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ABSTRACT

This paper deals with fast image and video segmentation
using active contours. Region based active contours using
level-sets are powerful techniques for video segmentation
but they suffer from large computational cost. A paramet-
ric active contour method based on B-Spline interpolation
has been proposed in [1] to highly reduce the computational
cost but this method is sensitive to noise. Here, we choose
to relax the rigid interpolation constraint in order to robus-
tify our method in the presence of noise: by using smooth-
ing splines, we trade a tunable amount of interpolation error
for a smoother spline curve. We show by experiments on
natural sequences that this new flexibility yields segmenta-
tion results of higher quality at no additional computational
cost. Hence real time processing for moving objects seg-
mentation is preserved.

1. INTRODUCTION

We address the problem of image and video segmentation
using region-based active contours. The goal of segmen-
tation is to extract image regions corresponding to seman-
tic objects. Image and Video segmentation can be cast in
a minimization framework by choosing a criterion which
includes region and boundary functionals. Boundary func-
tionals were first proposed by Kass et al.[2] and geodesic ac-
tive contours by Caselles et al.[3] for active contour segmen-
tation. Region-based active contour were first introduced by
Ronfard et al.[4] and Cohen et al.[5]. Then Chan et al.[6],
Zhu et al.[7], Amadieu et al.[8], Paragios et al.[9] and De-
breuve et al.[10] introduce region-based statistic descriptors
for image or video segmentation. Finally Jehan-Besson et
al. [11] address the segmentation problem where features of
the region to be segmented are involved in region function-
als. Gastaud et al. [12] propose a new approach introduc-
ing prior shape information in this variational framework
as opposed to statistical methods [13] and to (constrained)
parametric transformation [14].

All these contour or region-based methods use a level-
set approach which is accurate but time consuming.

In this paper, we propose a parametric active contour
evolution based on a cubic spline contour [15].

In Section 2, we present a survey of the region-based
criterion, the derivation of the criterion and computation of
the velocity vector.

In Section 3, we propose a cubic B-spline implemen-
tation. Cubic B-splines preserveC2 regularity and have
excellent approximation properties [16] which means that,
for a given accuracy, fewer samples are needed than with
other methods; moreover, fast algorithms are available for
B-splines, which greatly reduces the computation cost.

Unfortunately, interpolation methods are not robust to
noise. This is why we propose to use smoothing splines [17]
in the B-spline interpolation approach of [18]. These curves
preserve the implementation advantages as the B-splines
while softening the interpolation constraint. The relaxation
of the interpolation condition is traded for anoptimal in-
crease of the smoothness of the spline snake. A smoothness
parameter controls the amount of relaxation that is allowed.

In Section 4, we compare the influence of the smoothing
spline parameter with the curve-length regularization coef-
ficient. Finally, we show some experiments on real video
sequences.

2. REGION-BASED ACTIVE CONTOURS

2.1. Criterion and velocity

Let us define a general segmentation criterion. For each
frame of the sequence, we search a background regionΩout,
and an object regionsΩin with a common boundaryΓ (Fig.1).
Thus we minimize a criterion including both region and
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Fig. 1. Domains definition

boundary functionals:

J(Ωout,Ωin,Γ) =
∫

Ωout

kout(Ωout)dσ

+
∫

Ωin

kin(Ωin)dσ + β

∫
Γ

ds (1)

In this criterion ,kout is the descriptor of the unknown back-
ground domainΩout, kin is the descriptor of the unknown
object domainΩin andβ is the weight of the regularization.

Since we use statistical descriptors such as mean, vari-
ance or region histogram [19], the descriptors are globally
attached to the regionΩ.

In the variational Eulerian method proposed by Jehan-
Besson et al. [11] for a region-based active contour seg-
mentation, the authors introduce a dynamical scheme in the
criterion. Hence regions become continuously dependent of
an evolution parameterτ .
The criterionJ(Ωout(τ),Ωin(τ),Γ(τ)) is denoted byJ(τ).
Thus the computation of the derivative provides:

J ′(τ) =
∫

Ωout(τ)

∂kout

∂τ
dσ +

∫
Ωin(τ)

∂kin

∂τ
dσ

+
∫

Γ(τ)

(kout − kin − β.κ +∇β.N)(v.N)ds (2)

whereκ is the curvature of the contour.

The active contourΓ(τ) evolves from an initial position
Γ(0) towards the object with a velocityvN whereN is the
inward normal of the active contour:{

∂Γ(τ)
∂τ = vN

Γ(0) = Γ0
(3)

The velocity expression is deduced from the derivative (2):

v = kin − kout + βκ + A (4)

The two first terms are global region ones while the third
one is a regularization over the contour.A represents some
additive local terms which are deduced from the two first
region terms in (2). More details (and proofs) are available
in [20, 21].

2.2. Implementation

Region-based active contour evolution can be implemented
in two different ways:

• Implicitly, based on the level-set approach [11]. Such
a method provides an implicit management of topo-
logical changes and yields accurate results, but it suf-
fers from a high computational cost.

• Explicitly, using active parametric contours. Such a
method reduces the computational cost substantially
and provides a complete control of the data size. The
accuracy of the results are dependent on the noise
level of the sequence. Using smoothing splines is
likely to introduce robustness in this method.

3. CUBIC SMOOTHING SPLINES

The curvature term in (4) regularizes the contour. In ad-
dition, using an interpolation method reduces the size of
the data to handle. We choose cubic spline active contours
because cubic splines provide good interpolation accuracy
at low computational cost [16] but also because they mini-
mize

∫
Γ(τ)

(|x′′(s)|2 + |y′′(s)|2) ds under interpolatory con-
straints [22]; this functional is actually very close to the
(squared) curvatureκ2 as shown in [23].

3.1. Cubic spline Curves

Cubic B-splines basis functions areC2-regular which en-
sures the existence of the curvature of a cubic spline snake
at every point—except, possibly, at cusps.

A curve interpolated with cubic splines is made of a set
of n segments, each specified by a polynomial expression
of degree 3.

However irregular sampling requires the computation of
n different polynomials which is time consuming. In the
uniform sampling case, each segment is defined by the same
basis functions. Thus, we focus on uniform cubic spline
curves.

3.2. Interpolation or Approximation Splines?

Our first approach [18] used a uniform cubic spline inter-
polant to represent the active contour.

The relation between active contour samplesPk = P (k)
and B-spline coefficientsQk = Q(k) can be written as a
convolution:

P (k) = (b3
1 ∗Q)(k) (5)

whereb3
1 is the discrete cubic B-spline kernel.

The inverse convolution operator is defined by:

(b3
1)
−1(k) ↔ B3

1(z)−1 =
6

z + 4 + z−1
(6)



Using the prefiltering approach exposed in [17], this opera-
tor is computed very efficiently from a cascade of first order
causal and anti-causal recursive filters:

B3
1(z)−1 = 6

1
1− zsz−1

−zs

1− zsz
(7)

wherezs = −2 +
√

3.

Hence, the B-spline coefficients of the spline curve that
interpolates the dataP (k) are given by:

Q(k) = (b3
1)
−1 ∗ P (k) (8)

In a previous paper, we implemented a region-based active
contour segmentation (1) using these curves and we showed
that accurate results are obtained in real time [1].

However, interpolation is not robust enough in the pres-
ence of noise. This is why we propose to use a less con-
strained approximation method; namely, the smoothing spline
method. The idea, initially proposed by Reinsh [24], is to
trade interpolation error for smoothness. Indeed, it is known
(Schoenberg [22]) that a cubic spline interpolant minimizes
the energy of the second derivative of a function subject to
interpolation constraints; instead, Reinsh proposed to mini-
mize a weighted sum of the energy of the second derivative
and of the interpolation error at the samples. The result is
still a cubic spline, but it does not satisfy anymore the in-
terpolation condition exactly. The interpolation error has
been converted into increased smoothness—smaller energy
of the second derivative.

Applying the filtering approach [17], we obtain the smooth-
ing spline coefficients from the direct smoothing spline fil-
ter:

S3
λ(z)−1 =

6

z + 4 + z−1 + 6λ(z−2 − 4z−1 + 6− 4z + z2)
(9)

This transfert function is factorized into a product of causal
and anticausal filters:

|zs|2

λ

(
1

1− 2 Re(zs)z−1 + |zs|2z−2

) (
1

1− 2 Re(zs)z + |zs|2z2

)
(10)

wherezs is thesmallestcomplex root of the characteristic
polynomial in the denominator of (9). This prefiltering ap-
proach provides an efficient method to compute the smooth-
ing spline coefficients.

The positive parameterλ quantifies the tradeoff between
interpolation error and smoothness. Forλ = 0, no inter-
polation error is allowed and thus, we are in the case of
interpolating splines. Whenλ increases, a larger amount
of interpolation error is allowed, hence the spline snake is
smoother. We show in the next section that this feature is
largely beneficial to the segmentation of noisy images.

4. EXPERIMENTS

In this section, we present results obtained for the segmen-
tation of moving objects. Our method is applied to the real
“coastguard” video.

The motion-based descriptors for a mobile camera se-
quence are:

kout = |In − Proj(In−1)|,
kin = a positive contant,
β = a positive constant.

The term Proj(In−1) is the projection of the imageIn−1

onto the referential of imageIn.
Since these descriptors are region-independent, the evo-

lution equation (3) reduces to:

∂Γ(τ)
∂τ

= (kout − kin − β.κ)N (11)

However, the descrirptorkout is temporal gradient. Thus
this local term is noise sensitive.

(a) Initial sequence

(b) Interpolationλ = 0 and
β = 20

(c) Approximation
β = 0 andλ = 0.5

Fig. 2. Smoothing spline to smooth contours



In the “coastguard” sequenceFig.2(a), the wake of the
boat behaves like noise for the background descriptorkout.
Thus the contour evolution equation is corrupted by noise.

Fig.2(b) shows results using the cubic spline interpola-
tion method [18]. The smoothness of the contour depends
only on the contour length regularization parameterβ. How-
ever, the foam in the wake of the boat is kept as part of the
object.

Fig.2(c) shows results using the new smoothing spline
method proposed here. The smoothness of the contour de-
pends only on the smoothing spline parameterλ. Relaxing
the rigid interpolation constraint brings an obvious improve-
ment: the foam is not kept anymore, whereas the object is
still reasonably well-segmented.

We can thus say that the smoothing spline method pro-
vides global robustness to noise-like data. The accuracy re-
sults on a real video sequence show the improvement of our
smoothing spline method over a direct regularization of the
segmentation criterion.

5. CONCLUSION

In this paper, we address here the problem of image and
video segmentation by working out a new region-based method
using smoothing cubic spline active contours.

Instead of spline interpolation, we have chosen a smooth-
ing spline approximation because we want the method to be
more robust in the presence of noise. As a consequence of
the very low computational cost of the B-spline implemen-
tation, real-time segmentation is achieved. Moreover, the
smoothing spline parameterλ provides a tunable tradeoff
betweeninterpolation errorandcontour smoothness. It has
to be pointed out that the range allowed for this parameter
is quite large, which means that it can be chosen a priori for
a large set of different sequences.

The accuracy results on a real video sequence show the
improvement of our smoothing spline method over a direct
regularization of the segmentation criterion.
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