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Generalized Sampling: A Variational Approach—
Part I: Theory
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Abstract—We consider the problem of reconstructing a multi-
dimensional vector function fin: from a finite set of
linear measures. These can be irregularly sampled responses of
several linear filters. Traditional approaches reconstruct in ana
priori given space, e.g., the space of bandlimited functions. Instead,
we have chosen to specify a reconstruction that is optimal in the
sense of a quadratic plausibility criterion . First, we present the
solution of the generalized interpolation problem. Later, we also
consider the approximation problem, and we show that both lead
to the same class of solutions.

Imposing generally desirable properties on the reconstruction
largely limits the choice of the criterion . Linearity leads to a
quadratic criterion based on bilinear forms. Specifically, we show
that the requirements of translation, rotation, and scale-invariance
restrict the form of the criterion to essentially a one-parameter
family. We show that the solution can be obtained as a linear com-
bination of generating functions. We provide analytical techniques
to find these functions and the solution itself. Practical implementa-
tion issues and examples of applications are treated in a companion
paper.

Index Terms—Reconstruction, sampling, thin-plate splines, vari-
ational criterion.

I. INTRODUCTION

A. Sampling and Reconstruction

RECONSTRUCTING a signal from its samples is one of
the most fundamental tasks in signal processing. The

classical sampling theorem presented by Shannon [2] states
that a bandlimited function (whose frequency spectrum is
limited by the Nyquist frequency ) can be re-
constructed perfectly from its regularly-spaced (ideal) samples

by convolution with a sinc kernel

sinc where sinc

(1)

In 1977, Papoulis [3] showed that it was also possible to recover
from the output of linear shift-invariant filters sampled at

th the Nyquist rate. This has generalized Shannon’s theory
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tomultichannelandnonidealgeneralized sampling that is closer
to reality than Shannon’s ideal one. Papoulis’ theory has been
extended further to multidimensional [4] ( ) and vector
[5] ( ) bandlimited functions . Recent ap-
plications of generalized sampling include, among others, dein-
terlacing [6], [7], and super-resolution [8], [9] reconstruction.

Unser and Aldroubi [10] replaced perfect reconstruction by
the weaker condition ofconsistency, requiring that the recon-
structed signal provides exactly the same measurements
as the original signal when run through the measurement
system. The reconstruction should also be unique; this depends
on the reconstruction space, the measurement system, and
sampling locations. Their reconstruction formula is a general-
ized case of (1). See [11] for the multichannel case. A generic
linear measurement system (generalized sampling) with a con-
sistent reconstruction is shown in Fig. 1.

In nonuniform sampling, the location of measurement points
is irregular, either because of the lack of control of the mea-
surement process or because some domain needs more atten-
tion. Examples include shape reconstruction [12] or landmark
interpolation [13]–[16]. The reconstruction can be done within
the class of bandlimited functions [17], [18] or more general
wavelet and spline-like spaces [19].

For an extensive review on sampling, see [20] and [21].

B. Related Work

The work presented in this paper can be seen as an extension
of the theory of radial-basis function approximation [22], [23],
especially Duchon’s thin-plate splines [24], [25] to vector
functions, nonideal (generalized) sampling, and generating
functions that need not be radial. An alternative extension of
the thin-plate splines and multiquadrics theory is found in [26]
and [27], including error bounds.

There is also a close link with the variational formulation
of splines [28], [29], which can be derived from the presented
theory in the one-dimensional case. The related case of multi-
channel sampling in spline spaces is treated in [11] and [30],
where tempered splines were also used [31]. Generalized sam-
pling has been studied in the wavelet [32] and spline [10] bases
in the case of nonuniform sampling locations as well [19]. Re-
lated techniques include nonseparable wavelets [33], vector-
valued wavelets [34], or box-splines [35]; however, we are not
aware of them having been applied explicitly to sampling.

C. Variational Reconstruction

The reconstruction method presented in this paper has been
designed to be as general as possible from several possible view-
points. It can handle multidimensional and vector functions.

1053-587X/02$17.00 © 2002 IEEE
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Fig. 1. Generalized sampling converts a vector input functionf (x) into a set of scalar measuress by taking scalar products with measurement devicesRRR =
[r � � � r ]. These measures are input into the reconstruction algorithm (which we are trying to develop) to produce a reconstructionf (x). The consistency
statement requires that the sampling applied onf (x) andf (x) provide the same measures.

It can use arbitrary linear measurements (nonideal samples),
which may, for example, be obtained by sampling the output
of a multichannel filterbank (like sampling of Papoulis [3]). We
put no bandlimiting restrictions on the input signal. The recon-
struction is stable and unique for a large class of sampling con-
figurations.

We retain the idea of a consistent reconstruction. How-
ever, we will not specify the reconstruction space before-
hand. Rather, this space will be determined naturally from
the problem at hand based on a continuousregularization.
We introduce a non-negativesmoothness criterion(penalty
function) , which gets smaller as the function gets
smoother. We then seek a functionminimizing this criterion
under the consistency constraints (introduced in Section I-A),
e.g., passing through given points. In other words, we replace
the subspace constraint by a variational formulation.
The criterion provides the regularization needed to over-
come the ambiguity of the reconstruction problem. It may also
represent ana priori knowledge in the Bayesian framework,
quantifying our confidence that a particular functionis close
to the input [36]. Our regularization is completely spec-
ified in the continuous domain, unlike alternative methods
that often use discretized version of the regularization oper-
ator [37]–[39].

The basic problem is therefore to reconstruct a signal from a
series of linear measurements. This leads to a functional min-
imization problem under linear constraints. We will concen-
trate on minimizing quadratic energy functionals as this yields
a vector space characterization of the solution as a linear com-
bination of basis functions. The key feature here is that the basis
functions themselves are the result of a mathematical optimiza-
tion. Consequently, they are optimally tailored to the problem
at hand.

In this paper, we present the mathematical foundations of
the method. More practical aspects of generalized sampling and
variational reconstruction are treated elsewhere [1]. This com-
panion paper presents the computational recipes for the method
and provides a number of examples illustrating the wide appli-
cability of the present formulation. It may, therefore, also be a
good starting point for those more interested in results than in
mathematical derivations.

D. Motivation

This paper has four primary goals.

1) To provide a precise mathematical formulation of gener-
alized sampling in a variational setting.This is done in
Section II-C, where we also state our assumptions and list
some of the general properties of the solution.

2) To understand and control the key properties of the solu-
tion through an appropriate selection of the regulariza-
tion criterion.To this end, we investigate quadratic shift-
invariant criteria and their corresponding bilinear forms.
In Section III, we provide the corresponding convolu-
tional kernel representation in both time and frequency
domains. Our strategy is to impose some desirable prop-
erties on the solution (enumerated in Section II-D) and
to infer the corresponding class of criteria. We find that a
small set of perfectly justifiable requirements, such as ro-
tation and scale invariance, essentially limits the degrees
of freedom to a one-parameter family of criteria. This is
formalized in Theorem 1 at the end of Section IV.

3) To solve our generalized sampling problem under hard
constraints (consistency requirement).The general solu-
tion is derived in Section IV and described in Theorem 2.
We show how to construct a basis for the solution space.
The critical step involves finding the Green’s functions of
the operator associated with the bilinear form of the crite-
rion. The solution usually includes an additional polyno-
mial term whose main effect is to make the reconstruction
well behaved far from the sampling points. These results
lead to the specification of the linear system of equations
that yields the optimal coefficients for the solution.

4) To solve our generalized sampling problem under soft
constraints.The idea here is to consider a cost function
that is the sum of a nonlinear data term and the same reg-
ularization criterion as before. In Section V, we prove that
the solution of this approximation problem—irrespective
of the form of the data term—lies in the same subspace
as in the previous case (hard constraints) (cf. Theorem 3).
We also work out an explicit formula for the least-squares
case. Interestingly, this solution can be obtained by an al-
most trivial modification of the hard-constrained equa-
tions (addition of constant diagonal term to the system
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matrix). The advantage of this approach is that it stabi-
lizes the reconstruction. It is also better suited for noisy
situations where it is often counterproductive to impose
hard constraints.

II. FORMULATION

A. Notation

We denote vectors by bold letters and consider them as
columns, that is, . Matrices will be denoted
by upright letters () with elements .

We define a scalar product of two multivariate vector func-
tions as . By extension, the nota-
tion applied on a matrix and a vector is a vector of
scalar products between columns ofand . Similarly, we de-
fine a convolution of vector and matrix functions following the
usual rules for matrix multiplication; for example,
means .

We will denote , as the Fourier transform of,
. The scalar product corresponds to an

norm .

B. Distributions

Many results in this paper are obtained through calculations
in the sense ofdistributions. The basic reference here is in [40],
but a more accessible introduction is in [41]. A distribution
is a function-like object defined indirectly through its scalar
products with arbitrarytest functions from the space
of compactly supported and infinitely differentiable functions.
Since there will be no ambiguity, we use the same symbol
for vector test functions as well. We say that two distributions

, are equal if for all we have . This
is weaker than the usual point-wise equality. Distributions are
generalizations of functions and can often be operated on using
the same rules except, and this is noteworthy, the multiplication.
The majority (but not all) of the practically used functions are
indeed distributions. The best-known example of a distribution
that is not a function is Dirac’s, which is defined as

. Similarly, its derivative gives . Conse-
quently, convolving yields , whereas .

We use an extension of the Fourier transform to a subset of
distributions calledtempered(such as polynomials) through the
definition .

C. Problem Definition

The variational problem we consider consists of finding a
vector function : minimizing a non-negative func-
tional criterion under a finite number of constraints

, where and correspond to sampling
devices. The expression linearly maps functions to real
scalars. As is a distribution, most linear forms can be written
in this form.

When satisfies all the constraints , we write

(2)

We only consider functions from a spaceinduced by the cri-
terion and measurable by the devices

and (3)

where is the usual Euclidean norm of vectors in .
Definition 1 (Generalized Interpolation Problem):We say

that solves the problem iff minimizes in
under constraints (2).
Note that there can be more than one of such functions

with the same value of .
Generalized interpolation problems arise whenever we need

to reconstruct a continuous function from linear measures. The
companion paper [1] gives examples of several such problems.
There, we will look at a more structured system where the mea-
surements are obtained from the samples of a multichannel fil-
terbank, i.e., . For the time being, however,
we prefer to work with the more general formulation (2), which
simplifies the notation and the mathematical derivations. Later
on, will turn back to the multichannel system and take advan-
tage of the convolutional form of the measurement process to
simplify the description and implementation of the solution (cf.
[1, Sect. II]).

D. Properties of the Solution

In order for our variational approach to be useful in the con-
text of sampling and reconstruction [1], the solution should sat-
isfy a certain number of properties, which will in turn impose
constraints on the criterion and the devices . We will see
that the properties detailed later help us to specify an essen-
tially one-parameter family of criteria. We will be able to give a
constructive theorem concerning the existence property, obtain
unicity in the majority of useful cases, and guarantee the invari-
ance and linearity of the solution in the sense we detail further
on.

For each property, we give an indication of how it can be
verified or guaranteed. Note, however, that the conditions we
give are only sufficient, but not necessary, because searching
for necessary conditions proved to be extremely difficult and
of small practical interest. On the other hand, we will see in
the forthcoming sections that our conditions yield a sufficiently
general family of criteria.

Property 1 (Existence and Uniqueness):There is exactly one
solution .

The motivation of the existence requirement is clear: We want
our method to give us at least one solution for any possible mea-
surements . There are various reasons why the problem
might not have a solution, e.g., when the constraints are contra-
dictory or when the solution space is not complete with respect
to . That is to say, if for any sequence of functionssatis-
fying the constraints such that the criterion is decreasing,
this sequence does not converge in. A typical example might
be a sequence of continuous functions converging toward a dis-
continuous one, under a derivative criterion.

We also want the solution to be unique. For the uniqueness,
it is useful for to be discriminative so that as few functions
as possible have the same criterion value.
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In practice, we verify existence and uniquenessa posteriori.
We first construct a function and then verify that it solves the
problem and that no other function does. In some cases, the work
on thea priori analysis has been already done [23], [42].

Property 2 (Vector Space of Solutions):If solves
and solves , then solves

for .
This scalar linearity property ensures that the solution space

is a vector space and that consequently, every solution can be ex-
pressed as a linear combination ofbasis functions (where is
the number of constraints). We will see later (see Section III-A)
that this is ensured if the criterionis a quadratic criterion.

Property 3 (Matrix Linearity): If solves ,
then solves , where is an arbitrary
matrix.

This comprises the cases of rotating, scaling, shifting,
permuting, inverting, and otherwise linearly deforming the
“output” coordinate system of the function. We want the
solution to be invariant with respect to these changes. The
matrix linearity property is guaranteed ifis pseudo-invariant
with respect to these changes, which means that the criterion
value for is proportional to the criterion value for,
namely

(4)

where is a continuous function of and , independent of
. For the remainder of this paper, we consider only matrices

satisfying

(5)

(where is the identity matrix), which corresponds to orthog-
onal transformations and uniform scaling. See Section IV-D for
details.

Property 4 (Geometric Invariance):If solves ,
then solves , where , provided
that for all .

This encompasses the cases of rotating, scaling, and shifting
the coordinate system of. We want our solution to be invariant
with respect to these changes. The new filtercan be written in
the functional form as . Consequently,
we want to be an invertible matrix. Similarly to Property 3, the
geometric invariance can be ensured by pseudo-invariance with
respect to the geometric transformations, i.e.,

(6)

where is a continuous function of and , independent of,
and with no connection to in (4).

We will impose geometric invariance only with respect to
scaled orthogonal matrices, satisfying . See Sec-
tion IV-A for details.

Property 5 (Density):The solution space contains all test
functions from . For any function , there is a sequence
of test functions such that .

This property is indeed somewhat technical but its signifi-
cance can be readily grasped. The first part ensures that the so-
lution space is large, i.e., that it contains as many “good” func-

tions as possible. It guarantees that at least all test functions can
be measured using the criterion. The second part concerns the
behavior of for functions on the closure of , that is to say,
for functions that are not in but can be expressed as a limit of
a sequence of test functions. It specifies the density ofin .
Consequently, we can do most of our reasoning in the space of
test functions and then extend the result to the whole ofusing
a limiting process.

In practice, Property 5 is always satisfied by the quadratic
semi-norms we will be considering, in particular, by the semi-
norms of Duchon. (This originates from the density ofin
Sobolev spaces.)

III. B ILINEAR FORMS

From now on, we consider exclusively those criteria
that can be expressed using a nonnegativebilinear form.
A bilinear form maps pairs of functions ,
onto . It is symmetric and linear

with respect to
both its arguments. It isnon-negativeiff for all

. We associate with a criterion

(7)

which we call a quadratic criterion. Conversely, given a
quadratic criterion , the associated bilinear form can be
obtained as

(8)

The square-root is a semi-norm, i.e., it satisfies the tri-
angular inequality and semi-linearity .
Unlike for a norm, there might be more than onesatisfying

. Such functions define akernel . The criterion
is convex. The important Cauchy–Schwartz inequality

holds as well; the equality is reached
iff , ; .

A. Variational Problem With a Quadratic Criterion and Linear
Constraints

The restriction to bilinear forms is justified, namely, in view
of satisfying Property 2, which yields a useful vector space
structure for the solution space. The proof that a quadratic cri-
terion implies that Property 2 can be found in Appendix A.

Because of the convexity of, if there is a local minimum,
it is also the global minimum. Moreover, if two functions,
solve the problem , then their difference necessarily
belongs to . (See Appendix B for a proof.) Therefore, if the
constraints (2) cannot be met by two distinct functions differing
by an element from the kernel, the solution is unique. This is
easy to check because in most cases of interest, the kernelis
fairly small. We will see later that it mostly consists of low-order
polynomials.

B. Operator Kernel of a Bilinear Form

Any bilinear form satisfying very mild conditions (see [40])
can be written in the form of a scalar product

(9)
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where is a matrix of distributions called anoperator
kernelof the bilinear form. Technically, the existence of the in-
tegral is not guaranteed unless bothand are from the class

of infinitely differentiable and compactly supportedtest func-
tions.

Without any loss of generality, we can assumeto be sym-
metric because the operator kernel can
always be symmetrized as without af-
fecting the associated bilinear form. By exchanging and ,
we also find that must have a matrix symmetry . The
implications of (4) and (6) on the properties ofare studied in
Section IV.

C. Convolutional Kernel

If is translation-invariant, it can be written using a single-
parametric distribution matrix . This trans-
forms (9) to

(10)

for test functions , . We recognize the convolution here:

for (11)

(12)

where the restriction of to test functions is useful to ensure
that exists. We call theconvolutional kernelof the
bilinear form. Because of the symmetries of, we have the same
symmetries on , i.e., . [This has also
simplified (12).]

D. Fourier Form

Both (9) and (10) can be also calculated in the Fourier do-
main. For this, we need the Fourier transforms, , and (see
Sections II-A and II-B for a definition). For example, the ex-
pression (10) can be written using Parseval’s theorem as

(13)

where is the Hermite transpose of.

E. Extending and Factorizing the Bilinear Form

The original equations (9) and (10) define only for
test functions . However, later, we will need to evaluate
also for from some larger class , conserving all the
properties of the bilinear form. Already, (9) retains a meaning
if and belongs to the dual (distribution) space of

. In particular, if we define
through (12), it allows us to consider any distribution, provided
that is compactly supported. The extensions ofcoincide for
test functions but might give different results when evaluated for
other (nontest) functions.

An alternative, symmetric definition of is

for (14)

which leads to a very simple expression for:

(15)

The convolutional operator has an adjoint
[where the notation stands for ]. We obtain

an equivalence between (14) and (12) by setting .
There are generally many possible factorizations, leading to

many extensions as detailed in the previous section. To illustrate
this point, we consider the example of the scalar distribution
in two dimensions:

. It can be factorized either with the 1-D
(scalar) operator or, alter-
natively, with the three-dimensional (3-D) vector operator

.
The latter factorization leads to the Duchon’s semi-norm (see

Section IV-G)

(16)
whereas the former gives a semi-norm based on the Laplacian:

(17)

which isnot strictly equivalent to (16). An example is ,
which gives but . An important case
where the expressions (17) and (16)areequivalent is when is
a test function. Then, by integration by parts

(18)

These may sound like technicalities, but they should not be
overlooked; otherwise, one may easily formulate problems that
are not well defined mathematically (as was, for example, the
case in [43]).

Coming back to the general formulation withand in ,
we write the Fourier domain equivalent of (14) and (15):

(19)

(20)

with an associated criterion

(21)

where . Note that the phase ofcan be freely chosen
in addition to the freedom demonstrated in the time-domain fac-
torization. The phase ofmay represent the shift ofin the time
domain; more generally, it corresponds to applying an allpass
(unitary-gain) filter to .

IV. I MPOSINGINVARIANCE PROPERTIES

The intent of this section is to apply the first principles from
Section II-D to come up with a constrained form of the vari-
ational criterion that is consistent with our invariance require-
ments. We will end up with what is essentially a one-parameter
family of criteria (cf. Theorem 1).

As we have seen, sufficient conditions to ensure Properties 3
and 4 are given by (4) and (6), respectively. We now show how



1970 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 8, AUGUST 2002

(4) and (6) constrain our choice of the kernelof the bilinear
form . It is useful to realize that if

for all (22)

then by considering and instead of , we get

for all (23)

which is equivalent to saying that in the distributional
sense (see Section II-B). The converse also holds by substituting

. Therefore, (4) and (6) on the criterion translate into
equations for the distributional kernelas

Matrix linearity:

(24)

and

(25)

Geometric invariance:

(26)

A. Translation Invariance

From (25), we directly see that

for any constant and (27)

and thus, there exists an extension ofto functions outside of
such that . In other words, the criterion must give

zero for constant functions.
We can now consider geometric translation invariance (in the

domain of ) by setting (reflection about the origin)
and in (26), which simplifies to

(28)

Using the symmetry of , this implies for all .
Letting in (26) leads to

(29)

where we have substituted . This means
that we can use the simpler expression (10) instead of (9). By
virtue of (29), is symmetric and even and the hypothesis in
Section III-C applies. Equation (26) then becomes

, and consequently

(30)

for any matrix , where we have incorporated into .

B. Rotational Invariance

Another special case of geometrical transformations are rota-
tions and symmetries, i.e., matrices that satisfy the orthogonality
condition . Applying (30) twice yields

(31)

It is useful to consider this equation for a Householder matrix
, where , since any orthogonal matrix

can by factorized using a finite product of Householder matrices
only. As , from (31), we have . Furthermore,
as , we necessarily have . Thus, for all
orthogonal matrices. Equation (30) becomes . It
is always possible to choosesuch that , where
is the first basis vector; see [44]. Consequently, the distribution

must be radial

where (32)

It is easy to verify that thanks to the orthonormality of, rotating
does not change.

C. Scale Invariance

The last remaining class of geometrical transformations we
consider is uniform scaling. Using (30) as before yields

, where is a real scaling factor, and where we have
accommodated the Jacobian into . We use the rota-
tion-invariant form (32), which gives for

. Note that . Repetitive scaling by
yields . This implies and

. By continuity, as well for
real . Consequently, we have and

(33)

In the case where the radial form of the convolutional kernel
is a function, the preceding equation implies

. Note that when , then is not locally inte-
grable over . Therefore, we need to consider the equa-
tions in the sense of distributions.

The corresponding expression in the Fourier domain is

(34)

where , and the factor 2 is for future convenience
and notational consistency with [24].

D. Matrix Linearity

We have already studied the effect ofin (24). Let us now
concentrate on the implications of. Substituting (29) yields

; thus, . We show that
by the same proof as in Section IV-B. Thus,

commutes with an arbitrary orthogonal matrix:

(35)

It can be easily seen that is a multiple of the identity ma-
trix and is completely determined by a scalar distribution :

. To prove this, it suffices to consider House-
holder matrices ; substituting into (35) yields

; right-multiplying by shows that
, which means that any vector is an eigenvector of and

completes the demonstration.

E. Form of the Criterion

A direct consequence of the results from the preceding sec-
tions is the following theorem.
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Theorem 1 (Form of the Criterion):Let be a quadratic
criterion. Then, any associated variational problemsatisfies
Property 2. Furthermore, satisfies Properties 3 and 4 if and
only if can be expressed in the following form:

UUU

(36)

for any function .
The bilinear form associated with (36) is

(37)

Note that the criterion value for a vector function is a sum of the
criterion values for its components

(38)

which permits us to concentrate on the scalar case for simplicity.
We now consider two possible extensions ofto nontest func-
tions.

F. Laplacian Semi-Norm

The criterion defined in the Fourier domain by (36) is easily
associated (in the scalar case) to an equivalent semi-norm in
the time domain using an iterated-dimensional Laplacian for
even

(39)

G. Duchon’s Semi-Norms

The principal disadvantage of (39) is that its kernel is too
large. For example, for , it contains every function that
satisfies the Laplace equation, such as the real part of an analyt-
ical function, for example, . Therefore,
the variational problem with this criterion will typically have an
infinite number of solutions.

Fortunately, it turns out that there are other time-domain
forms that correspond to (36) and do not have this problem.
Namely, we now present the family of semi-norms introduced
by Duchon [24]. He first defines a differential operatoras a
vector of all possible partial derivatives ofof order

(40)

with . For example, for ,
, we get

(41)

Then, he defines a semi-norm by taking the sum of the squares
of all the elements and integrating it over the space

(42)

where is an Euclidean norm in . More explicitly (using
the commutativity of the partial derivatives)

(43)

where , ,
, and . Following our

example for and , we get the most often used
Duchon’s semi-norm (16). This semi-norm leads to the well
known thin-plate splines [45].

Interestingly, the kernel of contains only functions
whose second partial derivatives are zero; i.e., linear polyno-
mials . In fact, the kernel of Duchon’s
semi-norm of order contains only the polynomials of degree

.
All the Duchon’s semi-norms can be associated with a bi-

linear form so that . The norm (42)
gives

(44)

or equivalently

(45)

H. Semi-Norms for Fractional Derivatives

In many applications, the choice of discrete-order Duchon’s
semi-norms does not permit sufficiently fine tuning. However,
Duchon has combined the time and Fourier domain definitions
to also obtain semi-norms corresponding to fractional deriva-
tives.

(46)

where is the Fourier transform operator as defined in Sec-
tions II-A and B. When , this definition is completely
equivalent to (42), that is, . When, on the
other hand, , this definition is equivalent to (39), i.e.,

, for . Note that the kernel of
is the kernel of .

The associated bilinear form is

(47)

V. SOLUTION TO THE VARIATIONAL PROBLEM

In this section, we reconsider our variational problem
defined in Section II-C, derive some properties of

its solution , and use them to obtain the explicit form of the
solution.
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A. Lagrange Multipliers

First, we construct an augmented criterion according to the
Lagrange multipliers’ method

(48)

where is the vector of Lagrange multipliers. If min-
imizes , then choosing such that
implies that minimizes under constraints (2).

We carry on using a standard variational argument. We take a
small perturbation , where and , add it to ,
and study the new criterion value . We consider
its derivative

(49)

which vanishes iff is a saddle point. In addition,
must hold. This directly leads to the following

lemma.
Lemma 1: A function from solves the variational

problem if and only if there is a real vector such that

for all

and

(50)

Note that because of the Property 5 on density, we can initially
consider only from and then extend to while the Lemma
remains valid.

For from the kernel , we have [because
], and thus

for each (51)

B. Introducing Fundamental Solutions

We now suppose that we have found a set of functionssuch
that

for all (52)

We call a fundamental solutioncorresponding to a filter .
(See also Section V-D.) There is often no fundamental solution

in . Then, we search in , which is why we had to restrict
to (Section III-E).
We want to be finite for all . If this is not

the case, we can suspect that our minimization problem does
not have a solution in , which can hopefully be proven using
another method.

C. Explicit Solution of the Variational Problem

In order to obtain a more useful result than Lemma 1, we will
use the linearity of . Take a function

(53)

Because of (52), the function (53) can be made to satisfy (50)
for some . We might be tempted to conclude that it therefore
solves . However, this will not necessarily work because,
and therefore in (53) do not, in general, belong to the admis-
sible solution space .

With (53), we have exactly as manys as there are consis-
tency constraints (2). This means that there are not enough de-
grees of freedom in (53) to ensure the condition .

Note that if belongs to , then .
We can therefore add toa function from , obtaining

, which gives us the possibility to make while
conserving the validity of (50).

Equation (51) will allow us to find the . If has a finite
basis, we can express as

(54)

Through linearity, (51) is equivalent to the orthogonality con-
straints

for each (55)

This gives the same number of constraints as there are addi-
tional unknowns in (54). Combining (55) and (2) gives us a set
of linear equations for exactly as many unknownsand ,
which is a necessary condition for the unicity of the solution.
(More on unicity in Section V-F.) Adding the kernel term gives
us in general sufficient freedom to find an in ; however,
this needs to be verifieda posteriorion a case-by-case basis.
We summarize our findings in the form of a theorem. See Ap-
pendix C for a proof.

Theorem 2 (Variational Problem Solution):Let and be
real numbers and a basis of the kernel of . Further, let

be a set of fundamental solutions corresponding to filters
in the sense of (52). Then, the function

(56)

solves the interpolation problem [where
] if and only if the following three condi-

tions are satisfied.

i) The solution belongs to as defined by (3), i.e.,
.

ii) The solution is consistent with the constraints (2),
i.e., .

iii) The coefficients are orthogonal in the sense of (55),
i.e., , .

This provides a linear system of equations with
unknowns, which can be solved exactly. The practical aspects
will be dealt with in our companion paper [1].

Symbolically, we can combine the pair of equations (50) by
substituting , yielding a very simple expression for the
optimal value of the criterion

(57)

where is the measurement vector.



KYBIC et al.: GENERALIZED SAMPLING: VARIATIONAL APPROACH—PART I: THEORY 1973

D. Finding the Fundamental Solutions

To find the fundamental solutions as defined by (52), it is
useful to start from the convolutional formulation of the bilinear
form (12). Equation (52) becomes

(58)

The fundamental solutions are defined through the distributional
equations

(59)

where we have used the matrix form (2) to describe the sam-
pling. The task can be broken in two parts. We first solve for
Green’s functions [46]–[48], which are defined by

(60)

Once we have the Green’s functions, we get the fundamental
solutions by convolution with the measurement operators:

(61)

We see from (60) that sinceis symmetric, is symmetric
as well. When further is symmetric, then the same holds true
for [from (61)]. This is often the case asis mostly diagonal.

E. Green’s Functions

As an example, let us first study a simple scalar case ( ,
). As criterion, we choose Duchon’s semi-norm
, which corresponds to in (15), and thus,

. The corresponding Green’s function must
satisfy

(62)

Integrating four times, we get a family of possible Green’s func-
tions , where is
the one-sided power function. For convenience, we choose the
symmetric solution .

The Green’s functions corresponding to general Duchon’s
semi-norms (46) are best analyzed in the Fourier domain using
(36) with . Then, the following must hold:

(63)

in the distributional sense as well. Because bothand are
radial distributions and a convolution of two radial distributions
is also radial, we can find a radial solution of (63). That is why
the resulting functions (and , if the sampling preserves
radiality) are calledradial basis functions.

The problem of finding from (63) is well studied (cf. [40,
p. 258]). For not an even integer

Pf (64)

where , and is a constant that can be calculated but
which is irrelevant for our purposes. The “Pf” (“partie finie”

[40]—finite part) symbol means that we are considering a dis-
tribution that coincides with the function for ,
which does not hinder the validity of (63) in the distributional
sense.

If is an even positive integer, the above formula has
to be modified as

Pf (65)

For our task, we do not have to consider the part of
(65) because their linear combination is a quadratic polynomial
that necessarily belongs toso that the solution belongs to.

For even, it is actually easier to work directly in the
space domain. If we have a radial function that satisfies

, then . (See Appendix D for a proof.)
The constant is the surface of the -dimensional unit hy-
persphere.1 For example, for , we get .
Iteratively applying the formula for the Laplacian of a radial
function

(66)

yields , ,
and . For , we have ,

, , etc.
Generally, Duchon’s semi-norm leads to a funda-

mental solution if the exponent is not
even or otherwise. This permits us
to choose from the continuum of Duchon’s semi-norms the one
that suits us best.

In the multidimensional ( ) case, where , we get
simply .

F. Unicity of the Solution

Let us suppose that the set of fundamental solutions and
a finite basis exist. Then, there is a set of linear equations
to determine the unknowns and . If this set has a unique
solution, the interpolation problem will also have a unique so-
lution, provided, of course, that (55) implies .

In the scalar case, Micchelli [42] proved that the matrix
, corresponding to the fundamental part

of the solution (56), is nonsingular, provided that[defined
by ] is completely monotonic2 but not constant
on , is continuous on and positive on ,
and are distinct. Powell [23] has additionally shown that if

is the space of polynomials of order and if either
or is strictly completely monotonic on ,

then the complete system of equations is nonsingular, provided
that the are distinct and that there is no nonzero polynomial

of order such that for all . This is
closely related to our observation in Section III-A about the
unicity of the solution. The radial functions or

, stemming from Duchon’s semi-norms with
, are completely monotonic [22], [23].

1S = 2� =�(m=2), which form = 2, m = 3 yields the familiar
values2� and4� [48].

2A function� is completely monotonic if it is inC and(�1) � � 0 for
l 2 f0; 1; . . .g.
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VI. A PPROXIMATION PROBLEM

In some applications, it might be interesting to replace the
“hard” constraints (2) by “soft” ones by adding a data term pe-
nalizing solution far from the constraints. To define a variational
approximation problem, we introduce a combined criterion .
We consider the following general form:

(67)

where : is an arbitrary distance function. We
use it to measure the distance between the measurements and the
sampled solution . We then say that is a solution
to an approximation problem iff, for all functions

, we have .
The problem of solving the approximation problem is

closely related to the constrained problem, as demonstrated
by the following theorem.

Theorem 3 (AP Solution):Let us denote as the crite-
rion value of a function solving an interpolation problem

. Let us further define as

(68)

Then, solves the problem iff it solves the inter-
polation problem .

The proof follows from the observation that the data term
in depends only on the measurements of the
solution . Thus, the minimization

(69)

required to solve can be broken into two parts: a) external
minimization with respect to theand b) internal minimization
trying to find the proper minimizing given . We see that
the internal optimization is exactly the constrained variational
problem described previously. Once it is solved, the external
minimization becomes a standard multidimensional optimiza-
tion problem that can be solved by existing numerical methods
[49] or, in some special cases, analytically (see the next section
for an example).

A. Least-Squares Approximation

Often, the general criterion (67) can be replaced by a simple
least-squares form

(70)

We first realize that according to Theorem 3, the solution has
the form (56). We then use the method of small perturbations by
evaluating , similarly to Section V-A. Its derivative
with respect to needs to be zero for all in order for
to be a minimum. This implies

(71)

Identifying with (49) gives

(72)

Substituting the solution (56) in (71) yields

(73)

By taking in (71), we get the same orthogonality con-
straints (55) as in the interpolation case. Here too, the computa-
tional procedure boils down to the solution of a linear system of
equations that is functionally identical to the one encountered
for the interpolation problem , except for a diagonal regular-
izing term , which stabilizes the system, cf. [1].

VII. CONCLUSIONS

We have presented a systematic way of solving variational
problems minimizing quadratic regularization criteria under
general linear constraints. We have also considered replacing
the constraints by a corresponding penalty function, and we
have shown that it leads to a solution with the same form, re-
gardless of the penalty function. The solution of such problems
lies in a vector space uniquely corresponding to the problem at
hand, generated by a system of fundamental solutions, related
to Green’s functions. We have shown how the requirements
we impose on the variational problem solution determine the
choice of the criterion, leading to the family of semi-norms
introduced by Duchon.

We are now ready to proceed with the application part of this
research in the companion paper [1].

APPENDIX

A. Linearity With Respect to Measurements

Let us have a function from , where ;
. By linearity, also belongs to for .

We then have because solves . Conse-
quently, , and thus,
for sufficiently small (positive or negative), which implies

for any from (74)

This leads to ,
, which proves that solves

the problem with measurements when and solve
problems with measurementsand , respectively.

B. Difference Between Two Solutions

We prove that if two functions and both minimize
under some constraints (2), then . Using (74),
we deduce , , . This directly
yields .

C. Interpolation Problem Solution

First, suppose that solves . Then, by definition,
, and . Equations (51) and (2) are valid by con-

struction. As , we have (55). Conversely, suppose that
and (55) holds. Formula (56) for gives ,

, . Substituting (52) leads to
for all . As and is dense in ,
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the preceding formula holds also for all , which permits
us to apply Lemma 1.

D. Dirac Laplacian

Consider , where is a test function, and
is a radial function satisfying . This scalar
product equals . We change to spherical co-
ordinates . The integral becomes

, where and
. We use the fact that . Then, by inte-

gration over , we get . As is a test function
, and the integral simplifies to .

Consequently, .
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