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Abstract—We consider the problem of reconstructing a multi- to multichannebndnonidealgeneralized sampling that is closer
dimensional vector function f;,,: R™ — R™ from a finite set of  to reality than Shannon’s ideal one. Papoulis’ theory has been
linear measures. These can be irregularly sampled responses Ofextended further to multidimensional [4}( > 1) and vector

several linear filters. Traditional approaches reconstruct in ana oo . )
priori given space, e.g., the space of bandlimited functions. Instead,[5] (n > 1) bandlimited functiong;,: R™ — R". Recent ap-

we have chosen to specify a reconstruction that is optimal in the Plications of generalized sampling include, among others, dein-
sense of a quadratic plausibility criterion J. First, we present the terlacing [6], [7], and super-resolution [8], [9] reconstruction.

solution of the generalized interpolation problem. Later, we also Unser and Aldroubi [10] replaced perfect reconstruction by

ider th imati bl d how that both lead .- . .
fg?ﬁé s;msggggogf"ggﬂl%gﬁf em, and we showthat both 1ead e \weaker condition ofonsistencyrequiring that the recon-

Imposing generally desirable properties on the reconstruction Structed signalf... provides exactly the same measurements
largely limits the choice of the criterion J. Linearity leads to a as the original signaf;, when run through the measurement
quadratic criterion based on bilinear forms. Specifically, we show gystem. The reconstruction should also be unique; this depends
that the requirements of translation, rotation, and scale-invariance . ihe reconstruction spadé, the measurement system, and

restrict the form of the criterion to essentially a one-parameter - . - - h
family. We show that the solution can be obtained as a linear com- sampling locations. Their reconstruction formula is a general-

bination of generating functions. We provide analytical techniques ized case of (1). See [11] for the multichannel case. A generic
to find these functions and the solution itself. Practicalimplementa- linear measurement system (generalized sampling) with a con-
tionissues and examples of applications are treated in a companion sjstent reconstruction is shown in Fig. 1.

paper. In nonuniform sampling, the location of measurement points

Index Terms—Reconstruction, sampling, thin-plate splines, vari- is irregular, either because of the lack of control of the mea-
ational criterion. surement process or because some domain needs more atten-

tion. Examples include shape reconstruction [12] or landmark

|. INTRODUCTION interpolation [13]-[16]. The reconstruction can be done within

the class of bandlimited functions [17], [18] or more general
wavelet and spline-like spaces [19].

ECONSTRUCTING a signal from its samples is one of For an extensive review on sampling, see [20] and [21].

the most fundamental tasks in signal processing. The
classical sampling theorem presented by Shannon [2] stdfesRelated Work
that a bandlimited functiotf;, (whose frequency spectrum is  The work presented in this paper can be seen as an extension
limited by the Nyquist frequency.,, = 7/7) can be re- of the theory of radial-basis function approximation [22], [23],
constructed perfectly from its regularly-spaced (ideal) samplggpecially Duchon’s thin-plate splines [24], [25] to vector

A. Sampling and Reconstruction

s; = fin(s1") by convolution with a sinc kernel functions, nonideal (generalized) sampling, and generating
functions that need not be radial. An alternative extension of
Jour(x) = fin(x) the thin-plate splines and multiquadrics theory is found in [26]

) ) i sin(mx) and [27], including error bounds.
=D _sjsindz/T — j) where sinz) = -z Thereis also a close link with the variational formulation
jez of splines [28], [29], which can be derived from the presented
@) theory in the one-dimensional case. The related case of multi-
channel sampling in spline spaces is treated in [11] and [30],
In 1977, Papoulis [3] showed that it was also possible to recowghere tempered splines were also used [31]. Generalized sam-
fin from the output ofy linear shift-invariant filters sampled at pling has been studied in the wavelet [32] and spline [10] bases
(1/¢)th the Nyquist rate. This has generalized Shannon’s theafythe case of nonuniform sampling locations as well [19]. Re-
lated techniques include nonseparable wavelets [33], vector-
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Fig. 1. Generalized sampling converts a vector input funcfigfx ) into a set of scalar measuresby taking scalar products with measurement devices
[r; - --rg]. These measures are input into the reconstruction algorithm (which we are trying to develop) to produce a recofstrstjoThe consistency
statement requires that the sampling appliedQr(x) andf;, (x) provide the same measures.

It can use arbitrary linear measurements (nonideal sampld3), Motivation
which may, for example, be obtained by sampling the outputp;g paper has four primary goals.

of a multichannel filterbank (like sampling of Papoulis [3]). We
put no bandlimiting restrictions on the input signal. The recon-

1)

struction is stable and unique for a large class of sampling con-

figurations.

We retain the idea of a consistent reconstruction. How- 5

ever, we will not specify the reconstruction space before-
hand. Rather, this space will be determined naturally from

the problem at hand based on a continuoegularization
We introduce a non-negativemoothness criterior{penalty
function) J(f), which gets smaller as the functiofh gets
smoother. We then seek a functibminimizing this criterion

under the consistency constraints (introduced in Section I-A),
e.g., passing through given points. In other words, we replace

the subspace constraifite V' by a variational formulation.

The criterionJ(f) provides the regularization needed to over-
come the ambiguity of the reconstruction problem. It may also
represent ara priori knowledge in the Bayesian framework,

quantifying our confidence that a particular functibrs close

3)

to the inputf;, [36]. Our regularization is completely spec-
ified in the continuous domain, unlike alternative methods
that often use discretized version of the regularization oper-

ator [37]-[39].

The basic problem is therefore to reconstruct a signal from a
series of linear measurements. This leads to a functional min-
imization problem under linear constraints. We will concen-
trate on minimizing quadratic energy functionals as this yields
a vector space characterization of the solution as a linear com-
bination of basis functions. The key feature here is that the basis
functions themselves are the result of a mathematical optimiza-4)
tion. Consequently, they are optimally tailored to the problem

at hand.

In this paper, we present the mathematical foundations of
the method. More practical aspects of generalized sampling and
variational reconstruction are treated elsewhere [1]. This com-
panion paper presents the computational recipes for the method
and provides a number of examples illustrating the wide appli-
cability of the present formulation. It may, therefore, also be a
good starting point for those more interested in results than in

mathematical derivations.

To provide a precise mathematical formulation of gener-
alized sampling in a variational settinghis is done in
Section II-C, where we also state our assumptions and list
some of the general properties of the solution.

) To understand and control the key properties of the solu-

tion through an appropriate selection of the regulariza-
tion criterion. To this end, we investigate quadratic shift-
invariant criteria and their corresponding bilinear forms.
In Section Ill, we provide the corresponding convolu-
tional kernel representation in both time and frequency
domains. Our strategy is to impose some desirable prop-
erties on the solution (enumerated in Section II-D) and
to infer the corresponding class of criteria. We find that a
small set of perfectly justifiable requirements, such as ro-
tation and scale invariance, essentially limits the degrees
of freedom to a one-parameter family of criteria. This is
formalized in Theorem 1 at the end of Section IV.

To solve our generalized sampling problem under hard
constraints (consistency requiremerithe general solu-
tion is derived in Section IV and described in Theorem 2.
We show how to construct a basis for the solution space.
The critical step involves finding the Green’s functions of
the operator associated with the bilinear form of the crite-
rion. The solution usually includes an additional polyno-
mial term whose main effect is to make the reconstruction
well behaved far from the sampling points. These results
lead to the specification of the linear system of equations
that yields the optimal coefficients for the solution.

To solve our generalized sampling problem under soft
constraints.The idea here is to consider a cost function
that is the sum of a nonlinear data term and the same reg-
ularization criterion as before. In Section V, we prove that
the solution of this approximation problem—irrespective
of the form of the data term—Iies in the same subspace
as in the previous case (hard constraints) (cf. Theorem 3).
We also work out an explicit formula for the least-squares
case. Interestingly, this solution can be obtained by an al-
most trivial modification of the hard-constrained equa-
tions (addition of constant diagonal term to the system
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matrix). The advantage of this approach is that it stabi%¥e only consider functions from a spageinduced by the cri-
lizes the reconstruction. It is also better suited for noiggrion.J and measurable by the devides
situations where it is often counterproductive to impose

hard constraints. F={f:R" - R" J(f)<oo and || f)] <} (3)
[I. FORMULATION where|| - || is the usual Euclidean norm of vectorsRf?.
_ Definition 1 (Generalized Interpolation Problem)/e say
A. Notation thatf,,,; solves the probler®(.J, R, s) iff f,,, minimizes./ in
We denote vectors by bold letters and consider them &sunder constraints (2). U
columns, that isx = [z; - --z,,]*. Matrices will be denoted  Note that there can be more than one of such functfons
by upright lettersX) with elementg(X); ; = =; ;. with the same value of (f,.).

We define a scalar product of two multivariate vector func- Generalized interpolation problems arise whenever we need
tions as(f, g) = me f(x)?g(x) dx. By extension, the nota- t0 reconstruct a continuous function from linear measures. The
tion (X, f) applied on a matrix and a vectof is a vector of companion paper [1] gives examples of several such problems.
scalar products between columnskodndf. Similarly, we de- There, we will look at a more structured system where the mea-
fine a convolution of vector and matrix functions following thesurements are obtained from the samples of a multichannel fil-

usual rules for matrix multiplication; for example,«xy = z terbank, i.e.s;; = (hj = f)(x;;). For the time being, however,

meanszj Tip kY = 2 we pr_e_fer to work with the more general fqrmulatipn (_2), which
We will denotef, Ff as the Fourier transform df, f(w) = S|mpI|_f|es the notation and th_e mathematical derivations. Later
| F(x)e~*"* dx. The scalar produdf, g) corresponds to an " will turn back to the multichannel system and take advan-
Lo norm||f||z, = (£, £)Y/2. tage pf the convo_lut_lonal form of the measurement process to
? ’ simplify the description and implementation of the solution (cf.
[1, Sect. 11]).

B. Distributions

Many results in this paper are obtained through calculatioPs Properties of the Solution
in the sense afistributions The basic reference here isin [40], |4 order for our variational approach to be useful in the con-
but a more accessible introduction is in [41]. A distribution eyt of sampling and reconstruction [1], the solution should sat-
is a function-like object defined indirectly through its scalairsfy a certain number of properties, which will in turn impose
products{u, v) with arbitrarytest functions: from the spac®  onstraints on the criteriod and the devices;. We will see
of compactly supported and infinitely differentiable functionsyat the properties detailed later help us to specify an essen-
Since there will be no ambiguity, we use the same symbol i1y one-parameter family of criteria. We will be able to give a
for vector test functions as well. We say that two distributiongynstryctive theorem concerning the existence property, obtain
u, v are equal if for alkw € D we have(u, w) = (v, w). This  ynicity in the majority of useful cases, and guarantee the invari-

is weaker than the usual point-wise equality. Distributions agg,ce and linearity of the solution in the sense we detail further
generalizations of functions and can often be operated on usig

the same rules except, and this is noteworthy, the multiplication.l':Or each property, we give an indication of how it can be
The majority (but not all) of the practically used functions arerified or guaranteed. Note, however, that the conditions we
indeed distributions. The best-known example of a distributicgqve are only sufficient, but not necessary, because searching

that is not a function is D'ira?’é,. Whict‘ is definefj a$d, v) = for necessary conditions proved to be extremely difficult and
v(0). Similarly, its derivatives’ gives(é', v) = —'(0). Conse-  of small practical interest. On the other hand, we will see in
quently, convolving + v yieldsv, whereasy’ + v = o' the forthcoming sections that our conditions yield a sufficiently

We use an extension of the Fourier transform to a SUbsethgneral family of criteria.
distributions calledemperedsuch as polynomials) through the Property 1 (Existence and Uniquenesdjhere is exactly one

definition (&, v) = (u, ). solutionf,,. O
The motivation of the existence requirement is clear: We want
C. Problem Definition our method to give us at least one solution for any possible mea-

gurementss;. There are various reasons why the probi®m
might not have a solution, e.g., when the constraints are contra-
dictory or when the solution space is not complete with respect
to J. That is to say, if for any sequence of functiafyssatis-
fying the constraints such that the criterid(t;) is decreasing,
his sequence does not convergdinA typical example might

e a sequence of continuous functions converging toward a dis-
continuous one, under a derivative criterion.

We also want the solution to be unique. For the uniqueness,
it is useful forJ to be discriminative so that as few functiohs
Roxg, f) =s. (2) as possible have the same criterion value

The variational problem we consider consists of finding
vector functionf: R™ — R™ minimizing a non-negative func-
tional criterion J(f) under a finite number} of constraints
(rs, £) = s;, wherei = 1---@Q andr; correspond to sampling
devices. The expressidm;, f) linearly maps functions to real
scalars. Ag; is a distribution, most linear forms can be writte
in this form.

Whenf satisfies all the constraintgr;, f) = s;, we write
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In practice, we verify existence and uniquenagsosteriori  tions as possible. It guarantees that at least all test functions can
We first construct a function and then verify that it solves thiee measured using the criteridnThe second part concerns the
problem and that no other function does. In some cases, the wbdhavior ofJ for functions on the closure @, that is to say,
on thea priori analysis has been already done [23], [42]. for functions that are not i but can be expressed as a limit of

Property 2 (Vector Space of Solutiond)f f solves a sequence of test functions. It specifies the densi® of L.
P(J,R,s) and g solvesP(J, R, t), then of + [g solves Consequently, we can do most of our reasoning in the space of
P(J, R, as + gt) for «, 5 € R. O testfunctions and then extend the result to the wholg o§ing

This scalar linearity property ensures that the solution spagéimiting process.
is avector space and that consequently, every solution can be exn practice, Property 5 is always satisfied by the quadratic
pressed as a linear combinationt@basis functions (wher@is  semi-norms we will be considering, in particular, by the semi-
the number of constraints). We will see later (see Section lll-Aprms of Duchon. (This originates from the density7®fin
that this is ensured if the criteriohis a quadratic criterion. Sobolev spaces.)

Property 3 (Matrix Linearity): If f solvesP(J, ATR, s),
thenAf + b solvesP(J, R, s + (R, b)), wherea is an arbitrary [1l. BILINEAR FORMS

matrix. O From now on, we consider exclusively those criteria

This comprises the cases of rotating, scaling, shiftin%at can be expressed using a nonnegabilmear form
permuting, inverting, and otherwise linearly deforming thﬁ\ bilinear form B(f, g) maps pairs of functionst
“output” coordinate system of the functioh We want the nto R. It is symmet;if(B(f g) — B(g, f)) and Iin’eazgr

solution to be invariant with respect to these changes. TEE(af + Bg, h) = aB(f, h) 1 BB(f, g)) with respect to
matrix linearity property is guaranteed.ifis pseudo-invariant both its argtjments. It iso;ﬂ—negativeiff 7B(f £) > 0 for al
with respect to these changes, which means that the criterpe I We associaté with a criterion =

value for Af + b is proportional to the criterion value fdt,
namely J(f) = B(f, f) (7)

J(Af +b) = c(A, b)J(f) (4) Which we call aquadratic criterion Conversely, given a
quadratic criterion/, the associated bilinear for® can be
wherec is a continuous function of andb, independent of obtained as
f. For the remainder of this paper, we consider only matrices

The square-root/.J is asemi-normi.e., it satisfies the tri-
angular inequality and semi-linearify/ J(Af) = |A|\/J(f)).
(wherel is the identity matrix), which corresponds to orthog¥nlike for a norm, there might be more than ahsatisfying
onal transformations and uniform scaling. See Section IV-D fdff) = 0. Such functions define &ernel K. The criterion
details. J is convex. The important Cauchy-Schwartz inequality

Property 4 (Geometric Invariance)lf g solvesP(J, R, s), |B(: &)l < v/J(f)J(g) holds as well; the equality is reached
thenf solvesP(J, R', s), whereg(x) = f(Ax + b), provided 1 3 A, 1t € Ry (Al + [u] # 0; Af + g € K.
that @"/’ f) = (&, g) for all . . . A, Variational Problem With a Quadratic Criterion and Linear

This encompasses the cases of rotating, scaling, and shift] straints
the coordinate system &f We want our solution to be invariant
with respect to these changes. The new fitfezan be writtenin ~ The restriction to bilinear forms is justified, namely, in view
the functional form aR(x) = (det A)R'(Ax+b). Consequently, Of satisfying Property 2, which yields a useful vector space
we wantA to be an invertible matrix. Similarly to Property 3, theStructure for the solution space. The proof that a quadratic cri-
geometric invariance can be ensured by pseudo-invariance wWFHon ./ implies that Property 2 can be found in Appendix A.

AAT = k1 (5)

respect to the geometric transformations, i.e., Because of the convexity af, if there is a local minimum,
it is also the global minimum. Moreover, if two functiofis £,
J (f(Ax + b)) = c(4, b)J (f(x)) (6) solve the problen®, then their differencd; — £ necessarily

belongs taX. (See Appendix B for a proof.) Therefore, if the
and with no connection toin (4). constraints (2) cannot be met by two distinct functions differing

We will impose geometric invariance only with respect 1y an element from the kernel, the solution is unique. This is
scaled orthogonal matrices satisfyingAs” — LI. See Sec- ©25Y to check because in most cases of interest, the Kérisel
tion IV-A for details ' fairly small. We will see later that it mostly consists of low-order

polynomials.

wherec is a continuous function af andb, independent of,

Property 5 (Density): The solution spacé’ contains all test
functionsu from D. For any functiorf € F,thereis asequencepg Operator Kernel of a Bilinear Form
of test functionsy, ug, ... such thalim; .. J(f —u;) = 0. - - ) -
0 Any bilinear form satisfying very mild conditions (see [40])
This property is indeed somewhat technical but its signift@n be written in the form of a scalar product
cance can be readily grasped. The first part ensures that the so- B T
lution space is large, i.e., that it contains as many “good” func- B(f, g) = /Rm £ (0)V(x, y)g(y) dx dy ©)
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wherevV is an x n matrix of distributions called anperator The convolutional operatdt,,», = [l.---1,] has an adjoint
kernelof the bilinear form. Technically, the existence of the ingt = 1.7 [where the notatiorf(x) stands forf (—x)]. We obtain
tegral is not guaranteed unless bétandg are from the class an equivalence between (14) and (12) by setirgL = LT

D ofinfinitely differentiable and compactly supportest func-  There are generally many possible factorizations, leading to

ti0n§ _ many extensions as detailed in the previous section. To illustrate
Without any loss of generality, we can assumi® be sym- this point, we consider the example of the scalar distribution
metric (V(x, y) = V(y, x)) because the operator kernel cain two dimensions:u = (9*/9z%)6 + 2(9*/9x28y) 6

always be symmetrized d¢2 (V(x, y) + V(y, x)) withoutaf- 4 (9*/9y*)6. It can be factorized either with the 1-D
fecting the associated bilinear forh By exchanging andg, (scalar) operatol. = [(8%/0x2)6§ + (92/94?) é] or, alter-

we also find tha¥ must have a matrix symmetty= V*. The natively, with the three-dimensional (3-D) vector operator
implications of (4) and (6) on the propertieswére studied in L = [(§%/92%) § V2(5?/dzdy) § (02 /dy?) 8].

Section IV. The latter factorization leads to the Duchon’s semi-norm (see

) Section IV-G)
C. Convolutional Kernel

: L . . . ) . % f 2 92f 2 9 f 2
If v is translation-invariant, it can be written using a single- || 7|12, = / <_) 2 < ) + <_) dz dy
parametric distribution matrili(x — y) = V(x, y). This trans- ’ Ix? dzdy dy? (16)

forms (9) to . . .
©) whereas the former gives a semi-norm based on the Laplacian:

B(f, g) = / £ (x)U(x - y)g(y)dxdy  (10) RINE 9F 2f SO\
- 113, = [ (52) +252 55+ (5) www an
for test functiond, g. We recognize the convolution here:

ox? ox? oy? oy?

_ which isnot strictly equivalent to (16). An example 5= zy,
Bt g) =(f, Uxg), forg €D (1) which gives||f||A, = 0 but]|f||3, = oc. An important case
=(U=f, g) (A2)  \where the expressions (17) and (882 equivalent is wherf is
where the restriction of to test functions is useful to ensure? test function. Then, by integration by parts
that(f, U x g) exists. We calU the convolutional kernebf the 92f 0%f 92 f 2
bilinear form. Because of the symmetriedoive have the same / 75 oy dedy = / < ) dz dy. (18)
symmetries o, i.e.,U(x) = U(—x) = U7 (x). [This has also re 0% Oy re \ 020y
simplified (12).] These may sound like technicalities, but they should not be
) overlooked; otherwise, one may easily formulate problems that
D. Fourier Form are not well defined mathematically (as was, for example, the
Both (9) and (10) can be also calculated in the Fourier doase in [43]).
main. For this, we need the Fourier transforfng, and (see Coming back to the general formulation wifrendg in D,
Sections II-A and 1I-B for a definition). For example, the exwe write the Fourier domain equivalent of (14) and (15):
pression (10) can be written using Parseval's theorem as 1

B(f. g) = v (L .18 (19)
B(f, g) = / T (wi(w)gw)dw  (13) 8= ) < g>
(27r)m . . o .
wheref? = (f7)* is the Hermite transpose 6f ~ 2™ /m (L f) (w) (L g) (w) dw (20)

E. Extending and Factorizing the Bilinear Form with an associated criterion

The original equations (9) and (10) defig¥f, g) only for J(£) = % /
test functionsD. However, Iater,_vve will need to evaluate (2m) R
also forf from some larger clasg’ > F, conserving all the wherel = i Note that the phase éfcan be freely chosen

properties of the bilinear form. Already, (9) retains a meaninﬁ addition to the freedom demonstrated in the time-domain fac-

if g € D andf belongs to the dual (distribution) space Otorization.The phase @fmay represent the shift ofin the time

G ={[ V(x, y)g(y)dy; g € D}. In particular, if we defineB domain- : :
e ’ ; . . omain; more generally, it corresponds to applying an allpass
through (12), it allows us to consider any distributfprovided (unitary-gain) filter toL.

thatU is compactly supported. The extensiongioéoincide for
test functions but might give different results when evaluated for
other (nontest) functions.
An alternative, symmetric definition a8 is The intent of this section is to apply the first principles from
T T Section II-D to come up with a constrained form of the vari-
B(f,g) = (L' «f, L' xg)  forf geD (14) " ational criterion that is consistent with our invariance require-
which leads to a very simple expression fbr ments. We will end up with what is essentially a one-parameter
family of criteria (cf. Theorem 1).
17 « fH2 ) (15) As we have seen, sufficient conditions to ensure Properties 3
’ and 4 are given by (4) and (6), respectively. We now show how

f.TfH2 dw 1)

IV. | MPOSING INVARIANCE PROPERTIES

p

J(E) = L7 1P = 3

=1
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(4) and (6) constrain our choice of the kernebf the bilinear It is useful to consider this equation for a Householder matrix

form B. It is useful to realize that if A, =I—2vv?, wherevlv = 1, since any orthogonal matrix
T can by factorized using a finite product of Householder matrices
/ 7 (x)V(x, y)(y) dxdy only. AsA2 = 1, from (31), we havéc(A, )| = 1. Furthermore,

- asJ > 0, we necessarily havg€a, ) > 0. Thus,c(A) = 1 for all
= / f (xW(x, y)f(y)dxdy,  forallf €D (22) orthogonal matrices. Equation (30) becomakx) = U(Ax). It
is always possible to choodesuch thatix = ||x||e;, wheree;
is the first basis vector; see [44]. Consequently, the distribution

/ f1(x)V(x, y)g(y)dxdy U must be radial
U(x) =Uo(p),  wherep = ||x||. (32)

then by considering 4+ g andf — g instead off, we get

= / L (x)W(x, y)g(y)dxdy, forallf, g e D (23)
Itis easy to verify that thanks to the orthonormalityApfotating
which is equivalent to saying th&t = W in the distributional x — Ax does not changg.
sense (see Section II-B). The converse also holds by substituting
f = g. Therefore, (4) and (6) on the criterion translate int€. Scale Invariance

equations for the distributional kernelas The last remaining class of geometrical transformations we

Matrix linearity: consider is uniform scaling. Using (30) as before yi@igisx) =
¢(M)Up(Ax), where\ is a real scaling factor, and where we have
accommodated the Jacobia™ into ¢()\). We use the rota-

ATV(x, y)A =c(A, b)V(x, y) (24)  tion-invariant form (32), which giveBy(p) = c(A\)Uo(Ap) for
and A > 0. Note thate(AN) = ¢(A)c(XN'). Repetitive scaling by
_ Avyields (A% = ¢(A¥). This impliesc(\)'/? = ¢(A'/?) and
v dy =0. 25
/ (x, y)dy (25) c(A\)P/1 = ¢(\r/17), By continuity,c(A\)* = ¢(\*) as well for
Geometric invariance: realz. Consequently, we havé\) = A7 and
— 2
V(x,y) =c(A, b)V(Ax + b, Ay + b)(det A)*. (26) Uo(p) = ANUo(Ap). (33)
A. Translation Invariance In the case where the radial form of the convolutional kernel

Up(p) is a function, the preceding equation implesp) =
¢p~7. Note that wheny < 2m, thenU(x) is not locally inte-
B(f,b)=0  forany constanb andf € D (27) grable oveR™ x R™. Therefore, we need to consider the equa-
tions in the sense of distributions.

The corresponding expression in the Fourier domain is

From (25), we directly see that

and thus, there exists an extension/afo functions outside of
D such that/(b) = 0. In other words, the criteriodd must give

zero for constant functions. U(w) = c|jw||> (34)
We can now consider geometric translation invariance (in the
domain ofx) by settingh = —I (reflection about the origin) where2«. = v — m, and the factor 2 is for future convenience
andb = x + y in (26), which simplifies to and notational consistency with [24].
V(x,y) =c(-I, x+y)V(y, X). (28) D. Matrix Linearity
Using the symmetry of, this impliesc(—1I, x’) = 1 for all x’. We have already studied the effectloin (24). Let us now
Lettingb = y in (26) leads to concentrate on the implications af Substituting (29) yields

o ATU(x)A = c(A)U(x); thus,c(AB) = c(A)c(B). We show that
Vix, y) =0y =x) (29) c(A) = 1 by the same proof as in Section IV-B. Thugx)

where we have substitutddy —x, 0) = U(y —x). Thismeans commutes with an arbitrary orthogonal mataix

that we can use the simpler expression (10) instead of (9). By

virtue of (29),U is symmetric and even and the hypothesis in UA = AU. (39)

Section IlI-C applies. Equation (26) then becoriés — y) =

C(A)U(A(x — y)), and consequently It can be easily seen thatis a multiple of the identity ma-

trix and is completely determined by a scalar distributigg):
U(x) = c(A)U(Ax) (30) U(x) = u(x) - L. To prove this, it suffices to consider House-
holder matrices, = I — 2vv7; substituting into (35) yields
vvTU = uvv?; right-multiplying by v shows thaw (v Uv) =
Uv, which means that any vecteris an eigenvector af and

. , . completes the demonstration.
Another special case of geometrical transformations are rota-

tions and symmetries, i.e., matrices that satisfy the orthogonality Form of the Criterion
conditionAA” = 1. Applying (30) twice yields

for any matrixA, where we have incorporatédet A)? into c(A).

B. Rotational Invariance

A direct consequence of the results from the preceding sec-
¢(AB) = ¢(A)c(B). (31) tions is the following theorem.
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Theorem 1 (Form of the Criterion)Let J(f) be a quadratic where]|-|| is an Euclidean norm iR™" . More explicitly (using
criterion. Then, any associated variational problErsatisfies the commutativity of the partial derivatives)
Property 2. Furthermore? satisfies Properties 3 and 4 if and

only if J can be expressed in the following form: ) M! oM f 2
\ A b= 3 4 [ (50) = @
I =c [ 3ol li@Pde @) =i
R o T
()i where Iy, ..., 0, € {0,....,M}, I = TI[IL, L,
for any functionf € D. | = Y00, andox' = 97 - dxly. Following our
The bilinear form associated with (36) is example form = 2 andM = 2, we get the most often used

Duchon’s semi-norm (16). This semi-norm leads to the well
known thin-plate splines [45].

Interestingly, the kernel of - ||p, contains only functions
whose second partial derivatives are zero; i.e., linear polyno-

B9 = [ 3 Wl i) @) @)
=1

Note that the criterion value for a vector function is a sum of th@jals ay + a;x + asy. In fact, the kernekp,, of Duchon’s
criterion values for its components semi-norm of orde/ contains only the polynomials of degree
n M — 1.
J(f) = Z J(fi) (38) All the Duchon’s semi-norms can be associated with a bi-
i=1 linear form so thaf|f||*> = J(f) = B(f, f). The norm (42)

which permits us to concentrate on the scalar case for simplic@/\./es
We now consider two possible extensiongbfo nontest func-

tions. Bailf, g) = / (DMHT(DMgydx  (44)

m.

F. Laplacian Semi-Norm .
or equivalently

The criterion defined in the Fourier domain by (36) is easily

associated (in the scalar case) to an equivalent semi-norm in M!aMf gMy
the time domain using an iteratee-dimensional Laplacian for Bu(f, 9) = /Rm Z W ok ok X (45)
evena [k|=M
2
Is D =71, = [ |areqf 4 @9)
R H. Semi-Norms for Fractional Derivatives
G. Duchon’s Semi-Norms In many applications, the choice of discrete-order Duchon’s

. . . . . semi-norms does not permit sufficiently fine tuning. However,
The principal disadvantage of (39) is that its keriel iS00 b\, chon has combined the time and Fourier domain definitions

large. For example, for = 2, it contains every function that 1, 5156 ohtain semi-norms corresponding to fractional deriva-
satisfies the Laplace equation, such as the real part of an an%s_

ical function, for example(x + iy)* + (z — 4y)*. Therefore,
the variational problem with this criterion will typically have an 5 / ]
Du,s — w

infinite number of solutions. J(F) = IIf1
Fortunately, it turns out that there are other time-domain

forms that correspond to (36) and do not have this problefghere 7 is the Fourier transform operator as defined in Sec-

Namely, we now present the family of semi-norms introduceghns 1I-A and B. Whens = 0, this definition is completely

by Duchon [24]. He first defines a differential operaidras a equivalent to (42), that ig|f||n,, = |Ifllp., .- When, on the

vector of all possible partial derivatives gfof order M other hand M = 0, this definition is equivalent to (39), i.e.,

Iflla. = Ifllps. .., for f € D. Note that the kernel df f|

FDMf|, dw  (46)

M M M 1T Dy
DMf = [8 A];"”’ oMy L ) /\ﬂ (40) is the kernel of | f||p,,. .
dx1 Oy -+ - Oz Al The associated bilinear form is

with k1, ..., kas € {1, ..., m}*. For example, form = 2, .
M = 2, we get By, s(f: 9) =/ lwll** (FDM f(x)) " (FDYg(x)) dw.
a?f a?f a?f a?f T (47)

D? =|—= — .
UCE) {(%52’ dx0y’ Oydx’ 8y2} (41)

) ) ) V. SOLUTION TO THE VARIATIONAL PROBLEM
Then, he defines a semi-norm by taking the sum of the squares

of all the elements and integrating it over the spBee In this section, we reconsider our variational problem
P(J, R, s) defined in Section II-C, derive some properties of

1/2 . . . -
its solutionf,,;, and use them to obtain the explicit form of the
111ps = ( / ||DMf||2dx) 42) opron P
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A. Lagrange Multipliers Because of (52), the function (53) can be made to satisfy (50)
First, we construct an augmented criterion according to tffy SomeA:. We might be tempted to conclude that it therefore
Lagrange multipliers’ method solvesP. However, this will not necessarily work becaugg
and therefore in (53) do not, in general, belong to the admis-
J.(£, N) = J(£) — oxT (R, £) —s) (48) sible solution spacé’.

With (53), we have exactly as manys as there are consis-

whereX € R is the vector of Lagrange multipliers. i, min- tency constraints _(2). This means that there_ are not enough de-
imizes J, (£, A), then choosing = A such that(R, f) = s grees of free_dom in (53) to ensure the condition F'.
implies thatf,,, = fx__, minimizes./(f) under constraints (2).  Note that ifp belongs tok, thenB(f +p, g) = B(f, g).
We carry on using a standard variational argument. We takd% can therefore add foa functionp from X, obtainingfo.,. =
small perturbatiomg, whereg € F anda € R, add it tof,,,, & T P» Which gives us the possibility to makfe.. € 7 while

and study the new criterion valug (f,.; + ag). We consider conserving the validity of (50). o
its derivative Equation (51) will allow us to find the. If £ has a finite

basis, we can expreggx) as
83 J* (fout + ag) = 2B(fout7 g) - 2AT<R7 g> (49) P-1
. p(x) = Z arpr(x). (54)
which vanishes iff(f,.:, A) is a saddle point. In addition, k=0
(R, fout) = s must hold. This directly leads to the followingThrough linearity, (51) is equivalent to the orthogonality con-

lemma. straints
Lemma 1: A function f,,,; from I solves the variational

problem? if and only if there is a real vectoX,, such that MR, pi) =0, for eachk. (55)

This gives the same number of constraints as there are addi-
tional unknowns in (54). Combining (55) and (2) gives us a set
of linear equations for exactly as many unknownsand ay,
(R, four) =s. (50)  which is a necessary condition for the unicity of the solution.
(More on unicity in Section V-F.) Adding the kernel term gives
Note that because of the Property 5on density, we can |n|t|a[§3g in genera| sufficient freedom to find &p,; in F'; however,
consider onlyg from D and then extend t6" while the Lemma  this needs to be verified posteriorion a case-by-case basis.

B(fout7 g) :Agpt <R7 g>7 for a” g € D
and

remains valid. We summarize our findings in the form of a theorem. See Ap-
For g from the kernelC, we haveB(f,., g) = 0 [because pendix C for a proof.
B(g, g) = 0], and thus Theorem 2 (Variational Problem Solution):et \; anda;, be
real numbers anflp; } a basis of the kerné{ of .J. Further, let
(R, g) =0, for eachg € K. (51) {¢;} be a set of fundamental solutions corresponding to filters
R in the sense of (52). Then, the function
. . r—1 Q
B. Introducing Fundamental Solutions - £ () = Z - Z s (56)
We now suppose that we have found a set of funcgrsich o P
that
solves the interpolation problemP(J,R,s) [where
B(y;, g) = (r;, g), forallg € D. (52) J(f) = B(f, )] if and only if the following three condi-
tions are satisfied.
We callp, afundamental solutioworresponding to a filter,. i) The solutionf,,; belongs toF as defined by (3), i.e.,

(See also Section V-D.) There is often no fundamental solution J(fout) < 00.
@, in F. Then, we searcl, in F', whichis why we hadtorestrict i) The solutionf,,, is consistent with the constraints (2),
g to D (Section IlI-E). i.e., (R, fout) = s.

We want(R, ;) to be finite foralli = 1---Q. Ifthisisnot i) The coefficients); are orthogonal in the sense of (55),
the case, we can suspect that our minimization problem does i,e,,)\T<R, pr) =0, four V k.
not have a solution id”, which can hopefully be proven usingThis provides a linear system & + Q equations with? + Q
another method. unknowns, which can be solved exactly. The practical aspects

o ) o will be dealt with in our companion paper [1]. O
C. Explicit Solution of the Variational Problem Symbolically, we can combine the pair of equations (50) by
In order to obtain a more useful result than Lemma 1, we wilubstitutingg = f,,.,;, yielding a very simple expression for the
use the linearity o3. Take a function optimal value of the criterio(f,; )
J(fous) = A''s (57)

Q
f(x) = i@, (53)
(x) ; wheres is the measurement vector.
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D. Finding the Fundamental Solutions [40]—finite part) symbol means that we are considering a dis-

To find the fundamental solutions; as defined by (52), it is ribution that coincides with the functiofw||~>* for w # 0,
useful to start from the convolutional formulation of the bilineaf’hich does not hinder the validity of (63) in the distributional
S

form (12). Equation (52) becomes ense. ) o
If 2c — m is an even positive integer, the above formula has

(U@, g) =(r;, g). (58) to be modified as

The fundamental solutions are defined through the distributionak) (x) = FPfllw|| 2% = cop®* ™ logp + 1 p** ™. (65)

equations
For our task, we do not have to consider the?>>—™ part of

Ux[p - o]l =R (59) (65) because their linear combination is a quadratic polynomial
T that necessarily belongs 10 so that the solution belongs fo.

_ ) For2a — m even, it is actually easier to work directly in the
where we have used the matrix form (2) to describe the Sagkace domain. If we have a radial functigfp) that satisfies
pling. The ta;k can be broken in. two parts._ We first solve fcy/ — pl=™ thenAg = S,.6. (See Appendix D for a proof.)
Green's functions); [46]-[48], which are defined by The constansS,, is the surface of the:-dimensional unit hy-
perspheré. For example, forn = 2, we getAlogp = 276.

U*w = () Tnn, x € R™. (60) Iteratively applying the formula for the Laplacian of a radial
T function
Once we have the Green’s functiops we get the fundamental " m—1 |,
solutionsy, by convolution with the measurement operatirs Ap(x) =" (p) + P ¥'(p) (66)
[p1---pgl =8 = TR (61) yieldsA%p?logp= A(4logp+4) = 8r8, A%p*log p = 6476,

o o ~andA*p8log p = 230478, Form = 3, we haveAp™! = 46,
We see from (60) that sindgis symmetric,¥ is symmetric A2, — 876, A3p3 = 9676, etc.
as well. When further is symmetric, then the same holds true Generally, Duchon’s semi-noriif|| >, . leads to a funda-
for @ [from (61)]. This is often the case &ds mostly diagonal. ental solutionp(p) = cp?(M+»)—m if fﬁe exponent is not

even orp(p) = cp>M+2)=" log p otherwise. This permits us

to choose from the continuum of Duchon’s semi-norms the one
As an example, let us first study a simple scalar case (I, that suits us best.

m = 1). As criterion, we choose Duchon’s semi-ndjifi| p, = In the multidimensional# > 1) case, wher@ = uI, we get

|l /||, which corresponds tb = & in (15), and thusy =  simply & = 1.

[ 1 = (d*/dz*)é. The corresponding Green’s function must

E. Green’s Functions

satisfy F. Unicity of the Solution
as A%y Let us suppose that the set of fundamental solut{gn$ and
urYp == =0 (62)  afinite basis{py } exist. Then, there is a set of linear equations

. ) . ) to determine the unknowns anday. If this set has a unique
Integrating four times, we get a family of possible Green's fungg)ytion, the interpolation problem will also have a unique so-
tionsy(z) = 23 /12 + az2® + a2z + a1z + ap, Wherez is  |ytion, provided, of course, that (55) impliésc F.
the one-sided power function. For convenience, we choose thg, the scalar case, Micchelli [42] proved that the matrix
symmetric 50|Ut|0n/)(9_5) = |=*/12. _ (A)i; = @(xi — x;), corresponding to the fundamental part

The Green’s functions corresponding to general Duchong$ the solution (56), is nonsingular, provided th#t[defined
semi—qorms (46) are best analyzed in. the Fourier domain us'[gxyg(P(X) = ¢(p?)] is completely monotonic but not constant
(36) withax = M + s. Then, the following must hold: on |0, oo|, ¢ is continuous or0, oo and positive or{0, o],

.5 207 andx; are distinct. Powell [23] has additionally shown that if
i) = [lw||"¢ =1 (63) K is tjhe space of polynomials of ordéd — 1 and if either

. . . . M _A(M) : H

in the distributional sense as well. Because botand s are ¢ or —¢!**) is strictly completely monotonic oi0, ocf,
radial distributions and a convolution of two radial distribution€" the complete system of equations is nonsingular, provided
is also radial, we can find a radial solution of (63). That is whiat thex; are distinct and that there is no nonzero polynomial

the resulting functiong) (and ¢, if the sampling- preserves @ Of order M — 1 such thatQ(x;) = 0 for all j. This is
radiality) are calledadial basis functions closely related to our observation in Section IlI-A about the

The problem of finding) from (63) is well studied (cf. [40, ugicity of the solution. The radi,al functions(p) = p” or
p. 258]). ForZa — m not an even integer p” log p, stemming from Duchon’s semi-nornig||p,, . with
3 = 2(M + s) — m, are completely monotonic [22], [23].

o —1 —2a 2a—m
P(x) = F7PAlw|| T = cp 64 1 - 27m/2 [T'(m/2), which form = 2, m = 3 yields the familiar

. values2w and4r [48].
wherep = ||x||, andc is a constant that can be calculated but 2A function ¢ is completely monotonic if it is i > and(—1)‘¢(" > 0 for

which is irrelevant for our purposes. The “Pf’ (“partie finie"’ € {0, 1, ...}.
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VI. APPROXIMATION PROBLEM Substituting the solution (56) in (71) yields

In some applications, it might be interesting to replace the Q P_1
*hard” constraints (2) by “soft” ones by adding a data term pe- =1y, = s, - 5™ A(ri, ) — > anlri pi).  (73)
nalizing solution far from the constraints. To define a variational i1 =0
approximation problermwe introduce a combined criteriaf,. _ _ _
We consider the following general form: By takingg € K'in (71), we get the same orthogonality con-

straints (55) as in the interpolation case. Here too, the computa-
Jo(£) = J(£) + L((R, £), s) (67) tional procedure boils down to the solution of a linear system of

equations that is functionally identical to the one encountered

- RQ Q - i - - . . .
whereL: R¥ x R — R is an arbitrary distance function. We¢, the interpolation probler®, except for a diagonal regular-
use itto measure the distance between the measurements angm

: ) _ gtermfy—l)\i, which stabilizes the system, cf. [1].
sampled solutiorR, f). We then say theft,,,. € F'is a solution
to an approximation probler(./,, R, s) iff, for all functions
f € F,we haveJ,(f) > J,(fout)-

The problem of solving the approximation probles is We have presented a systematic way of solving variational
closely related to the constrained problémas demonstrated problems minimizing quadratic regularization criteria under
by the following theorem. general linear constraints. We have also considered replacing

Theorem 3 (AP Solution)Let us denotd,,;,(z) as the crite- the constraints by a corresponding penalty function, and we
rion valueJ(f) of a functionf solving an interpolation problem have shown that it leads to a solution with the same form, re-

VII. CONCLUSIONS

P(J, R, z). Let us further define, as gardless of the penalty function. The solution of such problems
lies in a vector space uniquely corresponding to the problem at
Zy = argmzin(Jmm(Z) +L(z, s)). (68) hand, generated by a system of fundamental solutions, related

to Green’s functions. We have shown how the requirements
Then,f,,; solves the problemi(/,, R, s) iff it solves the inter- we impose on the variational problem solution determine the
polation problent(J, R, z.). choice of the criterion, leading to the family of semi-norms
The proof follows from the observation that the data terfitroduced by Duchon.

in J, depends only on the measuremeats= (r;, f) of the e are now ready to proceed with the application part of this
solutionf. Thus, the minimization research in the Companion paper []_]

four = arg mmin J,(f) (69) APPENDIX
re_qL_Jirgd t_o SOIYFA can be broken into_two parts_: ‘_”1) _ext_ernaA. Linearity With Respect to Measurements
minimization with respect to the and b) internal minimization ]
trying to find the propef... minimizing.J givenz. We see that L€t us have a functiow from Fy, wheref, = {v € I
the internal optimization is exactly the constrained variationd|% (i, v) = 0}. By linearity,yv also belongs té} fory € R.
problem described previously. Once it is solved, the externfe then have/(f +~v) > J(f) becausd solvesP. Conse-
minimization becomes a standard multidimensional optimizgUently.2yB(f, v) ++*B(v, v) = 0, and thusyB(f, v) > 0
tion problem that can be solved by existing numerical methoff¥ sufficiently small (positive or negative), which implies
[49] or, in some special cases, analytically (see the next section

for an example). B(f,v)=0 for anyv from Fj. (74)

This leads toJ(af + g + v) — J(of + g) = 2B(of + g,
o _ v)+ J(v) = J(v) = 0, which proves that:f + g solves
Often, the general criterion (67) can be replaced by a simp|&, problem with measurements + s whenf andg solve

A. Least-Squares Approximation

least-squares form problems with measurementsinds, respectively. ]
Q . .
Jo(f) = J(£) + Z ((rs, £) — 57)%. (70) B. Difference Between Two Solutions
i=1 We prove that if two function$; andf, both minimize.J(f)

We first realize that according to Theorem 3, the solution h4gder some constraints (2), theitf; — f;) = 0. Using (74),
the form (56). We then use the method of small perturbations W deduceB(fy, fi — f5) = B(f;, f; — f;) = 0. This directly
evaluating/, (f...+ag), similarly to Section V-A. Its derivative yields J(fy — fy) = B(fy, fi —f;) + B(fz, f> —f;)=0. m
with respect tax needs to be zero for aff € £ in order forf, ¢

to be a minimum. This implies C. Interpolation Problem Solution

First, suppose thdt,,; solvesP. Then, by definitionf,,; €
2B(fout, 8) +27 Y (ri, 8) ((Ti, fowr) —5:) =0.  (71) F, and(R, f.,;) = s. Equations (51) and (2) are valid by con-
i struction. Aspx. € K, we have (55). Conversely, suppose that
Identifying with (49) gives (R, f,ut) = sand (55) holds. F_orr_nula(56) fhir,. givesB(fout,
g) = Y. \DB(y;, g). Substituting (52) leads t®(f, g) =
“A=~v(R, L) —s). (72) >, Xi(r;, g) forallg € D. Asf € F andD is dense inF,
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the preceding formula holds also for &llc 7, which permits
us to apply Lemma 1. [ |

[20]

. . [21]
D. Dirac Laplacian

Consider (Ag, v), wherew is a test function, and;(x) [22]

is a radial function satisfyinglg/9p = p'~™. This scalar
product equals— [ VgVuvdx. We change to spherical co-
ordinatesx — (p, ¢1, ..., ¢m_1). The integral becomes
— [ ¢ (0v/8p) p™~t dr dQ, wheredQ? = d¢; - - - de,,,—1 and
J d€Q = S,,. We use the fact that™~'g’ = 1. Then, by inte-
gration overp, we get— [[u(p)]/=5" dQ2. Aswv is a test function
v(oo) = 0, and the integral simplifies te-S,,,[v]5° = S,,v(0).
ConsequentlyAg = S,,,6. [ |

(23]
(24]
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