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ABSTRACT

We present a simple, original method to improve piecewise
linear interpolation with uniform knots: We shift the sam-
pling knots by a fixed amount, while enforcing the interpo-
lation property.

Thanks to a theoretical analysis, we determine the opti-
mal shift that maximizes the quality of our shifted linear
interpolation. Surprisingly enough, this optimal value is
nonzero and it is close to 1/5.

We confirm our theoretical findings by performing a cu-
mulative rotation experiment, which shows a significant in-
crease of the quality of the shifted method with respect to
the standard one. Most interesting is the fact that we get a
quality similar to that of high-quality cubic convolution at
the computational cost of linear interpolation.

1 INTRODUCTION

Interpolation is essential in many digital image- and signal-
processing applications [1, 2]. Standard piecewise linear
interpolation which dates back to Babylonians, is by far the
most popular solution for many applications (e.g., vision,
digital photography, graphics data processing, postscript op-
timization for printers, image calibration and registration,
textures, re-sampling) because it is reasonably fast (and does
not suffer from the obvious blocking artifacts of nearest-
neighbour interpolation).

However, when quality is an important concern, meth-
ods based on higher-degree interpolation kernels have been
developped: Keys’ cubic convolution method [3] has be-
come as a standard in the field, even though recent stud-
ies have shown that, for the same computational cost, cu-
bic spline-based kernels provide a substantial gain in qual-
ity [4, 5].

The method that we are proposing here amounts to shift-
ing the standard linear interpolation kernel. In particular,

we show that there exists an optimal, non-trivial shift value
(close to 1/5) for linear interpolation, for which our new
shifted interpolation substantially improves the standard—
nonshifted—method. To evaluate this quality, we rely on
theoretical tools developped in [6], and perform experiments.

Our method provides a quality at least equal and even
higher than cubic convolution, but at a much lower compu-
tational cost—that of linear interpolation. In other words,
one can get top quality at the cost of a low-end method.

2 INTERPOLATION

Given a sequence of samples fn = f(nT ) originating from
the uniform sampling of a function f(x) with step T , stan-
dard linear interpolation builds a function fT (x) through the
process: for x ∈ [(n− 1)T, nT ], fT (x) = anx + bn, where
an and bn are chosen such that fT ((n − 1)T ) = fn−1 and
fT (nT ) = fn. This can be shown to be equivalent to

fT (x) =
∑
n∈Z

fnΛ
( x

T
− n

)
, (1)

where Λ(x) is the “hat” function: Λ(x) = 1−|x| for |x| ≤ 1
and Λ(x) = 0 for |x| > 0.

In a more general way, uniform interpolation is the pro-
cess of building a function f(x) through the formula

fT (x) =
∑
n∈Z

cnϕ
( x

T
− n

)
, (2)

where the coefficients cn are chosen so as to satisfy the in-
terpolation condition fT (nT ) = fn. Here, ϕ(x) might be
any function with

∫
ϕ(x) dx = 1. As can readily be seen,

the interpolation condition is equivalent to the following fil-
tering relation

fk =
∑
n∈Z

ϕ(k − n)cn .
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Thus, the cn’s can be obtained by convolving the fn’s with
the filter whose z-transform is 1P

n ϕ(n)z−n .

For fT (x) to be a good approximation of f(x), the qual-
ity needs to improve as T gets smaller; the rate of this im-
provement is called approximation order. Usually, we as-
sume that f ∈ W1/2+ε

2 (with ε > 0), so as to ensure that
f and fT belong to L2 [6]. A natural measure for the dis-
tance between fT (x) and f(x) is then ‖f − fT ‖L2 . Obvi-
ously, this approximation error is bounded from below by
‖f −PT f‖L2 , wherePT f is the orthogonal projection of
f onto the function space made of linear combinations of
ϕ(x/T − n), n ∈ Z.

2.1 Asymptotic Constant

When the sampling step tends to 0, we want that fT (x) →
f(x). It is known that ‖f −PT f‖L2 tends to zero as T L

if and only if ϕ(x) satisfies the Strang-Fix conditions [7, 8]:
ϕ̂(l)(2nπ) = 0 for n ∈ Z \ {0} and l = 0 . . . L − 1. This
equivalence still holds for ‖f − fT ‖L2 . The integer L is
called the approximation order of ϕ(x); for instance, the
approximation order of Λ(x) is 2.

Furthermore, one of us showed that

‖f −PT f‖L2 ≈ C−
ϕ ‖f (L)‖L2 T L

as T → 0, where the constant C−
ϕ is given by the following

expression [9]:

C−
ϕ =

1
L!

√∑
n�=0

|ϕ̂(L)(2nπ)|2 . (3)

Similarly, T−L‖f − fT ‖L2 → C int
ϕ ‖f (L)‖L2 as T → 0

with [10, 6, 4]

Cint
ϕ =

√
1

L!2

∣∣∣ ∑
n�=0

ϕ̂(L)(2nπ)
∣∣∣2 + (C−

ϕ )2 , (4)

where it clearly appears that the quantity
∑

n�=0 ϕ̂(L)(2nπ)
tells apart interpolation from orthogonal projection.

3 SHIFTED LINEAR INTERPOLATION

Instead of building fT (x) using line segments between (n−
1)T and nT as in Section 2, we draw these line segments
between (n− 1 + τ)T and (n + τ)T for some τ ∈ [0, 1/2[,
as exemplified in Fig. 1; i.e., we consider the following pro-
cess: for x ∈ [(n− 1 + τ)T, (n + τ)T ], fT (x) = anx + bn

where an and bn are chosen such that fT (nT ) = fn and
fT (x) is continuous at x = (n−1+τ)T . This is equivalent
to the following interpolation formula

fT (x) =
∑
n∈Z

cnΛ
( x

T
− n − τ

)
(5)

Original function
Uniform samples
Standard linear interpolation
Shifted linear interpolation

shift τ

Fig. 1. “Shifted” versus “standard” linear interpolation;
here, τ = 0.4 which is far from the optimum (8).

with cn = − τ

1 − τ
cn−1 +

1
1 − τ

fn. (6)

That is to say, the function ϕ(x) to be used in (2) is the
shifted hat function, Λ(x − τ). Note that, because of the
choice τ ∈ [0, 1/2[, the filter that relates fn to cn is causal.
However, unlike standard linear interpolation (τ = 0), this
filter is not FIR even though its impulse response decreases
exponentially (see Fig. 2). As shown by (6), the implemen-
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Fig. 2. Impulse response of the prefilter of the shifted linear
interpolation of Fig. 1.

tation of this IIR 1-pole prefilter can be realized very effi-
ciently and requires only 2 multiplications and one addition.

3.1 Optimal Shift

We have determined the asymptotic interpolation constant
of the shifted linear scheme:

C int
τ =

√
1
4

(
τ2 − τ +

1
6

)2

+
1

720
. (7)

Surprisingly, this expression is not minimized for the stan-
dard linear interpolation τ = 0. Instead, choosing τ = τopt

III - 378



with

τopt =
1
2

(
1 −

√
3

3

)
≈ 0.21 (8)

we find not only that the interpolation constant is minimized,
but also that the optimal L2 approximation constant is reached
through the shifted interpolation method.

Using the definition of the asymptotic constants, we can
predict that, asymptotically as the sampling step tends to
0, the gain of shifted over standard linear interpolation is
approximately 8 dB.

Obviously, this performance should degrade as the fre-
quency content of the function to interpolate gets richer, that
is, when the energy at higher frequencies becomes more sig-
nificant. In particular, when f(x) is the step function (a limit
case that does not belong to L2, but for which we can still
test our interpolation method), the shifted linear interpola-
tion gives rise to a Gibbs phenomenon—unlike the standard
method (see Fig. 3).
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Fig. 3. Gibbs phenomenon caused by the—optimally—
shifted linear interpolation of a unit step function.

4 SIMULATIONS AND PRACTICAL RESULTS

Although shifted linear interpolation seems counterintuitive,
in particular because it dissymmetrizes a naturally symmet-
ric method, it does in practice behave better than the non-
shifted method. One of the reasons is that it tends to dis-
tribute more evenly the interpolation errors, as shown by
the histograms in Fig. 4.

4.1 Rotation Experiments

In order to validate our theory, we devised a compounded
rotation experiment of the ubiquitous Lena image. Let f(x, y)
denote this original image. We have access to its samples
{f(k, l)}k,l∈Z only. We first interpolate them—in a seper-
able fashion—to get fT (x, y) (here, T = 1); then, we ro-
tate fT by the angle θ = 2π

15 , which provides g(x, y) =
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Fig. 4. Optimally-shifted versus standard linear interpo-
lation: comparison of the error histograms—counts of the
values of (f(x) − fT (x))—resulting from the interpolation
of the function of Fig. 1. Notice the strong dissymmetrical
distribution of the errors in the standard method.

fT (x cos θ + y sin θ,−x sin θ + y cos θ); finally, we resam-
ple g(x, y) on the original uniform grid, which gives the
“rotated” image {g(k, l)}k,l∈Z. Iterating this procedure 15
times provides an image that has been rotated by 15×24̊ =
360̊ degrees, and that can be readily compared to the orig-
inal image. As is apparent from Fig. 5, the standard linear
interpolation suffers from blurring, an effect that is avoided
in the shifted method which provides much more details.
More surprisingly, the shifted method appears to reach a
quality that is pretty similar to that of the higher-order, more
costly cubic interpolation [3], which is the reference high-
quality method.

5 CONCLUSION

We have presented a simple, surprisingly powerful method
for improving the performance of standard linear interpola-
tion. For efficient implementation, we propose to precom-
pute the model coefficients in a preprocessing step (simple
recursive filtering), which amounts to replacing the initial
data by a resampled version at the shifted knot location.
With such a set-up, the method can be implemented directly
via standard linear interpolation, so that we can readily take
advantage of existing software or specialized hardware so-
lutions.

REFERENCES

[1] G. Wolberg, Digital Image Warping, IEEE Computer
Society Press, Los Alamitos, CA, 1990.
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