S(ν). Let M(ν) denote the

normalized observations. We have

M(ν) = 1 +
L∑

�=0

a∗�e
−i2πb�ν +

L∑
�=0

a�e
i2πb�ν

+
L∑

m=0

L∑
�=0

a�a
∗
me−i2π(b�−bm)ν (4)

An important practical aspect that we need to keep in mind is

the fact that the intensity of the reflected light is much smaller

than that of the incident light. Stated mathematically, we have∣∣∣∑L
�=0 a�e

i2πb�ν
∣∣∣ � 1. In this paper, we refer to this as the

source dominance condition. This condition also implies that

|B(ν)|2 is very small compared to unity. We can thus write

M(ν) as: M(ν) = 1 + D(ν) + |B(ν)|2 where D(ν) is given

by

D(ν) =
L∑

�=0

a�e
i2πb�ν +

L∑
�=0

a∗�e
−i2πb�ν (5)

Now, let us consider the inverse Fourier transform of D(ν):

F−1 {D(ν)} =
L∑

�=0

a�δ(z + b�) +
L∑

�=0

a∗�δ(z − b�) (6)

We see that (6) represents a sum of Dirac impulses and we

are interested in finding the strength and position of the Dirac

impulses. This is similar to the problem of harmonic retrieval
[7] and finite rate of innovation sampling [8]. Thanks to our

model of the specimen, we are now in a perfect position to

deploy the powerful annihilating filter technique [7] that is

the main ingredient of all high-resolution techniques [7, 8].

If the source spectrum is Gaussian, the inverse Fourier trans-

form of S(ν)D(ν) will consist of a sum of spatially displaced

Gaussians. This is again similar to the problem addressed in

Sec.IV B of [8]. In the following sections, we present the

sequential, two-step technique to compute b� and a�, succes-

sively, from the samples of D(ν). In practice, we have the
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samples of M(ν). However, this is not a problem because the

constant unity (see (4)) only acts as a bias/offset and the term

|B(ν)|2 is too small in magnitude to dominate in the subspace

based estimation techniques that will be presented in Sec.5.

4.1. Solution for b�

In practice, we have only access to sampled data. The samples

of D(ν) are denoted by Dk and are assumed to be alias-free.

Thus, our model takes the form:

Dk =
L∑

�=0

a�γ
k
� +

L∑
�=0

a∗�γ
∗k
� , k = k1, k1 + 1, ..., k1 + K − 1

(7)

where γ� = ei2πb� . To simplify the notation, we assume that

k1 = 0, keeping in mind that the same analysis holds for any

non-zero integer value. We define a polynomial P (γ) with

roots {γ�, γ
∗
� } such that,

P (γ) =
L∏

�=0

(γ − γ�)(γ − γ∗� ) =
2L∑
i=0

piγ
i (8)

where the pi are unknown, as yet. We can compute them

from Dk by using the annihilation property:
∑2L

i=0 piDk−i =
0, ∀k ∈ [2L + 1,K − 1]. These linear equations are written

in a matrix form as:⎡
⎢⎢⎢⎢⎢⎣

D2L+1 D2L . . . D1

D2L+2 D2L+1 . . . D2

D2L+3 D2L+2 . . . D3

...
...

. . .
...

DK−1 DK−2 . . . DK−1−2L

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
D

⎡
⎢⎢⎢⎢⎢⎣

p0

p1

p2

...

p2L

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
p

= 0 (9)

where 0 is the null vector. In estimation theory, D is called

the measurement matrix. If the Dirac locations are distinct

and K ≥ 4L+ 4 , then the equation Dp = 0 has a unique so-

lution up to a scale factor. The entries in p are the coefficients

of the polynomial P (γ). We apply a root-solver to compute

{γ�, γ
∗
� , � = 0, 1, 2, ..., L} and then deduce b�.

4.2. Solution for a�

Interestingly, the previous solution for b� is independent of a�

and so their values can be determined before hand. We are

now faced with a much simpler linear problem. Specifically,

using the pre-computed values of γ�, we can rewrite (7) as:

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1
γ1
0 γ∗10 . . . γ∗1L

γ2
0 γ∗20 . . . γ∗2L
...

...
. . .

...

γK−1
0 γ

∗(K−1)
0 . . . γ

∗(K−1)
L

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
V

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a∗0
a1

a∗1
...

a2L

a∗2L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
a

=

⎡
⎢⎢⎢⎢⎢⎣

D0

D1

D2

...

DK−1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
d

(10)

and solve this Vandermonde system of equations to obtain a.

Alternatively, we can also estimate a� directly from the spec-

trum of D(ν). This can also be done efficiently by using the

Goertzel algorithm. This alternative is also useful to circum-

vent matrix instability problems if K is large.

In principle, any set of 4L+4 measurements of Dk suffice

to compute the 2L+2-complex valued parameters {a�, b�}. In

practice, it is useful to introduce some redundancy to obtain a

more robust scheme and to minimize the effect of noise.

5. EFFECT OF ADDITIVE NOISE

We also investigate the effect of measurement noise which

is inevitable in a real-world experiment. The noisy measure-

ments are given by:

I(ν) = S(ν)

∣∣∣∣∣1 +
L∑

�=0

a�e
i2πb�ν

∣∣∣∣∣
2

+ N(ν) (11)

where N(ν) denotes the spectrum of noise. In the presence

of noise, we do not have exact solutions to the equations (9)

and (10). However, we can solve them in the minimum-

norm sense. The optimum vector p∗ is defined as: p∗ =
arg minp ‖Dp‖2. p∗ turns out to be the minimum eigenvec-

tor of D
T

D. Similarly, the optimum vector a∗ is defined as:

arg mina ‖Va − d‖2. This yields the Moore-Penrose solu-

tion: a∗ =
(
V

T
V
)−1

V
T d.

One may also denoise the signal based on the singular-

value decomposition of D
T

D. In practice, we compute the

matrix D from the measurements I(ν) normalized by the mea-

sured source power spectrum. The dominant singular values

correspond to the signal and the associated singular vectors

span the desired signal subspace. The smaller singular values

correspond to the noise and the weak signal cross-terms com-

ing from |B(ν)|2. The corresponding singular vectors span a

subspace that is orthogonal to the desired signal subspace.

In our analysis, we have assumed a priori knowledge of

L, which may not always be available in practice. Many tech-

niques exist for estimating L, under the popular title of order-
estimation [7].

6. SIMULATION RESULTS

We generated experimental data for a two-layer specimen with

thickness 119nm and 92nm. The corresponding refractive in-

dices are chosen as n1 = 1.05 and n2 = 1.012 (arbitrary

numbers). The specimen is placed at a distance of 100nm

from the reference plane (see Fig.1). The corresponding free-

space refractive index is n0 = 1. A broadband light source

operating in the [700nm,900nm] wavelength range is cho-

sen. The simulation of this physical set-up yields a paramet-

ric model of the form (3) with L = 2, {a0 = −0.0244, a1 =
0.0184, a2 = 0.0060} and {b0 = 0.0667 × 10−14, 0.1500 ×
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Fig. 2. The relative bias, variance and mean square error, all

in dB, as a function of the SNR (dB). The upper row of plots

correspond to b2 and the lower row of plots corresponds to

a2. Each data point is obtained by averaging over 100 realiza-

tions. We note that the estimators exhibit strong consistency

with respect to increase in the SNR.

10−14, 0.2120 × 10−14} . We sample M(λ) uniformly on

the 1/λ axis to yield uniformly-spaced data on the frequency

axis. We used a sampling rate which is 10 times the wave-

length spread of the source. S(ν) is assumed to be constant

over the operating wavelength range. N(ν) is generated by

a pseudo-random number generator according to a uniform

distribution. We used 64 data samples for the experiment.

We varied the signal-to-noise ratio (SNR) from 5dB to 60dB

in steps of 5dB. We generated 100 Monte-Carlo realizations

of the noisy signal for each value of the SNR and applied

the algorithm (Sec.5) to estimate the parameters of the ex-

ponentials. The bias, variance and mean square error (MSE)

are computed for one set of parameters a2 and b2. Since the

parameter values themselves are small, we perform normal-

ization of the estimator with respect to the actual value. We

plot these quantities as a function of the SNR in Fig.2. From

the performance plots, we observe that the estimator displays

strong consistency with respect to increase in SNR i.e., there

is a decrease in variance with an increase in SNR. The accu-

racy of estimation is also good; for example, at 25dB SNR,

the relative mean square error in the estimate of b2 is about

−40dB. This means that the error in the estimate of b2 is

0.01% of the actual value of b2. The SNR in a controlled

experiment is higher than 25dB. Thus, we can be assured of

more accurate estimates. The small fluctuations in the per-

formance curves are due to the finite number of Monte-Carlo

realizations.

7. CONCLUSIONS

We have proposed a novel and efficient model-based high-

resolution technique for the fundamental inverse problem in

frequency-domain optical coherence tomography. With min-

imum number of samples, the technique provides a quanti-

tative description of the layered specimen. The technique is

also robust to additive noise and provides accurate estimates.

Apart from biomedical applications such as cornea-imaging,

the technique may be useful in other areas such as optical fiber

layer characterization and monitoring during the manufactur-

ing process.
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