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Fractional Splines andWavelets∗

Michael Unser†
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Abstract. We extend Schoenberg’s family of polynomial splines with uniform knots to all fractional
degrees α > −1. These splines, which involve linear combinations of the one-sided power
functions xα+ = max(0, x)α, are α-Hölder continuous for α > 0. We construct the cor-
responding B-splines by taking fractional finite differences and provide an explicit char-
acterization in both time and frequency domains. We show that these functions satisfy
most of the properties of the traditional B-splines, including the convolution property,
and a generalized fractional differentiation rule that involves finite differences only. We
characterize the decay of the B-splines that are not compactly supported for nonintegral
α’s. Their most astonishing feature (in reference to the Strang–Fix theory) is that they
have a fractional order of approximation α + 1 while they reproduce the polynomials of
degree �α�. For α > − 1

2 , they satisfy all the requirements for a multiresolution analysis of
L2 (Riesz bounds, two-scale relation) and may therefore be used to build new families of
wavelet bases with a continuously varying order parameter. Our construction also yields
symmetrized fractional B-splines which provide the connection with Duchon’s general the-
ory of radial (m, s)-splines (including thin-plate splines). In particular, we show that the
symmetric version of our splines can be obtained as the solution of a variational problem
involving the norm of a fractional derivative.
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1. Introduction. A polynomial spline of order L = n+ 1 (or degree n) is a piece-
wise polynomial function of degree n that is constrained to be Hölder continuous of
order n. Thus, its nth derivative, which is bounded, exhibits some isolated disconti-
nuities at the knots, which are the joining points between the polynomial segments.
This multiple differentiability constraint has one important implication, namely, that
a spline has exactly one degree of freedom (or parameter) per knot. Polynomial splines
with uniform knots were introduced by Schoenberg in his 1946 landmark paper, which
sets the theoretical foundations for the subject [27, 30]. These functions now play a
central role in approximation theory and numerical analysis. They have a number of
desirable properties that make them useful in a variety of applications [14, 24, 4, 40].

Splines have also had a significant impact on the early development of the the-
ory of the wavelet transform [36, 5, 19, 21, 23]. In this context, splines constitute a
case apart for they yield the only wavelets that have an explicit analytical form. All
other wavelet bases are defined indirectly through an infinite recursion (or an infinite
product in Fourier domain) [13, 22, 35]. To date, four subfamilies of spline wavelets
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have been characterized explicitly: the orthogonal Battle–Lemarié wavelets [5, 19],
the semiorthogonal spline wavelets [11, 39, 41], the biorthogonal splines [12], and the
shift-orthogonal spline wavelets [42]. One notable property is that these splines—
irrespective of their type—appear to have the best approximation properties among
all known wavelet families: they yield the smallest asymptotic (scale-truncated) ap-
proximation error for a given order L [37, 38].

In this paper, we will extend the construction of polynomial splines to fractional
degrees. Our new family will be indexed by a continuous parameter α > −1, which
represents the Hölder exponent of the fractional spline. This family interpolates the
conventional splines which correspond to the special case where α is an integer. This
kind of extension is similar to Duchon’s generalization of the thin-plate splines [16], but
the methods—as well as the context (cardinal splines versus radial basis functions)—
are quite different. First, we consider a more constrained setting—univariate with
equally spaced knots—which allows us to be much more explicit; the uniform grid
in particular is required for constructing multiresolution wavelet bases. Second, our
approach yields a larger class of splines than is possible with a purely variational
formulation. In particular, Duchon’s minimization technique cannot give the splines
of even degree, whereas our method does, not to mention extensions to negative
degrees α.

Our starting point is the construction of the fractional B-splines, which, to the
best of our knowledge, have not been investigated before. The Fourier transform
of the conventional B-splines of degree n is β̂n+(ω) =

(
(1− e−iω)/(iω)

)n+1, and one
natural approach to extend it to fractional orders is to use the same equation with α
(noninteger) instead of n. Another possibility, which is more explicit, is to construct
the B-splines from the (fractional) finite differences of one-sided power functions. We
will see that both approaches are equivalent; in fact, we will show that the fractional
splines share virtually all the properties of the conventional polynomial splines, except
that the support of the B-splines for nonintegral α is no longer compact. In particular,
they satisfy a two-scale relation and yield multiresolution analyses that are dense in
L2 as soon as α > − 1

2 . There is therefore no major difficulty in extending all standard
wavelet constructions to the fractional case. However, there are also a few surprises
in store concerning some standard notions in approximation and wavelet theory [34,
18, 35]. In this respect, the fractional splines’ most notable idiosyncrasies are:

• Fractional splines, as their name should suggest, have a fractional order of
approximation, a rather unusual property in approximation theory. Specifi-
cally, the approximation error at step size a, ‖f − Paf‖L2 , decays like aα+1

as a → 0. We will derive the asymptotic development of the L2 error and
provide quantitative error bounds to substantiate this claim.
• For noninteger α, the fractional splines do not satisfy the Strang–Fix theory,

which states the equivalence between the reproduction of polynomials of de-
gree n and the order of approximation, which is one more than the degree
(L = n + 1) [34, 10, 18, 15]. We will see that fractional splines reproduce
polynomials of degree n with n − 1 < α ≤ n (or n = �α�), while their order
of approximation is α+ 1 (and not �α�+ 1, as one would expect).
• The fractional B-splines generate valid multiresolution analyses of L2 for α >
− 1

2 . However, for − 1
2 < α < 0, their refinement filters H(z) do not have the

factor 1 + z which is usually required for the construction of valid wavelet
bases [13, 22, 35]. Yet, the filters have the right vanishing property: H(eiπ) =
0, which guarantees the partition of unity condition [33] (except at the knots).
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The paper is organized as follows. In section 2, we present an explicit construction
of the fractional B-splines. The intent here is to offer some insight into what these
splines really are. In section 3, we look at the fractional B-splines more closely and
derive their most important mathematical properties (fractional differentiation rules,
Riesz bounds, decay, and two-scale relation). In section 4, we characterize the abil-
ity of fractional splines to approximate functions and uncover some of their stranger
properties. Finally, in section 5, we show that, when α > 0, the symmetric fractional
splines are the solutions of variational problems involving the minimization of the L2

norm of a fractional derivative. The appendices contain the more technical mathe-
matical derivations; these are presented separately to improve the readability of the
paper.

1.1. Notations and Definitions. One remarkable feature of fractional splines is
that they involve an interesting mix of classical mathematics (Euler, Liouville) and
more modern techniques derived from wavelet and approximation theory.

1.1.1. Gamma Function and Generalized Binomials. The gamma function,
which was first studied by Euler, is defined as

Γ(u) =
∫ +∞

0
xu−1e−xdx

for u > 0 and by the induction relation Γ(u) = u−1Γ(u + 1) for u < 0. It has the
property that Γ(n+ 1) = n! and hence generalizes the factorial. The beta function is
defined as

B(u, v) =
∫ 1

0
xu−1(1− x)v−1dx.

The relation between both integrals is given by Euler’s formula

B(u, v) =
Γ(u)Γ(v)
Γ(u+ v)

.(1.1)

These formulae suggest the following generalization of the binomial coefficients:(
u

v

)
=

Γ(u+ 1)
Γ(v + 1)Γ(u− v + 1)

.(1.2)

In particular, this definition implies that
(
u
k

)
= 0 for k < 0. Moreover, for u ≥ 0, we

have the well-known binomial theorem

(1 + z)u =
∑
k≥0

(
u

k

)
zk.(1.3)

This series converges for |z| ≤ 1, since(
u

k

)
≈ (−1)k+1 Γ(u+ 1) sinπu

πku+1

as k → ∞ by Stirling’s formula. When u = n (integer),
(
n
k

)
= 0 for k ≥ n + 1 and

one recovers the standard binomial expansion.
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In addition to these gamma-related functions, we will also need Riemann’s zeta
function, defined by

ζ(α) =
∑
n≥1

1
nα

(1.4)

for α > 1.

1.1.2. FractionalDerivatives. Liouville’s generalization of differentiation for frac-
tional orders is Dαf = g−α ∗ f (cf. [20]), where

gα(x) =
xα−1

+

Γ(α)

and where

xα+ =
{
xα, x ≥ 0,
0 otherwise

is the one-sided power function; the convolution has to be taken in the sense of
distributions. Note that unlike integer differentiation, not every distribution has a
fractional derivative; for instance, f(x) = e−x.

In order to correctly interpret these derivatives in the Fourier domain, we first
define the fractional power of a complex variable z as zα = |z|αeiα arg(z) with i =

√−1
and arg(z) ∈ [−π, π[. The usual composition property of the power function takes a
more restricted form in the complex plane: specifically, one has (z1z2)α = zα1 z

α
2 only

if arg(z1) + arg(z2) ∈ [−π, π[ when z1z2 �= 0, while zα1zα2 = zα1+α2 remains always
true.

The Fourier domain equivalent of Liouville’s definition of the fractional derivative
is
∫
Dαf(x)e−iωxdx = (iω)αf̂(ω), where f̂(ω) denotes the Fourier transform of f

and where (iω)α has to be evaluated in accordance with our convention. This is the
expected generalization of the well-known formula for integer exponents. However,
due to the discontinuity of (iω)α near 0 for nonintegral orders, the fractional derivative
is in general a nonlocal operation that tends to produce slowly decaying functions.

1.1.3. Some Useful Fourier Transforms. Classical Fourier theory can be ex-
tended to the tempered distributions as defined by Schwartz [31]. The Fourier trans-
form pairs (u(x)←→ û(ω)) that are useful for our purpose are:

xα+ ←→ Γ(α+ 1)
(iω)α+1 if α is not an integer;

xn+ ←→ Γ(n+ 1)
(iω)n+1 + inπδ(n)(ω) if n is a positive integer;

|x|α ←→ −2 sin(π2α)Γ(α+ 1)
|ω|α+1 if α > −1 is not an even integer;

x2n log |x| ←→ (−1)n+1πΓ(2n+ 1)
|ω|2n+1 if n is a positive integer.

(1.5)

The last pair requires the following definition of the distribution |x|−2n−1:

1
|x|2n+1 = D2n+1

(
sgn(x)(log |x|+ γ)

Γ(2n+ 1)

)
,

where γ is Euler’s constant (i.e., γ = limn→∞
∑n
k=1

1
n − log n) [9].
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2. Construction of Fractional Splines. In this section, we propose a formal
construction that proceeds by analogy with the polynomial spline case. Our principal
goal here is to motivate our definition of the fractional B-splines and to establish some
of their elementary properties. The more rigorous mathematical analysis will be given
in section 3.

2.1. Preliminaries. The natural building blocks for the fractional splines are
Liouville’s one-sided power functions xα+, which have precisely one singularity of order
α (Hölder exponent) at the origin. Thus, we may think of fractional splines of degree
α with the increasing sequence of knots {xk}k∈Z as functions that can be written in
the following form:

sα(x) =
∑
k∈Z

ak (x− xk)α+ ,

where the xk’s are the knots of the spline. This representation has some obvious
problems associated with it when we extend it to the whole real axis because the
one-sided power functions are unbounded. However, it offers insight into what the
fractional splines really are.

From now on, we will exclusively consider fractional splines with knots at the
integers. The relevant tool in this context is the fractional forward finite difference
operator, which we define as

∆α
+f(x) =

∑
k≥0

(−1)k
(
α

k

)
f(x− k).(2.1)

This is a convolution operator, which has a more straightforward interpretation in the
Fourier domain:

∆̂α
+(ω) = (1− e−iω)α =

∑
k≥0

(−1)k
(
α

k

)
e−iωk.

The expansion on the right-hand side is a direct application of the generalized binomial
formula (1.3), which ensures that ∆α1

+ ∆α2
+ = ∆α1+α2

+ . It also guarantees that our
operator coincides with the conventional one when α is an integer.

2.2. Fractional B-Splines. By analogy with the classical B-splines, we define the
fractional causal B-splines by taking the (α+1)th fractional difference of the one-sided
power function

βα+(x) def=
1

Γ(α+ 1)
∆α+1

+ xα+ =
1

Γ(α+ 1)

∑
k≥0

(−1)k
(
α+ 1
k

)
(x− k)α+ .(2.2)

In section 3.2, we will show that these functions are in L1 for α > −1 and in L2 for α >
− 1

2 ; we will also prove that they decay proportionally to |x|−α−2 (see Theorem 3.1).
Some examples of fractional B-splines are shown in Figure 2.1. While they seem to be
decaying reasonably rapidly, they are not compactly supported unless α is an integer,
in which case we recover the classical B-splines. In general, they do not have an axis
of symmetry either.

Proposition 2.1. The fractional causal B-splines satisfy the convolution prop-
erty

βα1
+ ∗ βα2

+ = βα1+α2+1
+ .
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Fig. 2.1 The fractional B-splines with α ≥ 0. These functions interpolate the conventional B-splines
which are represented using a thicker line.

Proof. Let us consider the convolution integral

xα1−1
+ ∗ xα2−1

+ =
∫ x

0
yα1−1(x− y)α2−1dy,

which is obviously 0 for x ≤ 0. For x > 0, we make the change of variable u = y/x,
and rewrite the integral in terms of the beta function. This provides xα1−1

+ ∗ xα2−1
+ =

B(α1, α2)xα1+α2−1 for x > 0, and 0 for x ≤ 0. We then use Euler’s formula (1.1) to
show that the one-sided power functions satisfy the convolution property

xα1−1
+

Γ(α1)
∗ x

α2−1
+

Γ(α2)
=
xα1+α2−1

+

Γ(α1 + α2)
.

The result in Proposition 2.1 then follows almost immediately from the definition (2.2)
of the fractional B-splines, thanks to the commutativity of the convolution operator,
and the composition rule of the ∆ operator, namely, ∆α1

+ ∆α2
+ = ∆α1+α2

+ .
For the sake of completeness, we also introduce the reversed versions of these

functions: the anticausal B-splines of degree α,

βα−(x) def= ∆α+1
−

(
xα−

Γ(α+ 1)

)
= βα+(−x),

where xα− = (−x)α+ and where ∆α
− denotes the fractional backward difference operator

∆α
−f(x) =

∑
k≥0

(−1)k
(
α

k

)
f(x+ k).
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Our symbolism is such that all formulae for the causal fractional B-splines carry over
directly to the noncausal ones by simply replacing “+” by “−.”

Proposition 2.2. The fractional B-splines satisfy the induction equation

βα+(x) =
x

α
βα−1

+ (x) +
α+ 1− x

α
βα−1

+ (x− 1)(2.3)

for all α > 0.
For α integer, (2.3) is the well-known recurrence relation for B-splines on a uniform

grid [14].
Proof. The relation derives from the identity

∆α+1
+ {xf(x)} = (α+ 1)∆α

+f(x) + (x− α− 1)∆α+1
+ f(x),

which is easily established using the definition (2.1) of ∆α
+ and the induction relation

k
(
α
k

)
= α

(
α−1
k−1

)
. Letting f(x) =

xα−1
+

Γ(α+1) we then obtain

βα+(x) =
α+ 1
α

βα−1
+ (x) +

x− α− 1
α

∆+β
α−1
+ (x),

from which (2.3) follows immediately.

2.3. Symmetric Fractional B-Splines. To symmetrize the construction and to
be in the position to calculate fractional B-spline inner products, we define the sym-
metric B-splines of fractional degree α:

βα∗ = β
α−1

2
+ ∗ β

α−1
2
− .(2.4)

Since βα+ and βα− are in L1 (see Theorem 3.2 below), this convolution has a meaning
for α > −1 (the convolution of two L1 functions is in L1 as well).

These symmetric fractional splines may also be specified in the Fourier domain,
where they have the convenient form (cf. section 3.1 below)

β̂α∗ (w) =
∣∣∣∣ sin(ω/2)
ω/2

∣∣∣∣α+1

.(2.5)

To facilitate the calculation of the corresponding inverse Fourier transform, we
were tempted to introduce the corresponding analogs

∣∣r
k

∣∣ of the generalized binomial
coefficients; these are defined through the following generating function:

|1 + z|α =
∑
k∈Z

∣∣∣∣αk
∣∣∣∣zk for z = e−iω,

which is convergent only on the unit circle. The following result, which is derived in
Appendix A, gives the explicit form of these quantities.

Lemma 2.3. The modified binomial coefficients are symmetrical and satisfy∣∣∣∣αk
∣∣∣∣ =

(
α

k + α
2

)
,(2.6)

where the right-hand-side term is defined through (1.2).
Thus, the modified binomial coefficients are recentered versions of the generalized

ones. They can only vanish if α is even, in which case the sequence is finite.
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By analogy with our definition of nonsymmetric fractional B-splines, we define

xα∗ =
{ |x|α if α > −1 is not an even integer,
xα log |x| if α ∈ 2N.(2.7)

We also introduce the symmetric finite difference operator ∆α
∗ , whose frequency re-

sponse is |1− e−iω|α.
Using the Fourier correspondences (1.5) in (2.5), we thus find an explicit time

domain formula for the symmetric fractional splines.
Theorem 2.4. The centered fractional B-splines of degree α are given by
(i) α ≥ −1 and α �= 2n (not even):

βα∗ (x) =
−1

2 sin(π2α)Γ(α+ 1)
∆α+1
∗ xα∗

=
1

2 sin(π2α)Γ(α+ 1)

∑
k∈Z

(−1)k+1
∣∣∣∣α+ 1
k

∣∣∣∣|x− k|α;
(2.8)

(ii) α = 2n (even)

β2n
∗ (x) =

(−1)n+1

πΓ(2n+ 1)
∆2n+1
∗ x2n

∗

=
(−1)n

2n!π

∑
k∈Z

(−1)k+1
∣∣∣∣2n+ 1
k

∣∣∣∣|x− k|2n log |x− k|.
(2.9)

Some examples of the fractional centered B-splines are shown in Figure 2.2. Sim-
ilar to their causal counterparts, they are α-Hölder continuous with knots at the
integers; they are not compactly supported either unless n is odd. The most notable
difference is that our centered B-splines are constructed using the integer shifts of
|x|α (and of xα log |x| when α is an even integer) rather than xα+. Also note that
they coincide with the standard centered B-splines only when the degree is odd ; this
is because of the absolute value in (2.5), which creates a discontinuity in the Fourier
domain when α is even. For comparison, Schoenberg’s centered B-splines of even
degree have knots at the half integers; they therefore span different spaces.

Since |x|α = xα−+xα+, the symmetrized B-splines belong to the multiwavelet space
spanned by the integer shifts of the two (nonsymmetric) functions βα+ and βα−, unless
α ∈ 2N. Thus, we may think of the space generated by the βα∗ as a “symmetrization”
of the spline spaces generated by βα+ and βα−.

Interestingly, the elementary functions that generate the symmetric fractional
B-splines (|x|α and |x|2n log |x|) are the same as those that appear in Duchon’s gen-
eralized theory of thin-plate splines [16]. This is no coincidence; the link will be made
explicit in section 5, where the symmetric fractional splines are shown to minimize
some Duchon seminorm. Hence, we may think of the centered fractional B-splines as
a (univariate) way of localizing these radial basis functions on a uniform grid.

We also note that Rabut [25] briefly suggests the possibility of generalizing his
polyharmonic B-splines for noninteger orders using a multidimensional Fourier domain
formula which is compatible with (2.5); however, he did not pursue this idea much
further.

One potential problem with the expressions given in Theorem 2.4 is that the series
are slowly convergent. Indeed, by using Stirling’s formula, one shows that∣∣∣∣αk

∣∣∣∣ ≈ sin(π2α)Γ(α+ 1)
π

× (−1)k+1

kα+1 ,
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Fig. 2.2 Examples of symmetric fractional B-splines of increasing regularity. For α ≤ 0, the B-
spline is infinite at the integers, whereas for higher α it is continuous everywhere.

which implies that (i) converges as
∑
k≥1 k

−2 and (ii) as
∑
k≥1 k

−2 log k, indepen-
dently of the order of the spline.

Fortunately, it is possible to improve the convergence of these expressions by using
standard acceleration techniques, as shown in the following theorem.

Theorem 2.5. Let βα∗,N (x) and β2n
∗,N (x) correspond to the truncated sum (|k| ≤

N) approximations of (2.8) and (2.9), respectively. Then, one has the following asymp-
totic relations:

(i) α > −1 and α �= 2n,

βα∗ (x) = βα∗,N (x) +
α+ 1
π tan π

2α

(
1
N
− 1

2N2

)
︸ ︷︷ ︸

CαN

+O
(

1
N3

)
;(2.10)

(ii) α = 2n,

β2n
∗ (x) = β2n

∗,N (x) +
4n+ 2
π2

(
1 + logN
N

− logN
2N2

)
︸ ︷︷ ︸

C2n
N

+O
(

logN
N3

)
.(2.11)
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Thus, the correction term CαN given above can be added to the partial sums
to achieve much better convergence rates, namely, N−3 and N−3 logN . This result
is straightforwardly (but tediously) proved by verifying that βα∗,N+1(x) + CαN+1 −
(βα∗,N (x)+CαN ) is O(N−4) if α �= 2n and O(N−4 logN) if α = 2n. Interestingly, these
correction terms do not involve the value of x, which means that they can be seen
as uniform biases. Using these baseline corrections turned out to be most useful for
producing the graphs in Figure 2.2 in a computationally efficient way.

The symmetric splines satisfy a recurrence relation similar to (2.3), except that
the induction jumps by steps of two instead of one.

Proposition 2.6. The symmetric fractional B-splines satisfy the induction equa-
tion

βα∗ (x) =

(
x+ α+1

2

)2
α(α− 1)

βα−2
∗ (x+ 1) +

(
x− α+1

2

)2
α(α− 1)

βα−2
∗ (x− 1)

−2
x2 + 1−α2

4

α(α− 1)
βα−2
∗ (x)

(2.12)

for all α > 1.
Proof. Using the induction relations for the modified binomials

∣∣α
k

∣∣,
2k
α

∣∣∣∣αk
∣∣∣∣ =

∣∣∣∣α− 2
k − 1

∣∣∣∣−
∣∣∣∣α− 2
k + 1

∣∣∣∣ and
(
k2 − α

2

4

) ∣∣∣∣αk
∣∣∣∣ = −α(α− 1)

∣∣∣∣α− 2
k

∣∣∣∣,
we readily verify that

∆α
∗ {x2f(x)} =

(
x2 +

α2

4

)
∆α
∗ f(x)

−α(α− 1)∆α−2
∗ f(x)− αx∆α−2

∗ {f(x+ 1)− f(x− 1)}

by applying the direct definition of ∆α
∗ . From this, we get the relation between βα−1

∗
and βα−3

∗ by letting f(x) = xα−3
∗ , which is equivalent to (2.12) provided that we

substitute α by α+ 1.

3. Characterization of Fractional B-Splines. Most of our characterization of
the properties of the fractional B-spline will be carried out in the Fourier domain. In
particular, we will show that they form a Riesz basis and investigate their decay and
multiresolution properties. We use the generic notation βα(x) to specify any one of
the fractional B-splines (βα+(x), βα−(x), or βα∗ (x)).

3.1. Fourier Transform. The Fourier transform of βα+(x) is determined through
a standard calculation that involves distributions because of the one-sided power
functions. The final result is

β̂α+(ω) =
(

1− e−iω
iω

)α+1

,(3.1)

which holds in the distributional sense. This equation is obviously compatible with
the convolution property of Proposition 2.1. For α > 0, the inverse Fourier transform
can be computed in the usual sense, so that we have for every value of x ∈ R

βα+(x) =
1

2π

∫ (
1− e−iω
iω

)α+1

eiωxdω.
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Using (3.1), one easily checks that β̂α−(ω) = β̂α+(ω) and thus that β̂α∗ (ω) = |β̂α+(ω)|, as
claimed in (2.5).

As an interesting application of (3.1), we can establish the following fractional
differentiation rule for B-splines:

Dγβα+ = ∆γ
+β

α−γ
+ .(3.2)

Note that one of the primary reasons for the success of polynomial splines in ap-
plications is precisely that they can be differentiated very simply by taking finite
differences [24]. Here, we see that this property generalizes nicely to the fractional
case. A similar property holds true for βα− and βα∗ if we substitute the index “+”
in (3.2) by, respectively, “−” or “∗,” and if we replace the differentiation operator by
Dα− or Dα∗ , where Dα−f ↔ (−iω)αf̂ and Dα∗ f ↔ |ω|αf̂ . Note that, unlike Dα (which
we could rename Dα+ for the sake of consistency), these operators do not, in general,
coincide with the usual differentiation, except when α is even.

Since |β̂α+(ω)| = β̂α∗ (ω) is bounded and decays like |ω|−α when ω → ∞, we can
already claim that the fractional B-splines are in L2 for α > − 1

2 : this result will be
discussed again in Theorem 3.2 and proved directly using the decay rate of the βα.
More generally, one has

βα ∈Wr
2 for all r < α+

1
2

(3.3)

so that the critical Sobolev exponent of the fractional splines is rmax = α + 1
2 , that

is, one-half more than their Hölder exponent α.

3.2. Decay. The only shortcoming of the fractional B-splines is their lack of
compact support. It is therefore crucial to characterize their decay.

Theorem 3.1. For all α > −1, there exist positive constants K,Cα such that

|βα(x)| ≤ Kα{[x]}α∗ + Cα
1 + |x|α+2 ,(3.4)

where [x] is defined by [x] = infn∈Z |x − n| =
∣∣x − �x + 1

2�
∣∣. More precisely, when

α > 0, we have

βα+(x) =
Γ(α+ 2) sinπα

πxα+2

∑
n≥1

e2niπx

(2niπ)α+1 + o
(

1
xα+2

)
,(3.5)

βα∗ (x) = −2Γ(α+ 2) cos(π2α)
πxα+2

∑
n≥1

cos(2nπx)
(2nπ)α+1 + o

(
1

xα+2

)
(3.6)

when x tends to +∞.
The proof is rather technical and is given in Appendix B. Note that Buhmann

gives a similar result in [8, Theorem 6] for the decay of the interpolating basis functions
within the framework of n-dimensional radial basis functions, which is more general
but excludes our nonsymmetric splines. In this respect, we observe that βα∗ for α ≤ 0
does not satisfy the hypotheses made in [8].

It follows from the characterization of their decay that the fractional B-splines
belong to the classical integration spaces L1 and L2.

Theorem 3.2. The fractional splines βα+ are in L1 for all α > −1. Moreover,
for α > − 1

2 they are in L2 as well.
Proof. This is a direct consequence of (3.4), which shows that βα+ is bounded by

an L1 function when α > 0, and by an L2 function when α > − 1
2 .
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3.3. Fractional Spline Spaces and Riesz Bounds. We are now in the position
to specify the fractional splines in a stable and rigorous fashion using the B-splines
as basis functions. The basic space of fractional splines of degree α with knots at the
integers is defined as

Sα+ =

{
s : ∃c ∈ '2, s(x) =

∑
k∈Z

c(k)βα+(x− k)

}
.(3.7)

Similarly, we may consider the spline subspaces Sα−, Sα∗ generated by βα−, βα∗ , respec-
tively, or, more generally, the space Sα when the spline type is implicit.

Proposition 3.3. For α > − 1
2 , the fractional B-spline of degree α generates a

Riesz basis of Sα. Specifically, one has the following '2-L2 norm equivalence:

∀c ∈ '2, Aα‖c‖�2 ≤ ‖
∑
k∈Z

c(k)βα(x− k)‖L2 ≤ Bα‖c‖�2 ,(3.8)

where Aα and Bα are two constants such that

Aα ≥
(

2
π

)α+1

, Bα ≤
(

1 +
2ζ(2α+ 2)
π2α+2

(
1− 1

22α+2

)) 1
2

.

Proof. Finding the Riesz bounds for βα is equivalent to bounding

a(ω) =
∑
n

|β̂α(ω + 2nπ)|2

from above and below [3]. This function is 2π-periodic and symmetric, so we can
restrict its study to ω ∈ [0, π]. In particular, we have a(ω) ≥ | sinc ω2 |2α+2 ≥ ( 2

π )2α+2,
since sinc ω

2 is strictly decreasing over [0, π]; this provides Aα.
Since sup|ω|≤π |βα(ω + nπ)|2α+2 ≤ (π(2|n| − 1)

)−2α−2 for n �= 0, we also get

a(ω) ≤ 1 +
1

π2α+2

∑
n∈Z

1
|2n− 1|2α+2 = 1 +

2ζ(2α+ 2)
π2α+2

(
1− 1

22α+2

)
,

which gives the bound for Bα.
This result ensures that the B-spline representation (3.7) is stable and that the

fractional spline spaces are well-defined (closed) subspaces of L2. Starting from the
B-splines, it is then easy, using the method described in [3], to generate other equiv-
alent bases of these spaces with specific properties, for instance, orthogonality or
interpolation. While an orthogonal basis always exists, the same is not necessarily
true for the interpolating one (fundamental spline). For instance, it is well known
that the polynomial spline interpolator is ill defined when the degree n is even and
the knots are on the integers. Interestingly, the lower bound on Aα guarantees the
existence of the fractional spline interpolators in the spaces Sα∗ (symmetric splines)
for any α > − 1

2 , including even ones. Also note that the orthogonal and interpolating
splines all converge to sin(πx)

πx (the ideal lowpass filter) as the fractional degree α tends
to infinity. This comes as a direct consequence of the general convergence theorems
in [3].
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3.4. Two-Scale Relation. The fractional B-splines have all the required multires-
olution properties for the construction of wavelet bases. In particular, they satisfy
the two-scale relation

βα
(x

2

)
=
∑
k∈Z

hα(k)βα(x− k).

This equation can be established by direct manipulation of the time domain formulae.
However, the simplest approach is to take the ratio 2β̂α(2ω)/β̂α(ω) to get the transfer
function of the refinement filter ĥα(ω), which turns out to be 2π-periodic. Specifically,
we find that

hα+(k) =
1

2α

(
α+ 1
k

)
←→ ĥα+(ω) = 2

(
1 + e−iω

2

)α+1

(3.9)

and

hα∗ (k) =
1

2α

∣∣∣∣α+ 1
k

∣∣∣∣ ←→ ĥα∗ (ω) = 2
∣∣∣∣1 + e−iω

2

∣∣∣∣α+1

.(3.10)

Thus, our generalized binomial filter hα+(k) = hα−(−k) is the natural extension of the
binomial refinement filter for splines, which plays such a central role in wavelet theory.
Interestingly, for − 1

2 < α < 0, although the fractional splines constitute a Riesz basis,
their refinement filter does not have the factor 1+e−iω which is usually believed to be
necessary for the construction of unconditional wavelet bases of L2. We will see that
this is not a problem and that these low regularity splines can yield wavelets that are
perfectly valid, in spite of their singularities at the integers.

4. Approximation Properties. So far our generalization of splines has proceeded
without any major surprises. It is only when we look at their ability to approximate
functions that the fractional splines start revealing their less intuitive properties. Here,
fractional orders of approximation become possible because we have left the classical
framework of the Strang–Fix theory of approximation [18, 34, 6].

4.1. Reproduction of Polynomials. It is well known that the classical B-splines
reproduce the polynomial of degree less than or equal to n. What about the fractional
splines? It turns out that the noninteger part of α buys us one extra degree.

When we say that a function ϕ reproduces the polynomials of degree n, we mean
that there exist some sequences cm(k) such that

xm =
∑
k∈Z

cm(k)ϕ(x− k), m = 0, . . . , n.(4.1)

Hence it follows that any polynomial of degree n is expressible as a linear combina-
tion of the integer shifts of ϕ. This polynomial reproduction condition has another
equivalent form, which is simpler to work with:∑

k∈Z
(x− k)mϕ(x− k) = Cm, m = 0, . . . , n,(4.2)

where the Cm’s are some constants. In particular, C0 = 1 if ϕ satisfies the partition
of unity. By using Poisson’s summation formula, one gets an equivalent relation in
the Fourier domain, the so-called Strang–Fix condition of order L = n+ 1 [33, 32]:

ϕ̂(0) = 1 and ϕ̂(m)(2kπ) = 0 for
{
k ∈ Z \ {0},
m = 0, . . . , n,(4.3)
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Fig. 4.1 Plot of
∑
|n|≤50(n +

3
4 )β

1
2
+ (x − n) which exemplifies the reconstruction of f(x) = x by a

linear combination of fractional B-splines of degree one-half.

where ϕ̂(m) denotes the mth derivative of the Fourier transform of ϕ. Without any
hypothesis on ϕ other than absolute integrability of f and xnϕ(x), the Strang–Fix
equivalence is only true in the sense of distributions. For the convergence of (4.2)—
and thus of (4.1)—to hold pointwise, we may require that ϕ decay at least like |x|−m−ε
with ε > 0.

For the fractional B-splines, it is clear that β̂α(0) = 1. Moreover, a standard
Taylor series argument shows that, for k �= 0, β̂α(ω+ 2kπ) = Cωα+1 as ω → 0. Thus,
ϕ̂(m)(ω) = C ′(ω − 2kπ)α+1−m as ω → 2kπ �= 0, which means that the fractional
B-splines satisfy (4.3) provided that α + 1 −m > 0, i.e., for all m ≤ �α�. The fact
that they decay like |x|−α−2 (except possibly at the integers when α < 0) implies that
they reproduce the polynomials of degree n ≤ �α�, pointwise with the exception of the
integers when α < 0. This makes us jump to the next higher integer �α� when α is non-
integer. As an example, it is possible to reproduce the constant, and more surprisingly,
the monomial x with a linear combination of shifts of√x+; this is shown in Figure 4.1.

4.2. Fractional Order of Approximation. We now investigate the behavior of
the spline approximation error as a function of the scale (or sampling step) a. For
this purpose, we define the fractional spline spaces at scale a:

Sαa =

{
sa : ∃c ∈ '2, sa(x) =

∑
k∈Z

c(k)βα
(x
a
− k
)}
,

which involves stretching the basis functions by a factor of a and spacing them ac-
cordingly. Given an arbitrary function f ∈ L2, we determine its least-squares approx-
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imation in Sαa by applying the following orthogonal projection operator (cf. [3]):

Paf =
∑
k∈Z

〈
f,

1
a
β̊α
( ·
a
− k
)〉
βα
( ·
a
− k
)
,(4.4)

where β̊α ∈ Sα is the dual B-spline whose Fourier transform is

ˆ̊
βα(w) =

β̂α(ω)∑
k∈Z |β̂α(ω + 2kπ)|2

.

Clearly, (4.4) defines a projector because the functions βα and β̊α are biorthonormal;
i.e., 〈βα, βα(· − k)〉 = δk. The main result of this section is that the approximation
error ‖f − Pa‖L2 decays like aα+1 when a→ 0. This claim is substantiated with the
following error estimates.

Theorem 4.1. The fractional splines have a fractional order of approximation
α+ 1. Specifically, the least-squares approximation error is bounded by

∀f ∈Wα+1
2 , ‖f − Pa‖L2 ≤

√
2ζ(α+ 2)− 1

2

πα+1 ‖Dα+1f‖L2 aα+1,(4.5)

and its asymptotic form is

∀f ∈Wα+1
2 , ‖f − Pa‖L2 =

√
2ζ(α+ 2)
(2π)α+1 ‖Dα+1f‖L2 aα+1 as a→ 0.(4.6)

Proof. This is very similar to the proofs for integer splines given in [7]. We are
within the hypotheses of the main approximation theorem in [6, Theorem 1] since βα

satisfies the Riesz conditions for α > − 1
2 and since f is at least in W

1
2 +ε
2 for ε > 0.

Defining Eα(ω) =
∑
n�=0 |β̂α(ω+2nπ)|2∑
n |β̂α(ω+2nπ)|2 , we use this theorem to show that

‖f − Pa‖L2 ≤
[

1
2π

∫
|ω|≤ πT

|f̂(ω)|2Eα(ωT ) dω

] 1
2

+

√
ζ(2α+ 2)
πα+1 aα+1

[
1

2π

∫
|ω|≥ πT

|ω|2α+2|f̂(ω)|2dω
] 1

2

,

(4.7)

where we assume that the function f is sufficiently differentiable for the second term
on the right-hand side to be finite. Then, using the Cauchy–Schwarz inequality, we
write

‖f − Pa‖L2 ≤
[

sup
|ω|≤π

Eα(ω)
|ω|2α+2 +

ζ(2α+ 2)
π2α+2

] 1
2

‖Dα+1f‖L2aα+1.

Finally, applying the same technique as in [7, Theorem 4] for finding an accurate
upper bound of Eα(ω)

|ω|2α+2 , we get (4.5).
Using (4.7), it is also possible to see that

‖f − Pa‖L2 =
[

1
2π

∫
|f̂(ω)|2Eα(aω) dω

] 1
2

+ o(aα+1)
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if f is at least in Wα+1
2 , α > − 1

2 . Using the explicit formula of the Fourier transform
of a fractional spline, we easily find that Eα(ω) = 2ζ(α+2)

(2π)2α+2 |ω|2α+2 +o(|ω|2α+2). Thus,
using Lebesgue’s dominated convergence theorem, we conclude that

lim
a→0

‖f − Pa‖2L2

a2α+2 =
2ζ(α+ 2)
(2π)2α+2 ‖Dα+1f‖2L2 ,

which is equivalent to (4.6).
Comments.
(i) Fractional orders of approximation are not very common in approximation

theory. We are only aware of two other instances where they have been con-
sidered. The first is an L∞ bound for the interpolation error on a uniform
grid using radial basis functions (cf. [8, Theorem 17]). The second is a general
approximation theorem by Jetter [17, Theorem 4.2], which specifies the order
in the Fourier domain. This type of result may seem surprising because it
appears to go against the Strang–Fix theory of approximation, which states
the equivalence between the reproduction of polynomials of degree n (here
n = �α�) and the approximation order L = n + 1, which is one more than
the degree. The contradiction that this implies for α noninteger is only ap-
parent because the fractional B-splines do not satisfy some of the hypotheses
required by the theory (e.g., compact support). One of the strongest versions
of the Strang–Fix equivalence that we know requires two assumptions (cf. [6,
Theorem 3], but see also [10]): a Riesz basis condition and some inverse poly-
nomial decay. The fractional B-splines fall short of the second condition by
a small margin (cf. Theorem 3.1).

(ii) A generally held belief in wavelet theory is that a first order of approximation
would be the minimal requirement for the error to vanish as the scale goes to
zero. This limiting behavior is necessary for the representation to be dense in
L2—without it, there are no wavelet bases possible! With fractional splines
of degree − 1

2 < α < 0, we have produced examples of functions that have an
approximation order smaller than 1 and that still satisfy all the requirements
for a multiresolution analysis of L2. This is obviously only possible because
these basis functions are not compactly supported. The other point already
mentioned is that the corresponding refinement filters do not have the usual
factor 1 + e−iω.

5. Variational Properties. As for the usual splines (of odd degree) [2, 29], the
symmetric fractional splines are solutions of a variational interpolation problem. This
is the generalization of the well-known minimum curvature property of the cubic
splines. The underlying interpolation problem can be stated as follows: given the
uniform samples {f(kT )} of a smooth function f ∈ L2, find the interpolating function
whose samples coincide with those of f and whose derivative of order α has minimal
L2 norm (for α = 2, f ′′ is a good approximation of the curvature). The remarkable
result is that the solution to this problem (as well as other related ones) belongs to
the vector space

S2α−1
T,∗ = span

k∈Z

{
β2α−1
∗

( x
T
− k
)}
.

In other words, the optimal solution is the fractional spline interpolant fint of f ,
which is uniquely specified from the sample values f(kT ). To show this, we need the
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following theorem, which generalizes the so-called first integral relation for polynomial
splines [2].

Theorem 5.1. Let α > 1
2 . Then, for all f ∈Wα

2 , we have

‖Dαf‖2L2 = ‖Dαfint‖2L2 + ‖Dα(f − fint)‖2L2 ,(5.1)

where the fractional spline interpolator fint is the unique function of S2α−1
T,∗ that sat-

isfies fint(kT ) = f(kT ) for all integers k.
The proof is given in Appendix C. Of course, if we consider another function

g ∈Wα
2 that interpolates f at the same knots, then we have the same identity as in

Theorem 5.1, with g replacing f . It is thus easy to state the main variational property,
which plays a central role in Duchon’s theory [16].

Corollary 5.2. Let f belong to the Sobolev space Wα
2 . Then the fractional

spline of degree 2α − 1, fint, is the unique function g that minimizes ‖Dαg‖L2 and
that interpolates f at its equidistant samples TZ.

In the same vein, we may consider the following minimization problem:

min
s∈Wα

2

{∑
k∈Z
|f(kT )− s(kT )|2 + λ‖Dαs‖2L2

}
,

where the f(kT )’s are our data points and where λ is a given regularization parameter.
Here, too, we can show that the optimal solution in Wα

2 is a symmetric fractional
spline of degree 2α − 1; i.e., smin ∈ S2α−1

T,∗ . Moreover, as in the usual polynomial
spline case [40], the B-spline coefficients of the solution can be computed efficiently
by digital filtering. This kind of functional minimization is better suited for fitting
noisy data. It allows for a compromise between producing a curve that is close to the
data (first error term) and a solution that is reasonably smooth (second regularization
term). For an integral value of n, it yields smoothing spline estimators that are widely
used in statistics [28, 26, 43, 44].

6. Conclusion. We have extended the family of polynomial splines to fractional
orders. We constructed the fractional B-splines by taking fractional finite differences of
one-sided power functions xα+. What is remarkable is that these new functions inherit
all the nice properties of the polynomial B-splines with two exceptions: positivity and
compact support. They provide the same ease for dealing with fractional derivatives
as the conventional splines do for derivatives. They have simple explicit formulae in
both the time and frequency domains. They also generate Riesz bases and satisfy
a two-scale relation. Their most notable feature is their order of approximation,
namely α + 1, which is no longer an integer. These new functions may be used to
construct new fractional wavelet bases of L2 using any of the techniques developed
with polynomial splines. For instance, we can readily specify an enlarged family of
orthogonal Battle–Lemarié wavelets with a continuous order indexing rather than a
discrete one.

The fractional splines interpolate the polynomial splines in the same sense as the
gamma function interpolates the factorial—this is more than an analogy, because the
gamma function is intimately involved in the definition. By simply varying the frac-
tional exponent α, we have direct control of the most important properties of this
family of functions (Hölder continuity, Sobolev regularity, decay, order of approxima-
tion, etc.).

Finally, we believe that it is possible to extend most of these results to a non-
uniform grid, similar to what has been done with polynomial splines and radial basis
functions.
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Appendix A. Proof of Lemma 2.3. By definition, the
∣∣r
n

∣∣’s are the coefficients of
the development of |1 + e2iπν |r in series of e2niπν , which means that

∣∣∣∣rn
∣∣∣∣ = 2r

∫ 1
2

− 1
2

cosr(πν)e−2niπν dν.(A.1)

From this, one gets

∣∣∣∣rn
∣∣∣∣−
∣∣∣∣ r

n+ 1

∣∣∣∣ = 2r+1i

∫ 1
2

− 1
2

cosr(πν) sin(πν)e−(2n+1)iπν dν

= 2r+1 2n+ 1
r + 1

∫ 1
2

− 1
2

cosr+1(πν)e−(2n+1)iπν dν (by parts)

= 2r
2n+ 1
r + 1

∫ 1
2

− 1
2

cosr(πν)(1 + e−2iπν)e−2niπν dν

=
2n+ 1
r + 1

(∣∣∣∣rn
∣∣∣∣+
∣∣∣∣ r

n+ 1

∣∣∣∣
)
,(A.2)

which yields the induction relation∣∣∣∣ r

n+ 1

∣∣∣∣ =
r − 2n+ 2
r + 2n

∣∣∣∣rn
∣∣∣∣.(A.3)

We notice that this equation is exactly the recursion followed by
(

r
n+ r

2

)
. This implies

that
∣∣r
n

∣∣ = (
∣∣r
0

∣∣/(rr
2

)
)
(

r
n+ r

2

)
. Moreover,

∣∣r
0

∣∣ is an Euler beta function as shown here:

∣∣∣∣r0
∣∣∣∣ =

2r+1

π

∫ π
2

0
cosr(x) dx

=
2r

π
B

(
1
2
,
r + 1

2

)

=
2r

π

Γ( r+1
2 )Γ( 1

2 )
Γ(1 + r

2 )

=
2r√
π

Γ( 1+r
2 )

Γ(1 + r
2 )

= 2
Γ(r)

Γ( r2 )Γ(1 + r
2 )

(using Gauss’s duplication formula [1])

=
(
r
r
2

)
,(A.4)

which thus provides the final expression of
∣∣r
n

∣∣ under the form (2.6).

Appendix B. Proof of Theorem 3.1. We will proceed in three steps. First, we
consider α > 0 and show that |βα+| ≤ C|x|−α−2. Second, using the same method,
we prove the same kind of result for βα∗ for any α > 0. Third, we apply the spline
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induction relations (2.3) and (2.12) to extend this result to negative values of α. Note
that, without loss of generality, we can consider in our calculations that x > 0.

First Step: Causal B-Splines and α > 0. Using (3.1) and integrating N times by parts
2πβα+(x) =

∫
β̂α+(ω)eixω dω yields

2π(−ix)Nβα+(x) =
∫
DN β̂α+(ω)eixω dω.

We are allowed to do these integrations by parts only as long as α+ 1−N > −1; for
higher values of N , the singularities at ω = 2nπ, n �= 0, become nonintegrable. For
α > 0, the integrated terms cancel at infinity. Thus, we take N = �α�+ 1.

In the neighborhood of ω = 2nπ with n �= 0, β̂α+(ω) = (ω/2nπ − 1)α+1 +O
(
(ω −

2nπ)α+2
)
; thus

DN β̂α+(ω) = DN
( ω

2nπ
− 1
)α+1

︸ ︷︷ ︸
ûn,α

+O
(
(ω − 2nπ)α+2−N).

This defines a function un,α through its Fourier transform, and we have

un,α(x) = (−i)NΓ(α+ 2)
sinπα
π

e2niπx

(2niπ)α+1x
N−α−2

for n ≥ 1 and un,α(x) = 0 for n < 0; this is valid only for positive values of x. We
now consider the function uα(x) defined by

uα(x) =
∑
n≥1

un,α(x),(B.1)

which is a uniformly convergent series since α > 0. uα is such that its Fourier
transform satisfies ûα(ω) = DN β̂α+(ω) + O((ω − 2nπ)α+2−N ). Thus, integrating by
parts once again, we have

(−ix)Nβα+(x)− uα(x) = − 1
2iπx

∫
D
{
DN β̂α+(ω)− ûα(ω)

}
eixω dω.(B.2)

The final task is to show that the expression within the integral sign is absolutely
integrable. If this is the case, then we can conclude that the right-hand side of (B.2)
is o(x−1); this is the consequence of a standard theorem in integration theory which
states that if f ∈ L1, then

∫
f(x)e−iωx dx tends to zero as x→ +∞.

In order to prove that the integrand on the right-hand-side of (B.2) is in L1, we
decompose the integral into a sum of definite integrals

∑
n∈Z

∫ (2n+1)π
(2n−1)π [. . .]dω. We can

assume that ω is positive, since the integrand of (B.2) is conjugate symmetric when
ω is changed into −ω. We can thus also assume that n ≥ 0. The case n = 0 can
be dealt with easily since the integrand is locally integrable (which implies that its
integral tends to zero as x→∞). We thus concentrate on the case n ≥ 1. According
to our definition of the complex fractional power, we get β̂α+(ω) = (1−e−iω)α+1

(iω)α+1 =
β̂α+(ω−2nπ)

ωα+1 (ω − 2nπ)α+1. Using Leibnitz’s chain rule for differentiation, we have
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D
{
DN β̂α+(ω)− ûα(ω)

}
= −

∑
k∈N\{0,n}

Dûk,α(ω)

︸ ︷︷ ︸
T1(ω)

+
N+1∑
k=1

(
N + 1
k

)
(−1)kDk

{
β̂α+(ω − 2nπ)

ωα+1

}
DN+1−k(ω − 2nπ)α+1

︸ ︷︷ ︸
T2(ω)

+

(
β̂α+(ω − 2nπ)

ωα+1 − β̂α+(0)
(2nπ)α+1

)
DN+1(ω − 2nπ)α+1

︸ ︷︷ ︸
T3(ω)

,

the modulus of which is to be integrated over [(2n− 1)π, (2n+ 1)π] and summed for
n ≥ 1. Using the triangle inequality, we consider the moduli of the three terms Ti(ω).
We denote by E1, E2, E3 the sum of the contributions over n ≥ 1 of T1, T2, and T3,
respectively. If these are finite, we can deduce that∫ ∣∣∣D{DN β̂α+(ω)− ûα(ω)

}∣∣∣ dω ≤ E1 + E2 + E3 <∞,

which proves our claim. We now show how these terms can be bounded.
• For the first one, we have

E1 =
∑
n≥1

∫ (2n+1)π

(2n−1)π
|T1(ω)| dω

≤
∑
n≥1

∑
k∈N\{0,n}

∫ (2n+1)π

(2n−1)π

C

(2kπ)α+1 |ω − 2kπ|α−N dω

≤
∑
k≥1

∑
n∈N\{0,k}

∫ (2n+1)π

(2n−1)π

C

(2kπ)α+1 |ω − 2kπ|α−N dω (Fubini)

≤ 2Cπα−N+1

α−N + 1

∑
k≥1

1
(2kπ)α+1 <∞,

where C is a constant that does not depend on k, n.
• We observe that Dk{ω−α−1β̂α+(ω − 2nπ)} can be roughly bounded by C′

nα+1

within the interval ω ∈ [(2n − 1)π, (2n + 1)π]. Moreover, for k ≥ 1, the
expression |DN+1−k(ω − 2nπ)α+1| can be integrated over this same interval
and is bounded by some constant C ′′. Finally, the summation for k between
1 and N + 1 yields

∫ (2n+1)π
(2n−1)π |T2(ω)| dω ≤ C′′′

nα+1 . This term can be finitely
summed for n ≥ 1 and thus E2 <∞.
• We rewrite T3 as

T3(ω) =

(
β̂α+(ω − 2nπ)− β̂α+(0)

ω − 2nπ
− β̂α+(0)

(2nπ)α+1

ωα+1 − (2nπ)α+1

ω − 2nπ

)

× Γ(α+ 2)
Γ(α+ 1−N)

(ω − 2nπ)α−N+1

ωα+1 .

In the interval ω ∈ [(2n − 1)π, (2n + 1)π], this term is simply bounded by
K

nα+1 |ω−2nπ|α−N+1, where K is a constant that does not depend on n. Since
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|ω − 2nπ|α−N+1 is locally integrable, we thus have E3 ≤
∑
n≥1

K′

nα+1 , which
is finite.

This proves that

(−ix)Nβα+(x)− uα(x) = o(x−1).

Finally, since uα(x) ∝ xN−α−2, we find that βα+(x) ∝ x−α−2.
Second Step: Symmetrized Splines and α > 0 . We need not consider α ∈ 2N + 1,

since this corresponds to standard, compactly supported B-splines. We follow the
same steps as above. In particular, we again do N = �α� + 1 integrations by part,
which provides us with an integral expression for (−ix)Nβα∗ (x). Analogously to uα,
we define

DN β̂α+(ω) = DN
∣∣∣ ω
2nπ

− 1
∣∣∣α+1

︸ ︷︷ ︸
v̂n,α

+O
(
(ω − 2nπ)α+2−N),

which yields

vn,α(x) = −(−i)NΓ(α+ 2)
cos(π2α)
π

e2niπx

|2nπ|α+1x
N−α−2

for all n �= 0. As for (B.1), we define a function vα that is the sum over n ∈ Z \ {0} of
the vn,α. Subtracting this function from (−ix)Nβα∗ (x) allows an additional integration
by parts, whose integrand can be shown to be in L1 (same tedious proof as for βα+).
Hence, we conclude that

(−ix)Nβα∗ (x)− vα(x) = o(x−1),

which implies that the decay of βα∗ is proportional to x−α−2 as x→∞.
Third Step: α ≤ 0. We shall first prove the following technical lemma.
Lemma B.1. Let r, s, d be three real numbers and f(x), g(x) two functions that

are related through

g(x) = xf(x) + (r − x)f(x− 1).(B.3)

If there exist constants a0, a1, a2 such that

∀x ∈ R+, |g(x)| ≤ a0{[x− d]}s∗ + a1

1 + xr+1 ,

∀x ∈ [0, 1[, |f(x)| ≤ a2{[x− d]}s∗,

then we have the following upper bound for f(x):

∀x ∈ R, |f(x)| ≤ a
′
0{[x− d]}s∗ + a′1

1 + xr
.

Proof. We define u(x) = Γ(x+1)
Γ(x−r+1) so that we can write (B.3) as x−1u(x)g(x) =

u(x)f(x)− u(x− 1)f(x− 1). This equation can be inverted in the following way:

u(x)f(x) = u(x− �x�)f(x− �x�) +
�x�−1∑
k=0

u(x− k)
x− k g(x− k).
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Using Stirling’s formula, we show that there exist constants b0, b1 such that b0(1 +
xr) ≤ |u(x)| ≤ b1(1 + xr) for all positive x. This implies that the first term on the
right-hand side of the above equation is upper bounded by Const×{[x−d]}s∗, while the
summation term is convergent as

∑
k≥1 k

−2 for all positive x and is thus bounded by
Const×{[x−d]}s∗+Const′. Finally, by applying the inequality |u(x)|−1 ≤ b−1

0 /(1 + xr)
we get the upper bound for f(x).

We apply this lemma to βα+(x), which is known to satisfy an induction relation
similar to (B.3), namely, (2.3). In that case we identify d = 0, r = α + 2, g(x) =
βα+1

+ (x), and f(x) = 1
α+1β

α
+(x), where we assume −1 < α < 0 (of course, the case

α = 0 is already solved since β0
+ is compactly supported). We easily verify that

|βα+(x)| ≤ a2{[x]}α∗ for x ∈ [0, 1[ so that we can take s = α. Finally, thanks to
the proof of the decay for fractional splines of positive degree, we observe that the
condition on g(x) is satisfied as well. This proves the claim of Theorem 3.1 for α < 0
and βα = βα+.

In order to apply our lemma to βα∗ , we need to define the intermediary function
γα+1(x):

γα+1(x) =
x

α+ 1
βα∗

(
x− α+ 1

2

)
+
α+ 2− x
α+ 1

βα∗

(
x− 1− α+ 1

2

)
.

Thanks to (2.12) it can be verified that we also have

βα+2
∗

(
x− α+ 3

2

)
=

x

α+ 2
γα+1(x) +

α+ 3− x
α+ 2

γα+1(x− 1).

Then, we apply the lemma twice: First, we identify r = α + 3, g = βα+2
∗ , and

f = 1
α+2γ

α+1, where we assume −1 < α ≤ 0. Using the definition of γα+1 we see
that we also have |γα+1(x)| ≤ a2{[x− α+1

2 ]}α∗ for x ∈ [0, 1[, which makes us identify
d = α+1

2 and s = α. Since we already know the rate of decay of g(x), i.e., x−α−4, we
thus claim that

|γα+1(x)| ≤ a
′
0{[x− α+1

2 ]}α∗ + a′1
1 + xα+3

for all positive x.
Second, we set r = α + 2, g(x) = γα+1(x), and f(x) = 1

α+1β
α
∗ (x − α+1

2 ). We
obviously have |f(x)| ≤ a′2{[x− α+1

2 ]}α∗ for x ∈ [0, 1[, which makes us identify d = α+1
2

and s = α in the above lemma. We thus conclude that∣∣∣∣βα∗
(
x− α+ 1

2

)∣∣∣∣ ≤ a′′0{[x− α+1
2 ]}α∗ + a′′1

1 + xα+2

for positive x. This is equivalent to the form of (3.4) for βα = βα∗ .

Appendix C. Proof of Theorem 5.1. The condition f ∈Wα
2 with α > 1

2 guar-
antees that f(TZ) ∈ '2 [6]. A consequence is that the 2π-periodic function g(θ) =∑
n∈Z f(nT )eikθ is in L2[0, 2π]. If there exists an L2 function fint =

∑
k∈Z ckβ

2α−1
∗ ( ·T−

k) such that fint(nT ) = f(nT ) for all integers n, then the coefficients ck must belong
to '2 (lower Riesz condition). Thus the interpolation condition can be rewritten as

g(θ) =

(∑
k

cke
ikθ

)(∑
k

β2α−1
∗ (k)eikθ

)
︸ ︷︷ ︸

A(θ)

.
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Using Poisson’s formula (valid pointwise since β2α−1
∗ and β̂2α−1

∗ decay faster than
|x|−1−ε and |ω|−1−ε, and since β̂2α−1

∗ is continuous) we have A(θ) =
∑
k β̂

2α−1
∗ (θ −

2kπ), which is obviously always strictly greater than a positive constant, namely,
A2
α−1, in (3.8). This implies that g(θ)A(θ)−1 is in L2[0, 2π]. Thus, {ck}k∈Z exists and

is given uniquely by ck = 1
2π

∫ 2π
0 g(θ)A(θ)−1e−ikθdθ. This proves the existence and

the unicity of the interpolator in S2α−1
T,∗ .

Next, we observe that the condition α > 1
2 implies that any function ϕ ∈ S2α−1

T,∗
belongs to Wα

2 as well. Moreover, if d(x) is a function of Wα
2 such that d(n) = 0 for

all n ∈ Z, then ∑
n

d̂(ω + 2nπ) = 0 for almost every ω ∈ [0, 2π].(C.1)

The proof of this claim comes from the fact that
∑
n d̂(ω + 2nπ) is in L2[0, 2π] as a

consequence of the fact that α > 1
2 (this can be seen by using a two-step bounding

process which involves Minkowsky and Cauchy–Schwarz inequalities). Thus, we can
apply Fourier’s theorem about the decomposition of 2π-periodic L2[0, 2π] functions
into sinusoids einω. (Note that this is another flavor of Poisson’s summation formula.)

Finally, let f̂int(ω) = C(ωT )β̂2α−1
∗ (ωT ), where C(ωT ) is 2π-periodic and is in

L2[0, 2π]. If f ∈ Wα
2 then d(x) = f(Tx) − fint(Tx) is in Wα

2 as well, and satisfies
d(n) = 0 for all n ∈ Z. We have

〈Dα {f − fint} , Dαfint〉 =
T

2π

∫
d̂(Tω) f̂int(ω)|ω|2α dω

=
22α

2πT 2α

∫
d(ω)C(ω)

∣∣∣sin ω
2

∣∣∣2α dω
=

22α

2πT 2α

∑
n∈Z

∫ 2π

0
d(ω + 2nπ)C(ω)

∣∣∣sin ω
2

∣∣∣2α dω
=

22α

2πT 2α

∫ 2π

0

∑
n∈Z

d(ω + 2nπ)C(ω)
∣∣∣sin ω

2

∣∣∣2α dω
= 0,

where the exchange of the
∫

and
∑

signs is justified by the uniform convergence of
the expression (Fubini’s theorem). Equation (5.1) is then a simple consequence of the
decomposition of the L2 norm

‖Dαf‖2L2 = ‖Dα{f − fint}‖2L2 + 2 〈Dα {f − fint} , Dαfint〉+ ‖Dαfint‖2L2 .
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