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A very old problem

Given a sampling device that provides smooth, uniform samples yn of a
“real-world” function x(t)

x(t) ! ϕ(t)

sampling kernel

y(t) "
"
!

# T
!yn = y(nT )

How to reconstruct x(t) exactly, and under which conditions?

NOTE: Implicitely, there is the assumption that if the samples are shifted,
then the reconstruction should also be shifted by the same amount.
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Observation kernel ϕ(t): often given partly by nature, partly by design.

Hubble telescope Electro-EncephaloGraphy

OCT Set-Up MRI scanner
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Standard solution (from Shannon, Whittaker, Kotel’nikov, Nyquist,. . . )

If x(t) is band-limited in ]−π/T, π/T [ and ϕ̂(ω) "= 0 in that band, then
the knowledge of its samples yn at the frequency 1/T allows to
reconstruct x(t) uniquely by

x(t) =
∑

n∈Z

y(nT )ψ(t − nT )

where
(

ϕ ∗ ψ
)

(t) = sinc(t/T ).

Problems ! need for a better adapted signal model

the samples are almost always in finite number

a natural signal is never band-limited

noise sensitivity of Shannon’s formula

NOTE: Replacing sinc by other “basis” functions (e.g., splines) addresses
these issues, but fails to produce shift-invariant solutions.
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Shannon’s nightmare

An ideal band-limited signal x(t) can be
represented exactly by its samples x(nT )

x(t)

But a single discontinuity
and no more sampling theorem.

x(t)

NOTE: Bandlimited signals are represented using 1/T degrees of freedom
per unit of time.

Are there other shift invariant signal families with finite numbers of
degrees of freedom per unit of time, and allowing perfect reconstruction?
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Signals with Finite Rate of Innovation

A novel signal model, that emphasizes the duality of the “information”
—the innovation— conveyed by a signal

A linear aspect : e.g., the amplitude of a sample

A nonlinear aspect: e.g., a time of change of the signal

The FRI hypothesis1

A Finite Rate of Innovation signal can be expressed as the convolution of
an acquisition window with a stream of Diracs

y(t) =
( +∞

∑

k=−∞

xk δ(t − tk)
)

∗ ϕ(t) =
+∞
∑

k=−∞

xk ϕ(t − tk)

xk and tk are called the innovations of the signal.

Rate of innovation: the average number of innovations per unit of time.

1M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of
innovation,” IEEE Trans. on Signal Processing, vol. 50, pp. 1417–1428, June 2002.
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Examples

Piecewise-constant signals

= ∗

OCT signals: convolution with a Gabor window

. . . and many more “sparse” signals

Are there interpolation formulas for such signals?
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Annihilation of periodic signals

Consider the case

τ -periodic signal x(t) = x(t + τ), where τ = NT , N integer

ϕ(t) = sinc(Bt) with BT = 2M+1
N ≤ 1, M integer

rate of innovation, 2K/τ ≤ B (K = number of Diracs in [0, τ ])

Then the filter of transfer function H(z) =
K
∏

k=1

(1 − e−j2π
tk
τ z−1)

annihilates the N -DFT coefficients of yn

K
∑

k=0

hkŷm−k = 0, m = −M + K, . . .M
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Under algebraic form, the annihilation equation becomes AH = 0, where
A is a Tœplitz matrix

A =








ŷ−M+K ŷ−M+K−1 · · · ŷ−M+1 ŷ−M

ŷ−M+K+1 ŷ−M+K · · · ŷ−M+2 ŷ−M+1
...

. . .
. . .

. . .
...

ŷM ŷM−1 · · · ŷM−K+1 ŷM−K








Hence, an exact reconstruction algorithm looks like

yn
Annihilation

AH = 0
polynomial

rooting H(z) = 0
!tk

"

least mean-square
minimization

!xk

A non-iterative solution to a non-linear problem:
two linear systems to solve + polynomial root extraction
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Other annihilation examples

Consider the Gaussian case

ϕ(t) = e−t2/(2σ2)

K Diracs to retrieve from N samples n ∈ [−N/2, N/2]

Then the filter of transfer function H(z) =
K
∏

k=1

(1 − e
tkT

σ2 z−1) annihilates
the samples ỹn = e(nT/σ)2/2yn

K
∑

k=0

hkỹn−k = 0, m = −N/2 + K, . . .N/2
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Consider the non-periodic sinc case

ϕ(t) = sinc(t/T )

K Diracs to retrieve from N samples n ∈ [−N/2, N/2]

Then the filter of transfer function H(z) = (1 − z−1)K annihilates the
samples ỹn = (−1n)P (n)yn where P (n) =

∏K
k=1(n − tk/T )

K
∑

k=0

hkỹn−k = 0, m = −N/2 + K, . . .N/2
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Consider kernels that satisfy Strang-Fix conditions of order L ≥ 2K

either
{

1, t, t2, . . . tL−1
}

∈ spann{ϕ(nT − t)}

or
{

eat, e(a+b)t, e(a+2b)t, . . . e(a+(L−1)b)t
}

∈ spann{ϕ(nT − t)}

Then the filter of transfer function H(z) =
K
∏

k=1

(1 − ebtkz−1) annihilates
modified samples ỹn

K
∑

k=0

hkỹn−k = 0, m = K, K + 1, . . . L

The ỹn are obtained by an adequate linear transformation of the yn.

A very large range of of observation/analysis kernels (wavelets, etc.)

1P.-L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments and reconstructing
signals of finite rate of innovation: Shannon meets Strang-Fix,” IEEE Trans. on Signal
Processing, vol. 55, pp. 1741–1757, May 2007.
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FRI with noise

Schematical acquisition of a τ -periodic FRI signal with noise

∑

k

xkδ(t − tk) !! !⊕$

analog noise

⊕$

digital noise

ϕ(t)

sampling kernel

y(t) "
"!
#

T
!! !yn

Modelization

yn =
∑

k

xkϕ(nT − tk) + εn
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The noisy periodic case

τ -periodic signal x(t) = x(t + τ), where τ = NT , N integer

ϕ(t) = sinc(Bt) with BT = 2M+1
N ≤ 1, M integer

rate of innovation, 2K/τ ≤ B (K = number of Diracs in [0, τ ])

Estimation problem

Find estimates ȳn, x̄k and t̄k of yn, xk and tk such that

ȳn =
∑

k

x̄kϕ(nT − t̄k)

‖ȳ − y‖#2 is as small as possible
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Total least-squares

Replace the annihilation equation AH = 0 by

min
H

‖AH‖2 under the constraint ‖H‖2 = 1

Solution

Perform a Singular Value Decomposition

A = USVT

and choose the last column of V for H.

U is unitary of same size as A

S is diagonal (with decreasing coefficients) and of size
(K + 1) × (K + 1)

V is unitary and of size (K + 1) × (K + 1)
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Total least-squares

The estimation of the innovations are then obtained as follows

tk: by finding the roots of the polynomial H(z)

xk: by least-square minimization of








ϕ(T − t1) ϕ(T − t2) · · · ϕ(T − tK)
ϕ(2T − t1) ϕ(2T − t2) · · · ϕ(2T − tK)

...
...

...
ϕ(NT − t1) ϕ(NT − t2) · · · ϕ(NT − tK)















x1

x2
...

xK







−








y1

y2
...

yN








.

NOTE:

Related to Pisarenko method

Not robust with respect to noise ! need for extra denoising
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Cadzow iterated denoising

Without noise, the annihilation property AH = 0 still holds if
length(H) = L + 1 is larger than K + 1. We have the properties

A is still of rank K

A is a Tœplitz matrix

conversely, if A is Tœplitz and has rank K, then yn are the samples
of an FRI signal

Rank K “projection” algorithm

1 Perform the SVD of A: A = USVT

2 Set to zero the L − K + 1 smallest diagonal elements of S ! S′

3 build A′ = US′VT

4 find the Tœplitz matrix that is closest to A′ and goto step 1
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Cadzow iterated denoising

Essential details

Iterations of the projection algorithm are performed until the matrix
A is of “effective” rank K

L is chosen maximal, i.e., L = M

Schematical view of the whole retrieval algorithm

yn ŷn! FFT !%%%
&&&

&&&
%%%

too
noisy?

yes

'Cadzow

$ !no Annihilating
Filter method

!tk

!

lin
ea

r
sy

st
em !

!

tk

xk

1T. Blu et al., “Sparse Sampling of Signal Innovations,” IEEE Signal Processing
Magazine, vol. 25, pp. 31–40, March 2008.
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Examples
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Retrieval of an FRI signal with 7 Diracs (left) from 71 noisy (SNR = 5
dB) samples (right).
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Simulations: Quasi-optimality
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Retrieval of the locations of a FRI signal. Left: scatterplot of the
locations; right: standard deviation (averages over 10000 realizations)
compared to Cramér-Rao lower bounds.

Quasi-optimality of the algorithm.
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Simulations: Robustness
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201 samples of an FRI signal in 0 dB noise. Right: noiseless and noisy
signal. Left: retrieved locations and amplitudes.
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Simulations: Robustness
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290 samples of an FRI signal in -5 dB noise. Right: noiseless and noisy
signal. Left: retrieved locations and amplitudes.

In high noise levels, the algorithm is still able to find accurately
a substantial proportion of Diracs
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Optical Coherence Tomography: Principle

Detection of coherent backscattered waves from an object by making
interferences with a low-coherence reference wave. Measurement
performed with a standard Michelson interferometer.

Axial (depth) resolution: ∝ coherence length of the reference wave;
Transversal resolution: width of the optical beam.

NOTE: Very high sensitivity (low SNR), noninvasive, low-depth penetration
! biomedical applications (ophthalmology, dentistry, skin).

Axial resolution2: 10→20µm. Better resolution → better diagnoses.

OCT is a ranging application!

2with SuperLuminescent Diods: low cost, compact, easy to use.
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OCT: Experimental Setup

object

photodetector

moving mirror

re
fe

re
n

c
e

 p
a

th

low-coherence
source light (SLD)

ψR(t)

ψO(t)

ψO = x ∗ ψR

〈|ψR(t − z

c
) + ψO(t − z0

c
)|2〉

NOTE: z, z0 are the optical path lengths of the reference and the object wave.
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OCT: Mathematical setting

Measured intensity:

va
ria

bl
e

(m
ov

in
g 

m
irr

or
)

Iphoto(z0 − z) =
〈∣
∣ψR

(

t − z
c

)

+ ψO

(

t − z0

c

)∣
∣
2〉

= const + 2+
{

(x ∗ ϕ)
(

z−z0

c

)
}

︸ ︷︷ ︸

OCT signal

.

ϕ(t) is the temporal coherence function of the reference wave:

ϕ(t′ − t) = 〈ψR(t′), ψR(t)〉

Typically, ϕ(t) ∝ e−t2/(2σ2)+2iπν0t and x(t) is a stream of Diracs
characterizing the depth of the interfaces, and the refractive index jumps.

An FRI interpolation problem

Retrieve x(t) from the uniform samples of the OCT signal.

Thierry Blu Sparsity Through Annihilation 26 / 32

Signal Interpolation
Annihilation algorithms

Noisy annihilation
Application: Optical Coherence Tomography

Conclusion

OCT: Resolution

Resolution limit of OCT (two interfaces): Lc = c × FWHM of A(t)

-5 0 5
-0.4
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-0.1

0
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0.2

0.3

0.4

acquisition time (ms)

NOTE: Because the light travels twice (forward then backward) in the
object, the actual physical resolution is Lc/2. Moreover, a larger value of
refraction index inside the object further divides the resolution limit.
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OCT: Example of Processing

Separated Gaussians
located at z0 and z1 their sum
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OCT: Simulation example

Simulation examples: two interfaces distant by 7µm (1ms below)

PSNR 40dB PSNR 30dB PSNR 25dB
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OCT: Real Data Processing

SLD source of central wavelength 0.814µm and coherence length 25µm.
! OCT resolution of 12.5µm.

Depth scan of a 4µm thick pellicle beamsplitter of an optical3 depth of
6.6µm ! approximately half the OCT resolution.

Calibration part:

Depth scan of 1 interface ! effective coherence function;

High-coherence interferometer ! accurate position of the moving
mirror.

3refractive index 1.65.
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OCT: Real Data Processing

Example of superresolution: data-model PSNR=31dB
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The two retrieved interfaces are distant by 17 interference fringes
! 17 × 0.814/2 = 6.9µm.
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Presentation of a generic framework for interpolating samples under
sparsity assumptions

Super-resolution applications with noise-robust behaviour

Unique solution as soon as 2K measurements for 2K unknowns

Patents on the Dirichlet kernel transferred to Qualcomm

Papers available at http://www.ee.cuhk.edu.hk/~tblu/
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