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Self-Similarity: Part I—Splines and Operators
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Abstract—The central theme of this pair of papers (Parts I and
II in this issue) is self-similarity, which is used as a bridge for con-
necting splines and fractals. The first part of the investigation is de-
terministic, and the context is that of L-splines; these are defined
in the following terms: ( ) is a cardinal L-spline iff L ( ) =

[ ] ( ), where L is a suitable pseudodifferential op-
erator. Our starting point for the construction of “self-similar”
splines is the identification of the class of differential operators
L that are both translation and scale invariant. This results into
a two-parameter family of generalized fractional derivatives, ,
where is the order of the derivative and is an additional phase
factor. We specify the corresponding L-splines, which yield an ex-
tended class of fractional splines. The operator is used to de-
fine a scale-invariant energy measure—the squared 2-norm of
the th derivative of the signal—which provides a regularization
functional for interpolating or fitting the noisy samples of a signal.
We prove that the corresponding variational (or smoothing) spline
estimator is a cardinal fractional spline of order 2 , which ad-
mits a stable representation in a B-spline basis. We characterize
the equivalent frequency response of the estimator and show that
it closely matches that of a classical Butterworth filter of order 2 .
We also establish a formal link between the regularization param-
eter and the cutoff frequency of the smoothing spline filter: 0

2 . Finally, we present an efficient computational solution to the
fractional smoothing spline problem: It uses the fast Fourier trans-
form and takes advantage of the multiresolution properties of the
underlying basis functions.

Index Terms—Fractals, fractional derivatives, fractional splines,
interpolation, self-similarity, smoothing splines, Tikhonov regular-
ization.

I. INTRODUCTION

THE concept of self-similarity is intimately linked to frac-
tals [1]. It is a property that often results in a complex,

highly irregular appearance, even though fractal patterns are
typically constructed using simple generative rules. The clas-
sical man-made fractals, such as von Koch’s snowflake or Sier-
pinski’s triangle, are deterministic and literally self-similar in
the sense that the whole is made up of smaller copies of it-
self. Nature provides many examples of nondeterministic frac-
tals that are self-similar in a statistical sense over a wide range
of scales [1], [2]. Fractional Brownian motion (fBm) is a prime
example of a stochastic process that is statistically self-similar
[3]. fBms are used to model phenomena in a variety of disci-
plines, including communications and signal processing [4].
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An important property of fBm and related processes is that
they can be easily transformed into stationary processes via
the application of simple differential operators—such as finite
differences [5], [6], derivatives [7], or even a wavelet transform
[8]—or, alternatively, via Lamperti’s transformation [9]. This
has important practical repercussions, for it greatly simplifies
their analysis. In recent years, wavelets have emerged as the
preferred tool for analyzing fractal-like processes [10]–[12].
The approach was pioneered by Flandrin who proved that
the wavelet transform would decompose an fBm-like process
into stationary components that are essentially decorrelated
[8]. There is an earlier, closely related result by Wornell that
states that the wavelet transform is a good approximation
of the Karhunen–Loève transform for the class of stationary
processes with near behavior [13]. Interestingly, Mallat’s
landmark paper on wavelets also contains an early application
of wavelets to the estimation of the fractal dimension of a
signal [14]. The link between fractals and wavelets is very
strong and is further supported by the following remarkable
wavelet properties:

• a wavelet analysis is equivalent to a multiscale differen-
tiation [15]; this implies that the wavelet coefficients of
an fBm at a given scale define a discrete-time stationary
process;

• the structure of the decomposition is self-similar by con-
struction: the basis functions are dilated versions of each
other [14];

• the basis functions themselves are fractals [16].
For an in-depth coverage of the notion of self-similarity within
the context of wavelets and refinement equations, we refer to the
monograph of Cabrelli et al. [17].

The above results implicitly suggest that there should also
be a connection with splines because of the essential role
these play in wavelet theory. Indeed, any scaling function (or
wavelet) can be written as the convolution of a polynomial
B-spline and a singular distribution, with the spline component
being responsible for all important mathematical properties:
vanishing moments, multiscale differentiation property, order
of approximation and regularity [18]. Another relevant fact is
that Schoenberg’s classical polynomial splines [19] are made
up of self-similar building blocks [16]: the one-sided power
functions , which are elementary fractals.1

The notion of splines, however, need not be restricted to
piecewise polynomial functions. More generally, we view them
as a mathematical framework for linking the continuous and the
discrete [20], [21]. This idea can be made explicit by defining
generalized cardinal L-splines for which the continuous-time
operator L plays the role of a mathematical analog-to-discrete

1The function f(t) = t is homogeneous with respect to dilation in the sense
that there exists � 2 such that f(t=a) = � � f(t).
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converter (cf. Section II). We believe that this more abstract,
operator-based formulation is the key to gaining a deeper
understanding of these entities. It also suggests a deductive
paradigm by which splines can be constructed starting from
first principles: i.e., the specification of a class of differential
operators L with some relevant invariance properties.

Our purpose in this pair of papers (Parts I and II in this issue)
is to demonstrate this approach by focusing on the important
case where the spline-defining operator is scale invariant. As
in the case of fractals, there are two complementary aspects to
the problem—deterministic and stochastic—which are treated
in Part I and Part II, respectively. The second part, in particular,
will focus on the minimum mean-square error (MMSE) estima-
tion of fractal-like processes, which calls for a specialized math-
ematical treatment; this will allow us to establish a fundamental
connection between the fractional splines, which will be identi-
fied in the first part, and fBms.

The present paper, whose context is purely deterministic, is
organized as follows. In Section II, we set the stage by reinter-
preting the elementary example of a piecewise constant func-
tion as a D-spline, where D is the derivative operator. We then
define cardinal L-splines in the general shift-invariant setting
and briefly review their main deterministic properties. In the
process, we also propose a new, extended smoothing spline es-
timator that minimizes a quadratic, convolution-weighted error
criterion (data term) subject to a regularization constraint that
favors solutions with small “spline energies.” The important
practical point is that the general solution of this problem is
an -spline whose B-spline coefficients can be determined
by suitable filtering of the noisy discrete input signal. In Sec-
tion III, we turn our attention to spline-defining operators L
that are self-similar. We prove that this class reduces to frac-
tional derivatives of order , which leads to the identification
of a corresponding two-parameter family of fractional splines,
extending an earlier construction of ours [22]. We also charac-
terize the nonlocal effect of our extended fractional derivatives
for Schwartz’s class of rapidly decreasing functions. In Sec-
tion IV, we specify the corresponding fractional smoothing
spline estimators and characterize their equivalent frequency
response. We then present an efficient fast Fourier transform
(FFT)-based computational solution, which takes advantage of
the multiresolution properties of the underlying basis func-
tions. We conclude this first part with a brief discussion of the
“scale-invariance” properties of the various fractional spline
estimators that can be specified within the proposed variational
framework.

II. GENERALIZED SPLINES

The purpose of this section is to present a generalized no-
tion of splines that is associated with a particular class of
differential operators L. We start with a simple introductory
example that explains the key ideas behind this type of con-
struction. We then proceed with a general characterization of
cardinal L-splines along the lines of [23]. We recall their key
properties and introduce an extended convolution-weighted
smoothing spline algorithm for fitting discrete signal samples
corrupted by noise.

A. Introductory Example: -Splines or Piecewise-Constant
Functions

Let denote the first-order derivative operator. A
piecewise constant spline can be formally viewed as a function

whose derivative is a weighted stream of Dirac distributions

where the ’s encode the locations of the spline discontinuities
(or knots). In this paper, we concentrate on the cardinal setting
where the knots are on the integers (i.e., ) and write

to signify that the differentiated cardinal spline
has the structure of a sampled signal . Starting
from there, we reconstruct the spline by applying the inverse
operator , which amounts to an integration. Thus, by using
the well-known fact that (the unit step), we
obtain the explicit formula

(1)

where is a suitable integration constant. Equation (1) clearly
indicates that is piecewise constant with discontinuities at
the integers or, equivalently, a cardinal polynomial spline of de-
gree 0. The important point to note here is that the basis function
generator is the causal Green function2 of D and that the ad-
ditional term (a constant) is a signal that is in the null space of
D. In practice, one usually prefers an equivalent and much sim-
pler representation in terms of shifted B-spline basis functions

(2)

where is the B-spline of degree 0 (causal rect function)
that can be expressed as

(3)

where is the causal finite-difference operator. By plugging
(3) into (2), we can relate the coefficients of the representations
(1) and (2) via the difference equation .
Moreover, it is easy to establish the following B-spline repro-
duction formulas:

which links the two kinds of basis functions. This whole set
of relations is illustrated in Fig. 1. For computational pur-
poses, representation (2) is obviously much more attractive
than (1) because the B-spline basis functions are localized
as opposed to the ones in (1), which are infinitely supported
and nondecreasing. In addition, the piecewise-constant basis
functions are orthogonal, which has many
advantages, with stability being not the least. The “magical”

2By definition, �(t) is a Green function of the shift-invariant operator L if and
only if Lf�g = �(t).
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Fig. 1. Piecewise constant splines. (a) and (b): Interpretration of s(t) as a
D-spline. (c) Representation of the step function (Green function of the oper-
ator D) as a weighted sum of B-splines of degree 0. (d) B-spline of degree 0 as
the difference of two step functions.

trick that allowed us to switch from the badly conditioned basis
functions in (1) to the much nicer ones in (2) is contained in the
localization formula , where .
In essence, we are using digital means—the finite-difference
operator —to approximately undo the effect of the inte-
grator that is applied to . In other words, the B-spline
may be thought of as some kind of approximation of the Dirac
impulse within the space of cardinal piecewise constant splines,
or equivalently, the space that is spanned by the integer shifts
of the Green function of D. While this way of describing
the construction of piecewise-constant functions may seem
contrived and much more complicated than necessary, it is
extremely fruitful conceptually because it lends itself naturally
to generalization. Basically, we will now replace the derivative
operator D by some pseudodifferential operator L and apply the
exact same recipe to define an extended family of generalized
splines.

B. Spline-Admissible Operators

Following [23], we introduce the notion of “spline-admis-
sible” operator of order .

Definition 1: L is a spline-admissible operator of order
if and only if the following conditions are met.

1) L is a linear, shift-invariant operator with a frequency re-
sponse such that

(4)

for all positive real .
2) L has a well-defined inverse (not necessarily unique)

whose impulse response is a function of slow
growth included in Schwartz’s class of tempered distribu-
tions. Thus, L admits as Green function: .

3) There exists a corresponding spline-generating func-
tion (gen-
eralized B-spline) that is sufficiently localized for

. In particular, this
implies that for all and that its
integer samples are in .

4) The localization operator in 3) is a stable digital filter
in the sense that .

5) The functions form an -stable Riesz
basis. Specifically, the following two conditions must be
satisfied for all :

and

Conditions 1) to 4) are quite explicit and not too difficult to
check in practice. Condition 1) signifies that L has qualitatively
the same behavior as a derivative of order [23]. One usually
has some latitude for the choice of the localization operator :
in essence, it is a digital filter that should be designed such that
its frequency response closely
matches the behavior of , especially around the frequencies
where is singular. Indeed, we want the Fourier transform of
our generalized B-spline

(5)

to be close to one over a reasonable frequency range (remember:
our goal is to approximate ) and have the largest possible de-
gree of differentiation (ideally, ) to ensure that has
fast decay (ideally, compact support). The absolute summability
condition in 3) is required for technical purposes and is automat-
ically satisfied when is bounded and compactly supported,
which will often be the case when is properly chosen. Con-
dition 5) is less direct and typically needs to be checked on a
case-by-case basis. In fact, because of the summability require-
ment in 3), it is sufficient to satisfy the standard Riesz basis con-
dition [24]. Specifically, one needs to prove that the -Riesz
bounds and are
strictly positive and finite, where

(6)

C. Cardinal -Splines

Having specified the properties of a spline-admissible op-
erator L, we now proceed with the specification of the corre-
sponding family of cardinal spline functions.

Definition 2: The continuous-time function , , is a
cardinal L-spline if and only if

(7)

with .
Now, if L is spline-admissible with generator , we can

readily define the corresponding generalized spline subspace of
with

(8)
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and we have the guarantee that each spline in is uniquely
characterized by its B-spline coefficients . Moreover, the ex-
pansion coefficients in (7) are given by , where

is the digital filter representation of the localization operator;
i.e., .

To illustrate the method, we now consider a slightly more
general version of our introductory example with .
The causal Green function of is the one-sided power
function (the impulse response of the -fold
integrator) with . The frequency response
of the th-order differentiator is , and one
easily checks that its smoothness order (as specified in (4))
is as well. The classical discrete version of this op-
erator is the th-order finite difference whose
frequency response is . By applying this lo-
calization operator to the Green function of , we obtain
Schoenberg’s classical formula for the B-spline of degree

. The last step is to make sure that this
B-spline generates a stable Riesz basis, which is indeed the case
[22], [25]. From the above, we immediately deduce that the
underlying -splines are in fact equivalent to the classical
polynomial ones, which have the following key properties.

1) They are polynomials of degree within each interval
; this becomes more apparent if we consider their

representation in terms of shifted one-sided power func-
tions: .

2) They are times continuously differentiable; this
follows from the property that the th derivative of
each of the basic Green atoms is a continuous piecewise-
linear function: .

3) They have a stable representation in the cardinal B-spline
basis .

D. Variational Splines and Best Interpolants

The spline-defining operator L can also be used to measure
the “spline energy” of a function : . This quantity
is well defined as long as , where denotes the
generalized Sobolev space associated with the operator L [23].
In the sequel, we will use this spline energy as a regularization
term to constrain and specify some general data fitting problems.

It turns out that this spline energy naturally leads to the defini-
tion of a corresponding -spline that is optimal in a well-de-
fined variational sense. If L is spline admissible of order

with generator , then we can prove the following impor-
tant properties for the corresponding class of -splines (cf.
[23]).

1) The operator is guaranteed to be spline admissible of
order with symmetric generator

.
2) Any given discrete signal has a unique, well-

defined -spline interpolant in as specified in (8).
3) For any function , the spline energy can be decom-

posed as

(9)

where is the unique -spline that interpolates
, i.e., , .

A first, direct practical implication of these properties is the
following key result, which yields an “optimal” procedure for
interpolating a discrete signal, together with a simple digital fil-
tering algorithm.

Theorem 1: Let be a discrete input signal and L be
a spline-admissible operator of order with generator

. Among all possible interpolating functions ,
the optimal one that minimizes , subject to the interpo-
lation constraint , is the -spline interpolant

where and where is the impulse
response of a bounded-input bounded-output (BIBO) stable
filter whose frequency response is

(10)

where is defined by (6). The proof of these results can
be found in [23]. Note that the denominator of (10) is nonvan-
ishing because of the Riesz basis condition. An important spe-
cial case is , which leads to the classical result that
the cubic spline interpolant (with ) is the minimum
curvature solution for it minimizes the energy of the second
derivative.

E. Generalized Smoothing Splines

When the input data is corrupted
by discrete noise , it may be counterproductive to determine
its exact spline fit. Instead, one should rather seek a solution
that is close to the data but has some inherent smoothness to
counterbalance the effect of the noise. To this end, one usu-
ally specifies a regularized version of the interpolation problem
that involves a compromise between a data term—the quadratic
fitting error—and a regularization term that limits the
spline energy of the solution, which is then called a smoothing
spline [26], [27]. The relative weight between the two compo-
nents of the criterion is adjusted by means of a regularization
factor . Here, we consider an extension of the standard
smoothing spline algorithm where the fitting error is weighted
in the frequency domain, which corresponds to the convolution
with a discrete weighting filter in the data domain. A remark-
able result is that the solution of this approximation problem,
among all possible continuous-time functions , is a cardinal

-spline and that it can be determined by digital filtering.
Before stating our result, we set our class of admissible

weighting filters to those satisfying for al-
most every . This ensures that is square
summable whenever (as a consequence of Parseval’s
relation).

Theorem 2: Let L be a spline-admissible operator of regu-
larity with spline generator such that

with . Then, the con-
tinuous-time solution of the variational problem with discrete
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input data , admissible weighting filter , and regu-
larization parameter

is the cardinal -spline that is specified by

(11)

where and where is the impulse
response of the digital smoothing spline filter whose frequency
response is

(12)

Proof: A necessary condition for the criterion to be finite is
obviously . This, together with the requirement

, implies that the solution is necessarily in
[23]. Thus, we can use (9) and write the criterion to minimize as

where is the -spline interpolator of the sequence
. Note that the underbraced expressions, and , are

entirely specified by the integer samples . Moreover, using
Parseval identity and the fact that ,
we find that

where and
. The second term is further simplified to

Combining the above expressions, we rewrite the criterion to
minimize as

using the expression of (12) for simplification
purposes; the quantity

is bounded from above,
due to our assumptions. The key step here has been to combine
the arguments of the integral into a square (first term) plus a
correction term that is independent upon the unknown .

The criterion is clearly minimal iff
; that is, when

, using the fact that .
On the other hand, is minimal iff

; i.e., iff is an spline.
As a consequence, the complete functional

is minimized for the spline
whose samples satisfy . This is
precisely the solution (11) as one can check by setting
in (11).

Note that the frequency response of the smoothing spline filter
is bounded ( -stability), irrespective of the value of , be-
cause (Riesz basis condition).

If we further add the restriction that and that its
Fourier transform is bounded from below, then we have the guar-
antee that (BIBO stability), which comes a conse-
quence of Wiener’s Lemma (cf. [28, Ch. 13]).

The optimal solution in Theorem 2 is a generalized ver-
sion of the nonweighted smoothing spline described in [23].
By adjusting the regularization parameter , we can control the
amount of smoothing. When , there is no smoothing at
all and the solution interpolates the data precisely and coin-
cides with in Theorem 1, irrespective of the choice of
weighting kernel . For larger values of , the smoothing kicks
in and typically tends to attenuate high frequency components.
In the limit, when , it will preserve the signal compo-
nents that are in the null space of the operator L; for instance,
the best fitting polynomial of degree when (poly-
nomial spline case).

The key practical question is how to select the most suitable
operator L, the weighting kernel and the optimal value of for
the problem at hand. While this can be done empirically, it can
also be approached in a rigorous statistical fashion by intro-
ducing a stochastic model for the signal. Here, we will promote
the use of fractional derivative operators of the type introduced
next. In the companion paper, we will prove that this is the op-
timal approach for the estimation of fractal-like processes. We
will also show how to optimally select the free parameters of the
fractional smoothing spline filter: (order of the derivative), ,
and .
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III. SCALE-INVARIANT L-SPLINES

Since fractal-like signals are statistically self-similar, it is
quite natural to investigate the class of differential operators
that have the same type of invariance properties. We will
characterize these operators and verify that they are spline ad-
missible. We will also show that they yield an extended family
of fractional splines—the so-called -splines—which are
substantially richer than the ones initially proposed in [22].

A. Characterization of Scale-Invariant Operators

We will now characterize the special class of spline-admis-
sible operators that are scale invariant.

Definition 3: A real operator L is scale invariant if and only if
it commutes (up to some scaling constant ) with the dilation
operation : , where
for any signal , and where is a function of the
dilation factor .

In the case of a convolution operator, we can rewrite the
above scale-invariance condition in the frequency domain;
this gets translated into the following condition on the fre-
quency response of the operator: . Note
that the function has to be real in order to ensure that

(Hermitian symmetry). In fact, the choice of
is even more restricted, as shown next.

Proposition 1: A real scale-invariant convolution operator L
is necessarily th-order scale invariant; i.e., its frequency re-
sponse is such that for any , where

.
Proof: We consider a scale-invariant convolution operator

L. Because is a distribution, it acts as a linear functional on
the test functions in Schwartz’s class ; it also satisfies the
standard continuity condition: when
as [29]. This implies the continuity at of the
function involved in Definition 3 as shown below:

• By making a change of variables, we have that
. Using scale

invariance, this proves that

• The limit of as is obviously
. So, using the continuity property of the distri-

bution , the right-hand side of the above equation
tends to . This proves that the left-hand
side is convergent as well when , and finally that

.
In addition, it is easy to verify that has to satisfy the

chain rule by writing

We can now turn to standard analysis to show that the functions
that satisfy the chain rule and are con-
tinuous at are necessarily of the form . Note
that has to be real in order to ensure that is real.

The th-order scale-invariance property implies that the
Green function of L is self-similar: .
This follows from the fact that the inverse operator is
scale-invariant of order ; a fact that is easily established
in the Fourier domain. The importance of scale-invariant op-
erators is that they are the only ones that yield splines that
are truly scale invariant in the sense that the defining operator
remains the same irrespective of the scale (or knot spacing

). To put it more explicitly, we will say that a function
is a scale-invariant L-spline of order if and only if

with for
any scale . This is obviously only possible if L is spline
admissible and scale invariant of order . Interestingly, it turns
out that the only splines that are scale invariant are the frac-
tional ones, which corresponds to the choice where L is a pure
fractional derivative of order . This is a direct consequence of
the following proposition.

Proposition 2: A convolution operator L is th-order scale
invariant if and only if its Fourier transform can be written (up
to some real multiplicative factor) as

(13)

where is an adjustable phase parameter. Moreover, for ,
these fractional derivative operators are all spline admissible of
order .

Proof: By differentiating with respect
to and setting , we obtain the differential equation

whose general solution can be shown to be (cf. [30])

for
otherwise

where , are some arbitrary constants. In our case,
we have the additional constraint (4), which rules out the possi-
bility of containing Diracs and implies . Moreover,
because our operators are real, has to satisfy the Hermitian
symmetry so that we can write the solution
for as . This is equivalent to (13) provided
that we set with the choice of normalization

.
The Green functions of these operators are well defined

and can be localized to yield the so-called fractional
B-splines with [31]. These generalized B-splines
satisfy the Riesz basis condition for . The proof is
identical to the one given for the symmetric fractional B-splines
in [22], which correspond to the special case . Moreover,
the fractional B-splines are all -stable for . A limiting
case is the Haar function with ( , ), which is
obviously spline admissible as well; this is not so for the other
splines of order 1 when is not a half-integer.

The amplitude response of these operators is
, which clearly indicates that they are of order and that

they correspond to th fractional derivatives, which will be de-
noted by .
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B. Fractional Derivatives and Test Functions

In general, these fractional derivatives are nonlocal operators
unless (integer) and (causal version), which
corresponds to the usual definition of the derivative. This can
lead to some theoretical difficulties and makes it necessary to
get an estimate of the type of decay that should be expected
when applying them to rapidly decreasing functions.

Theorem 3: Let (Schwartz’ class of functions)
be an indefinitely differentiable test function with rapidly
decreasing usual derivatives (i.e., faster than polynomial rate).
Then, with is indefinitely differentiable and has
at least polynomial decay in the sense that

Proof: The Fourier transform of a function of has fast
decay and multiplying it by a polynomial (e.g., the frequency
response of the fractional derivative) preserves this property.
Using the usual duality between decay and differentiation, we
immediately deduce that the fractional derivative of a function
of is indefinitely differentiable.

Concerning the polynomial decay of this fractional deriva-
tive, our reasoning requires three steps.

• First, the exact computation of the fractional derivative of
(note that ):

This result is easily obtained from the Fourier expression of
, i.e., for , and its Hermite conjugate

for .
• Second, the observation that, if , then the function

decreases at least as . This is
proven by analyzing the Fourier transform of , more
specifically, by showing that it satisfies
for all positive integer . Indeed, is
indefinitely differentiable everywhere, except at ;
moreover, and its usual derivatives of any order are
rapidly decreasing. On the other hand, in the neighbor-
hood of , is , which implies that

is locally around 0. Put together, this implies
that . Finally, using the identity

and the absolute integrability of , we are able to deduce
that for , which
proves the claim of this step.

• Last, the identity

and the results of the previous steps lead to the following
bound:

In order to extend the fractional differentiation to distributions
, it suffices to observe that for functions and of , we have

the dual property . It is then natural to
define the scalar product of a distribution with a test func-
tion by . Theorem 3 tells us that we
must restrict the admissible distributions to those that admit test
functions that are indefinitely differentiable but may decrease as
slowly as .

C. Fractional B-Splines

Going back to the introductory example in Section II-A, we
notice that the frequency response of the corresponding first-
order localization operator is

. Hence, it makes perfect sense to introduce the gen-
eralized fractional localization operator by its Fourier transform

which provides a discrete approximation of the fractional
derivative . By using a generalized version of the binomial
expansion and taking the inverse Fourier transform, it is possible
to obtain the exact analytical formulae of the corresponding
filter coefficients in terms of generalized factorials in-
volving the Euler’s gamma function [31]. The sequences can
also be shown to decrease like when . Once
again, it is possible to apply fractional finite differences to dis-
tributions by using the duality relation .

By using the expression of and the definition of the gen-
eralized B-splines in Section II-B, we readily obtain the Fourier
domain representation of the fractional B-splines of degree3

and asymmetry parameter :

(14)

For , we recover the causal fractional splines
of degree , which are made of building blocks of the

type . These particular functions play a fundamental
role in wavelet theory in the sense that every scaling function can
be represented as the convolution product between a fractional
B-spline and a singular distribution [18].

3The terminology “of degree�” is used to signify that the elementary building
blocks of these splines are power functions of degree�. On the other hand, their
order of approximation is 
 = �+1, which also coincides with the differential
order of the defining operator @ .
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D. Multiresolution Properties

Our definition of scale-invariant L-splines implies that the
underlying functions have some fundamental multiresolution
properties. Specifically, we have that

, , which follows directly from
the property that ,
because the defining operator is scale invariant of order

. This implies that the underlying B-splines must satisfy a
general scaling relation

(15)

where (scaling filter) is an appropriate sequence
of weights corresponding to the expansion coefficients of

in . The Fourier domain equivalent of (15) is
. By plugging in the explicit

formula (14) for and solving for the frequency response
of the scaling filter, we find that

(16)

which is clearly -periodic. The case in (15) is of
special interest because it yields the corresponding two-scale
relation, which is central to wavelet theory [15], [18], [32]. We
note, however, that the present scaling relation is more general
because it holds for any positive integer , and not just powers
of 2.

IV. FRACTIONAL SMOOTHING SPLINES

Our purpose in this section is to present an in-depth inves-
tigation of smoothing spline estimators for the case where
the regularization operator is scale invariant as specified in
Section III. We will characterize the corresponding frac-
tional smoothing spline estimators and propose an efficient
Fourier-based algorithm.

A. Basic Solution

Given a discrete noisy input signal, , the problem
is thus to determine the optimal estimator such that

(17)

where is a suitable positive-definite weighting sequence.
We have just seen that is a scale-invariant, spline-admis-

sible operator of order corresponding to the spline generator
. We can therefore apply Theorem 2, which tells us that

the optimal solution is a fractional spline specified by (11) with
. By using (14), we obtain the

Fourier transform of the optimal generator

(18)

which does not depend on anymore. As indicated by the right-
hand side of (18), this corresponds to a fractional B-spline of
order and asymmetry parameter . It is also equivalent
to the symmetric B-spline of degree , which
is fully characterized in [22].

The localization operator for can be seen to
be whose Fourier transform is .
Likewise, we can use Poisson’s summation formula to compute
the Fourier transform of the sampled version of the symmetric
fractional B-spline, as follows:

(19)
Finally, by substituting (18) into the right-hand side of (19), we
get an explicit formula for the smoothing spline filter (10) asso-
ciated with the fractional differentiation operator , as follows:

(20)

B. Characterization of Smoothing Spline Estimators

We now consider the special case where the weighting se-
quence in (17) is the identity (i.e., ). To charac-
terize the underlying estimator, we rewrite the smoothing spline
solution as

where is the (noisy) input sequence and where
is an equivalent spline basis function

that represents the impulse response of the smoothing spline
algorithm. Here, we have made use of the commutativity of the
convolution operation and have moved the digital reconstruction

in (11) on the side of the basis functions, instead of applying
it to the digital input signal. Using (20) and (18), we obtain the
frequency response of the smoothing spline estimator as

(21)

Next, we show that this operator essentially behaves like a clas-
sical Butterworth filter of order and cutoff frequency ,
which is defined as (cf. [33] and [34])

(22)

While is traditionally constrained to be an integer, this defini-
tion is applicable for as well.
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Theorem 4: The frequency response of the
smoothing spline estimator of order and regularization
parameter satisfies the following inequalities.

1) For

(23)

with

where is the Riemann zeta function.
2) For

(24)

with

(25)

Proof: We rewrite (21) as

(26)

where is the auxiliary function defined by

(27)

Clearly, is symmetric and positive. Moreover, we can
show that it is monotonically increasing for .
Hence, we have the following bound:

Next, we note that and use the identity
(cf. [35, Sec. 23.26]) to

show that , which yields the
first part of the theorem.

For the second part, we note that the dominant term in (27)
for with corresponds to the index
round . Denoting , we therefore have

simply because . Using the definition of in (25)
and making use of the above inequality in (26), we ultimately
get

which holds for .

Fig. 2. Frequency responses of smoothing spline estimators as � and

 varies. Each subplot corresponds to a fixed value of 
 and the filters
of a given color are matched according to their equivalent bandwitdh:
! = �; 4�=5; 3�=5;2�=5; and �=5.

Since , the interpretation of Theorem 4 is
that the frequency response of the smoothing spline filter with
regularization parameter closely matches that of a Butterworth
filter of fractional order and cutoff frequency given by (25).
Conversely, we may specify an equivalent bandwitdth
and select the regularization parameter accordingly (cf. (25)), as
follows:

The variety of responses that can be obtained by varying
and is illustrated in Fig. 2. In these examples, the latter pa-
rameter was computed using the above equation with

. The behavior of these filters is
clearly lowpass with a response that gets sharper and closer to
the ideal one as increases.

We note that the Butterworth approximation
improves as increases, in which case the cutoff

frequencies , , and get closer to . The same
type of effect can also be observed as gets larger; indeed,

rapidly converges to with the consequence that the
lower bound in (23) becomes undistinguishable from the upper
bound in (24).

For the particular case , the estimator is equivalent
to a spline interpolator of degree . The corresponding
cutoff frequency is (Nyquist frequency). As increases,
the frequency response converges to an ideal filter as illustrated
in Fig. 3; this is consistent with earlier findings for the integer
case [36].

While the above results suggest a close connection between
smoothing spline estimators and Butterworth filters, we also like
to point out two fundamental differences. The first is the context:
in the present case, the input of the spline estimator is discrete;
this is in contrast with traditional Butterworth filters which are
designed for processing analog signals. The second difference
concerns the reproduction of polynomials, which is a property
that is specific to splines.

Proposition 3: A smoothing spline estimator of order has
the ability to reproduce the polynomials of degree
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Fig. 3. Frequency response '̂ (!) of fractional spline interpolators for in-
creasing values of 
 . In the limit, '̂ (!) tends to the ideal filter rect(!=(2�)).

, irrespective of the value of the regularization parameter .
Specifically, we have that

for

Proof: By using Poisson’s summation formula, one gets
an equivalent relation in the Fourier domain; the so-called
Strang–Fix conditions of order

for and

where is the Kronecker impulse and where denotes
the th derivative of the Fourier transform of . The con-
dition follows for the th-order flatness of

around the origin; indeed, a simple Taylor series de-
velopment of (26) yields the asymptotic relation

as . Otherwise, has
the required vanishing properties because the smoothing spline
filter contains a fractional B-spline factor that imposes zeros of
multiplicity at , (cf. [22, Sec. 4.1]).

This means that the smoothing spline estimator is a quasi-
interpolant of degree , which is the maximum possible
within the given spline space [22], [37], [38]. While we would
expect a perfect reconstruction of any polynomial in the null
space of the regularizing operator —i.e., with a degree less
or equal to —it comes as a nice surprise to see that the
property extends to twice the order.

C. Fast Fractional Smoothing Splines

In our earlier work, we have presented an efficient recursive
algorithm for computing linear and cubic smoothing splines,
i.e., 1, 2 [39]. For the more general fractional case where

is not necessarily integer, we propose an alternative approach
that uses a combination of Fourier and multirate filtering
techniques.

In practice, one is often more interested in the samples of the
smoothing spline than in the B-spline coefficients per se.
The integer samples of the solution can be computed efficiently
by applying a postfilter that corresponds to the sampled version
of the B-spline generator . A similar technique is ap-
plicable for evaluating a finer version of the solution with an

Fig. 4. Equivalent multirate filtering algorithms for the implementation of
smoothing splines.

oversampling factor of (integer). The corresponding block
diagram is given in Fig. 4(a), where the first filter pro-
vides the B-spline coefficients and where corre-
sponds to the oversampling of the basis functions by a factor
of . We can also move the smoothing spline filter to
the right-hand side of the upsampling operator and combine the
two filters into a single one whose equivalent -transform is

, as illustrated in Fig. 4(b). Fur-
ther, by using the scaling relation (15), we show that

where the central factor corresponds to the scaling filter
as specified by (16). Finally, by combining these

various formulas, we obtain the frequency response of the
equivalent digital smoothing spline filter in Fig. 4(b), as
follows:

(28)

where is defined by (19). The last ingredient that we
need is an efficient way to evaluate for
any given value of . This can be done by way of the following
accelerated partial sum formula:

(29)

which has a remainder that is , as compared with
for a partial sum without the correction term. Prac-

tically, this means that we can evaluate to machine pre-
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cision using (29) with a reasonably small number of terms, say
.

We now have all the elements to describe our fast fractional
smoothing spline algorithm whose complexity is essentially that
of the FFT.

1) Computation of the -point FFT of the input signal
: this yields the Fourier coefficients
.

2) Fourier domain implementation of the upsampling by :
this is achieved by extending to a sequence of length

using -periodic boundary conditions.
3) Filtering by multiplication in the Fourier domain: the sam-

pled frequency response of the digital smoothing spline
filter is evaluated using (28) and (29) with ,
for .

4) Evaluation of by -point in-
verse FFT.

This algorithm has been coded in Matlab and is available from
the authors upon request.

V. CONCLUSION

Starting from first principles—in particular, the notion of self-
similarity—we pursued the task of specifying an extended class
of scale-invariant L-splines together with some efficient signal
processing algorithms for signal interpolation and approxima-
tion.

Our starting point was the identification of the family of dif-
ferential operators that are both shift and scale invariant (i.e., L
is such that it (pseudo)commutes with shifts and dilations); these
are the generalized fractional derivatives , which are indexed
by an order parameter and an asymmetry factor

. The corresponding fractional splines are conveniently rep-
resented as a linear combination of fractional B-splines, which
are localized versions of the Green functions of the defining op-
erator .

Using the operator , we also introduced a spline energy
that could be used as a regularization functional for

the stable reconstruction of continuous-time functions from dis-
crete measurements. Interestingly, the optimal solutions are all
fractional splines of order (or, degree ) and are
essentially scale invariant. Specifically, if we relocate the sam-
ples of a signal on a grid dilated by a factor of and determine
the interpolation function that minimizes , we ob-
tain a fractional spline solution that is precisely the dilated ver-
sion of the solution for . We can also achieve the same
in the smoothing spline case via an appropriate rescaling of .
This means that the spline fitting process commutes with the
rescaling of the time axis, which is a reasonable requirement if
one is looking for a universal algorithm that does not depend on
a particular choice of units or reference system. Of course, this
is a feature that is specific to fractional splines and that takes its
roots in the scale invariance of the defining operator L. Another
interesting consequence of the scale invariance of the operator,
as well as of the underlying Green function, is that the fractional
B-splines all satisfy a two-scale relation [16]—this means that
they can be used as elementary building blocks for the construc-
tion of (fractional) wavelet bases of [18].

An important aspect of our investigation has been the charac-
terization of fractional smoothing spline estimators that are op-
timal in a deterministic, variational sense. We have shown how
these could be implemented efficiently by means of FFTs. We
have specified the underlying filters and have uncovered an in-
teresting connection with the classical Butterworth filters. While
we did investigate the influence of the order and the regular-
ization parameter on the filter characteristics, we did not yet
provide general guidelines as to how these should be adjusted
in practice for best performance. We will now show that we can
obtain a satisfactory answer to this question by adopting a sto-
chastic formulation of the spline estimation problem. This will
take us to the next step which is the unraveling of the connection
between splines and fractals [40].
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