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Sampling Moments and Reconstructing Signals of
Finite Rate of Innovation: Shannon Meets Strang–Fix
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Abstract—Consider the problem of sampling signals which
are not bandlimited, but still have a finite number of degrees
of freedom per unit of time, such as, for example, nonuniform
splines or piecewise polynomials, and call the number of degrees of
freedom per unit of time the rate of innovation. Classical sampling
theory does not enable a perfect reconstruction of such signals
since they are not bandlimited. Recently, it was shown that, by
using an adequate sampling kernel and a sampling rate greater
or equal to the rate of innovation, it is possible to reconstruct
such signals uniquely [34]. These sampling schemes, however,
use kernels with infinite support, and this leads to complex and
potentially unstable reconstruction algorithms. In this paper, we
show that many signals with a finite rate of innovation can be
sampled and perfectly reconstructed using physically realizable
kernels of compact support and a local reconstruction algorithm.
The class of kernels that we can use is very rich and includes
functions satisfying Strang–Fix conditions, exponential splines
and functions with rational Fourier transform. This last class
of kernels is quite general and includes, for instance, any linear
electric circuit. We, thus, show with an example how to estimate a
signal of finite rate of innovation at the output of an circuit.
The case of noisy measurements is also analyzed, and we present a
novel algorithm that reduces the effect of noise by oversampling.

Index Terms—Analog-to-digital conversion, annihilating filter
method, multiresolution approximations, sampling methods,
splines, wavelets.

I. INTRODUCTION

SAMPLING theory plays a central role in modern signal
processing and communications and has experienced a

recent revival thanks, in part, to the recent advances in wavelet
theory [12], [27]. In the typical sampling setup depicted in
Fig. 1, the original continuous-time signal is filtered
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Fig. 1. Sampling setup. Here, x(t) is the continous-time signal, h(t) is the
impulse response of the acquisition device, and T is the sampling period. The
measured samples are y = hx(t); '(t=T � n)i.

before being (uniformly) sampled with sampling period .
The filtering may be a design choice or may be due to the
acquisition device. If we denote with the
filtered version of , the samples are given by

where the sampling kernel is the scaled and time-reversed
version of .

The key problem then is to find the best way to reconstruct
from the given samples, and the key questions are as fol-

lows. 1) What classes of signals can be reconstructed? 2) What
classes of kernels allow such reconstructions? 3) What kind of
reconstruction algorithms are involved? Ideally, we would like
to be able to reconstruct large classes of signals, using simple
reconstruction algorithms and, most importantly, with general
and physically realizable kernels.

The classical answer to the sampling problem is provided
by the famous Shannon sampling theorem which states the
conditions to reconstruct bandlimited signals from their sam-
ples. In this case, the reconstruction process is linear and the
kernel is the sinc function. In fact, the whole sampling process
can be interpreted as an approximation procedure in which the
original signal is projected onto the shift-invariant subspace of
bandlimited functions and only this projection can be recon-
structed. This subspace interpretation has then been used to
extend Shannon’s theorem to classes of nonbandlimited signals
that belong to shift-invariant subspaces, such as uniform splines
[27], [29].

Recently, it was shown that it is possible to develop sam-
pling schemes for classes of signals that are neither bandlim-
ited nor belong to a fixed subspace [34] (see also [16], [18], and
[21]). For instance, it was shown that it is possible to sample
streams of Diracs or piecewise polynomial signals using a sinc
or a Gaussian kernel. The common feature of such signals is
that they have a parametric representation with a finite number
of degrees of freedom and are, therefore, called signals with fi-
nite rate of innovation (FRI) [34]. The reconstruction process

1053-587X/$25.00 © 2007 IEEE



1742 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 5, MAY 2007

for these schemes is based on the use of a locator or annihi-
lating filter, a tool widely used in spectral estimation [22] and
error correction coding [3], but also for sampling, interpolation
[14], [35], and shape reconstruction [13], [19].

The fundamental limit of the above sampling methods, as
well as of the classical Shannon reconstruction scheme, is that
the choice of the sampling kernel is very limited and the re-
quired kernels are of infinite support. As a consequence, the re-
construction algorithm is usually physically nonrealizable (e.g.,
realization of an ideal low-pass filter) or, in the case of FRI sig-
nals, becomes complex and unstable. The complexity is in fact
influenced by the global rate of innovation of .

In this paper, we show that many signals with a local finite rate
of innovation can be sampled and perfectly reconstructed using
a wide range of sampling kernels and a local reconstruction al-
gorithm. The reconstruction algorithm proposed in this paper is
also based on the annihilating filter method. However, the main
property the kernel has to satisfy is to be able to reproduce poly-
nomials or exponentials. Thus, functions satisfying Strang–Fix
conditions [24] (e.g., splines and scaling functions), exponen-
tial splines [31], and functions with rational Fourier transforms
can be used in our formulation. This last family of kernels is of
particular importance since most linear devices used in practice
have a transfer function which is rational. Despite the fact that
kernels with rational Fourier transform have infinite support, we
show that the reconstruction algorithm remains local, and, thus,
its complexity still depends on the local, rather than global, rate
of innovation of .

It is also worth mentioning that the problem of reconstructing
signals from sparse (nonuniform) measurements has gained a lot
of attention recently (see, for instance, [7] and [11]). These re-
cent works, however, focus mostly on discrete signals that have
a sparse representation in a basis or a frame. The focus of our
work instead is on exact reconstruction of continuous-time sig-
nals from uniform samples.

The paper is organized as follows. In the next section, we
review the notion of signals with finite rate of innovation and
present the families of sampling kernels that are used in our
sampling schemes. Section III presents our main sampling re-
sults for the case of kernels reproducing polynomials. In partic-
ular, we show how to sample and perfectly reconstruct streams
of Diracs, streams of differentiated Diracs and piecewise poly-
nomial signals. The following section focuses on the use of
wavelets and scaling functions to sample signals with finite rate
of innovation and discusses connections between these sam-
pling results and the problem of increasing the resolution of a
given signal. In Sections V and VI, the previous sampling re-
sults are extended to the case in which the sampling kernel re-
produces exponentials, moreover, as an example, we show how
to estimate FRI signals at the output of electric circuits. Sec-
tion VII deals with the case of noisy measurements, and, finally,
conclusions are drawn in Section VIII.

II. ON SIGNALS AND KERNELS

In the introduction, we have informally discussed the signals
and kernels that will be used in our sampling formulation. Let
us now introduce more formally the notion of signals with finite

rate of innovation [34] and present the families of sampling ker-
nels that will be used in our sampling schemes.

A. Signals With Finite Rate of Innovation

Consider a signal of the form

(1)

Clearly, if the set of functions is known,
the only free parameters in the signal are the coefficients

and the time shifts . It is, therefore, natural to introduce a
counting function that counts the number of free pa-
rameters in over an interval . The rate of innovation
of is then defined as [34]

(2)

Definition 1: A signal with a finite rate of innovation is a
signal whose parametric representation is given in (1) and with
a finite as defined in (2).

It is of interest to note that shift-invariant signals, including
bandlimited signals, fall under Definition 1. For instance, if we
call the maximum nonzero frequency in a bandlimited real
signal, then . Therefore, one possible interpretation
is that it is possible to sample bandlimited signals because they
have finite rate of innovation (rather than because they are ban-
dlimited).

In some cases, it is more convenient to consider a local rate
of innovation with respect to a moving window of size . The
local rate of innovation at time is, thus, given by [34]

(3)

Clearly, tends to as . In our context, as it will
become evident later, the notion of local rate of innovation plays
a more important role than the global rate of innovation, since
our reconstruction schemes are local.

B. Sampling Kernels

As mentioned in the introduction, the signal is usually
filtered before being sampled. The samples are given by

, where the sampling kernel is
the time reversed version of the filter’s impulse response. The
impulse response of the filter depends on the physical properties
of the acquisition device and, in most cases, is specified a-priori
and cannot be modified. It is, therefore, important to develop
sampling schemes that do not require the use of very particular
or even physically nonrealizable filters. In our formulation, we
can use a wide range of different kernels. For the sake of clarity,
we divide them into three different families.

1) Polynomial reproducing kernels: Any kernel that to-
gether with its shifted versions can reproduce polynomials
of maximum degree . That is, any kernel that satisfies

(4)

for a proper choice of the coefficients .
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2) Exponential reproducing kernels: Any kernel that to-
gether with its shifted versions can reproduce complex ex-
ponentials of the form with and

. That is, any kernel satisfying

with and (5)

for a proper choice of the coefficients .
3) Rational kernels: Any stable kernel with rational

Fourier transform of the form

with

and (6)

where is the Fourier transform of .
In all cases, the choice of depends on the local rate of

innovation of the original signal as will become clear later
on. Since our reconstruction scheme is based on the use of a
digital filter (i.e., the annihilating filter), the exponents in (5)
and the poles in (6) must be restricted to , where

and can be chosen arbitrarily but is an integer. This fact
will be more evident in Section V. Finally, the coefficients
in (4) are given by , where

is chosen to form with a quasi-biorthonormal set [6].
This includes the particular case where is the dual of ,
that is, . A similar expression applies
to the coefficients in (5).

The first family of kernels includes any function satisfying
the so-called Strang–Fix conditions [24]. Namely, satisfies
(4) if and only if

and and

where is again the Fourier transform of and the su-
perscript stands for the th derivative of . These con-
ditions were originally valid for functions with compact support
only, later they have been extended to noncompactly supported
functions [6], [8], [10].

One important example of functions satisfying Strang–Fix
conditions is given by the family of B-splines [26]. A B-spline

of order is obtained from the -fold convolution
of the box function , that is

with . The B-spline of order can re-
produce polynomials of maximum degree and the size

of its support is the smallest for a function that can achieve
that order of approximation. More important, it is possible to
show that any function that reproduces polynomials of de-
gree can be decomposed into a B-splines and a distribution

with , that is, [4], [5],
[20].

Strang–Fix conditions are used extensively in wavelet theory,
as well. In that context, the focus is on the design of wavelets

with a certain number of vanishing moments [9], [17], [25],
[33]. The interesting point, here, is that a wavelet with
vanishing moments is generated by a scaling function that can
reproduce polynomials of degree . This means that such a
scaling function can be included in our family of sampling ker-
nels. A more detailed discussion of the use of wavelets and
scaling functions to sample FRI signals will be given in Sec-
tion IV.

The theory related to the reproduction of exponentials is
somewhat more recent and relies on the notion of exponential
splines (E-splines) [31]. A function with Fourier trans-
form

is called E-spline of first order. Notice that can be either real
or complex. Moreover, notice that reduces to the classical
zero-order B-spline when . The function satisfies
several interesting properties, in particular, it is of compact sup-
port and a linear combination of shifted versions of re-
produces . As in the classical case, higher order E-splines
are obtained by successive convolutions of lower-order ones, or

where . The higher-order spline is
again of compact support and it is possible to show that it
can reproduce any exponential in the subspace spanned by

[31]. Moreover, since the exponential
reproduction formula is preserved through convolution [31],
any composite function of the form is also able to
reproduce exponentials. Therefore, the second group of kernels
contains any composite function of the form with

, and
. Notice that the exponential case reduces

to that of reproduction of polynomials when for
. For this reason, we could study our sampling

schemes in the exponential case only and then particularize it to
the polynomial case. However, we prefer to keep the two cases
separate for the sake of pedagogy.

The last group of kernels includes many linear differential
acquisition devices. That is, linear devices or systems for which
the input and output are related by a linear differential equation.
This includes most of the commonly used electrical or mechan-
ical systems.

Kernels with rational Fourier transforms can be linked to
E-splines through a proper digital filtering as will be shown in
VI. The use of E-splines and kernels with rational Fourier trans-
forms will be investigated in Sections V and VI, respectively.

III. RECONSTRUCTION OF FRI SIGNALS USING KERNELS

THAT REPRODUCE POLYNOMIALS

In this section, we assume that the sampling kernel sat-
isfies the Strang–Fix conditions [24], that is, a linear combi-
nation of shifted versions of can reproduce polynomials
of maximum degree [see (4)]. We further assume that the
sampling kernel is of compact support , that is,
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for where is an integer for simplicity.1 We
study the sampling of streams of Diracs, streams of differen-
tiated Diracs and piecewise polynomial signals. Furthermore,
possible extensions to any signal with finite rate of innovation
are briefly discussed at the end of Section III-B. We present the
results for streams of Diracs in detail and derive the other sam-
pling theorems directly from these results.

A. Streams of Diracs

We split the problem of sampling streams of Diracs into two
sub-problems. First, we show how to sample a signal containing
at most Diracs, where is a finite integer and is known
a-priori. Then, we consider the case of signals with an unknown
(maybe infinite) number of Diracs but with a finite local rate of
innovation, and present a sequential algorithm that can recon-
struct such signals from their samples.

1) Stream of Diracs: Consider a stream, , of
Diracs: , . Call the observed
samples, that is,
where, for simplicity, we have assumed and assume
that the sampling kernel is able to reproduce polynomials
of maximum degree . We now show that under
these hypotheses, it is possible to retrieve the locations and
the amplitudes of from its samples. The reconstruction
algorithm operates in three steps. First, the first moments
of the signal are found. Second, the Diracs’ locations are
retrieved using an annihilating filter (for a detailed description
of the annihilating filter method, we refer to [22] and [34]).
Third, the amplitudes are obtained solving a Vandermonde
system. The three steps of our scheme can be more precisely
described as follows.

1) Retrieve the first moments of the signal .
Call , the weighted
sum of the observed samples, where the weights are
those in (4) that reproduce . We have

(7)

where follows from the linearity of the inner product,
from the fact that , and

from the polynomial reproduction formula in (4). The in-
tegral in represents precisely the th-order moment of

1Recall that functions satisfying Strang–Fix conditions can be of either com-
pact or infinite support. The case of kernels with compact support is more inter-
esting from a practical point of view. Thus, in this paper, we concentrate only
on this case.

the original signal . Hence, proper linear combinations
of the observed samples provide the first moments
of the signal. This fact is graphically illustrated in Fig. 2.
Since the original signal is a stream of Diracs, the mo-
ments of have the form given by the last term of (7)
which is very often encountered in spectral estimation. It
is, therefore, possible to estimate locations and amplitudes
of the Diracs from the moments using the annihilating
filter method which is commonly used in that context.

2) Find the locations of .
Call the filter with transform

(8)

That is, the roots of correspond to the locations . It
clearly follows that:

(9)

The filter is, thus, called annihilating filter since it an-
nihilates the observed signal . The zeros of this filter
uniquely define the set of locations since the locations
are distinct. The filter coefficients are found from the
system of equations in (9). Since , the identity in
(9) leads to a Yule–Walker system of equations involving
at least consecutive values of and can be written in
matrix form, as follows:

...
...

. . .
...

...
...

(10)
This classic Yule–Walker system has, in this case, a unique
solution since is unique for the given signal. Given
the filter coefficients , the locations of the Diracs are
the roots of the polynomial in (8). Notice that, since we
need at least consecutive values of to solve the
Yule–Walker system, we need the sampling kernel to be
able to reproduce polynomials of maximum degree

.
3) Find the weight .

Given the locations , the weights are ob-
tained by solving, for instance, the first consecutive
equations in (7). These equations can be written in matrix
form as follows:

...
...

. . .
...

...
...

This is a Vandermonde system which yields a unique solu-
tion for the weights given that the s are distinct.
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Fig. 2. Illustration of the reproduction of polynomials of maximum degree three using cubic splines. In this example, only four translated versions of the splines
overlap the two Diracs. The dashed functions in each plot represent the properly weighted splines overlapping the two Diracs. The four solid-line functions represent
the weighted sums of these four splines. Because of the polynomial reproduction formula, the following is true: c y + c y + c y + c y = a t +

a t for m = 0; 1; 2; 3.

The three previous steps show that it is indeed possible to
reconstruct uniquely a stream of Diracs from its samples. We,
thus, have the following result.

Theorem 1: Consider a stream of Diracs:
and a sampling kernel that can repro-

duce polynomials of maximum degree . Then the
samples defined by are sufficient to
characterize uniquely.

Before concluding this section, we would also like to men-
tion that the topic related to the reconstruction of signals from a
finite number of moments is an old one and for a comprehensive
overview, which is beyond the scope of this paper, we refer to
[1] and [15].

2) A Sequential Local Algorithm for an Infinite Stream of
Diracs: In the previous section, we showed the existence of a
basic method for retrieving Diracs. The problem is that the
reconstruction scheme becomes more and more complex and
unstable when the number of Diracs increases. It is, therefore,
critical to see if we can take advantage of the locality of the
sampling kernel to develop a sequential, local reconstruction
algorithm. Intuitively, if we have groups of Diracs separated by
empty intervals, then we should be able to separate these groups
and reconstruct them sequentially.

Now, the support of the sampling kernel is ; thus, a single
Dirac can influence at most consecutive samples and con-
secutive Diracs can generate a block of at most consecutive
nonzero samples. Thus, if two groups of consecutive Diracs

are sufficiently distant, the two blocks of nonzero samples are
separated by some zero samples, and by locating these zeros,
we can separate the two blocks and apply the reconstruction
method of the previous section on each block independently.
If we assume that there are at most Diracs in an interval of
size , we are assured that at least one zero sample will
separate two groups of nonzeros.

While, in most cases, the above condition is sufficient, there
are situations in which it is not. This can happen, for instance,
when a zero sample corresponds to a particular combination of
Diracs. To avoid that these rare events prevent the algorithm
from working properly, we need to make stronger assumptions.
We, therefore, assume that there are at most Diracs in an in-
terval of size . This condition can be relaxed in most situ-
ations and, from a practical point of view, the event of having a
“false” zero is very unlikely. Still, for simplicity and for the rest
of the paper, we will assume that there are at most Diracs in
an interval of size . The rationale behind this assumption
is that it ensures that for any sequence of consecutive “false”
zeros, there is in the same window a longer sequence of con-
secutive “true” zeros. Therefore, the only thing the algorithm
has to do is to search for the longest sequence of zeros in a
group of samples. More precisely, the reconstruction algo-
rithm operates as follows (also see Fig. 3). The algorithm starts
by looking for the first nonzero sample in the sequence, call it

. The algorithm then checks the consecutive samples
and looks for the longest sequence



1746 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 5, MAY 2007

Fig. 3. Sequential reconstruction algorithm starts by looking for the
first nonzero sample (in this case, the sample y ), it then looks for
the longest sequence of consecutive zeros in the block of 2KL samples
y ; y ; . . . ; y . In this example, such a sequence start with the
sample y . It is possible to show that such a sequence must contains “true”
zeros and can, therefore, be used to separate two blocks of nonzero samples.
Notice that the algorithm disregards the isolated zero sample y . That is
because we cannot guarantee that such a sample truly indicates absence of
Diracs.

of consecutive zeros inside this block. Denoting this sequence
as , it is easy to show that such a sequence
must include ‘true’ zeros and as such can be used to separate
two blocks of nonzero samples. This means that the Diracs that
have generated the nonzero samples are
not influenced by any other Dirac and can, therefore, be recon-
structed using the reconstruction scheme presented before. After
the reconstruction, the algorithm starts the whole process again
from the sample on.

We can, thus, summarize the discussion of this section and
the sampling result of the previous section as follows.

Theorem 2: Assume a sampling kernel that can repro-
duce polynomials of maximum degree and of
compact support . An infinite-length stream of Diracs

is uniquely determined from the samples de-
fined by if there are at most Diracs
in an interval of size .

Using the notation introduced in Section II, the above the-
orem says that it is possible to sample any stream of Diracs with
local rate of innovation . This means that there
is a fundamental connection between the local complexity of the
signal and the complexity of the reconstruction process. For in-
stance, if there is at most one Dirac in an interval of size ,
only two moments need to be retrieved at each iteration and the
estimation of the amplitude and location of the Dirac becomes
straightforward. In contrast, the reconstruction process becomes
more complex and unstable, when the number of Diracs to
retrieve at each iteration becomes very large. This fact is of par-
ticular interest in the case of noisy measurements. In that con-
text, in fact, stability of the reconstruction algorithm is of crucial
importance.

To conclude this section, we show in Fig. 4 an example of
our sampling scheme. In this example, the signal is made of
two groups of Diracs and is shown in Fig. 4(a). The
signal is sampled with a B-spline that can reproduce polyno-
mials of degree [Fig. 4(b)] and the samples are
shown in Fig. 4(c). Since the nonzero samples generated by the
two groups of Diracs are separated by a sequence of zero sam-
ples, the reconstruction algorithm can operate on the first group

of nonzero samples to retrieve the first Diracs, and then re-
iterate the process on the following group of nonzero samples
to retrieve the remaining Diracs. The reconstructed signal
is shown in Fig. 4(d) and reconstruction is exact to machine
precision.

B. Stream of Differentiated Diracs

Consider now a stream of differentiated Diracs

Note that this signal has Diracs and
weights. Moreover, recall that the th derivative of a Dirac is a
distribution that satisfies the property

.
Assume that is sampled with a kernel that can reproduce

polynomials of maximum degree , and call
the

observed samples. As shown in the previous section, using the
polynomial reproduction formula, we can compute the first

moments of from its samples

(11)

where we have used the fact that
.

We can, thus, say that what we observe is

It can be shown that the filter annihilates the
signal , with . Therefore, the filter with

transform

annihilates . The unknown coefficients of can be found
solving a Yule–Walker system similar to the one in the previous
section. We need at least equations to find these coefficients;
therefore, we need to know at least consecutive values of

(this is why ). From the annihilating filter,
we obtain the locations . We then need to solve
the first equations in (11) to obtain the weights . This is
a generalized Vandermonde system which has again a unique
solution given that the s are distinct.

The above analysis can be summarized in the following the-
orem.

Theorem 3: Assume a sampling kernel that can repro-
duce polynomials of maximum degree and of
compact support . An infinite-length stream of differentiated
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Fig. 4. Sampling of streams of Diracs. In this example, the original signal, shown in (a), is made of two groups of K = 4 Diracs. The sampling kernel is shown
in (b) and is a B-spline � (t) that can reproduce polynomials of maximum degree 2K � 1 = 7. The observed samples are shown (c). Notice that the nonzero
samples generated by the two sets of Diracs are separated by a sequence of zero samples. This allows the sampling algorithm to retrieve the two groups of K
Diracs sequentially. The reconstructed signal is shown in (d) and the reconstruction is exact to numerical precision.

Diracs is uniquely de-
termined by the samples if there are
at most differentiated Diracs with weights in an interval
of size .

Let us now return to the definition of signals with finite rate
of innovation given in Section II

(12)

The sampling schemes developed so far correspond to the case
in which and ,

. However, further extensions are possible.
Assume, for instance, that is of compact support and that

for . Moreover, assume that ,
that is, is the th-order derivative of . Then, under
these conditions, the sampling of is possible and can be
reduced to the sampling of a stream of differentiated Diracs.

First, notice that, under the previous assumptions, can be
written as

Therefore, if, for simplicity, we assume that , the
observed samples are equivalent to those
given by

. Now, assume the sampling kernel can re-
produce polynomials of degree and has compact support ,
the new kernel has compact support
and, since for , can still reproduce polynomials
of degree (Strang–Fix conditions are still satisfied). There-
fore, if there are no more than Diracs in an interval of size

and , the hypotheses of Theorem
3 are satisfied, and the samples are sufficient to retrieve the
weights and the locations . We can formalize this discus-
sion with the following corollary.

Corollary 1: Assume a sampling kernel of compact sup-
port and that can reproduce polynomials of maximum degree

. An infinite-length signal
, where is of compact support and for
and where , is uniquely defined by the

samples if there are at most time
shifts in an interval of size and .

Finally, another important example of signals with finite rate
of innovation, namely, piecewise polynomial signals, will be
discussed in the next section.
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Fig. 5. Observed samples y are given by y = hx(t); '(t=T �n)i, where the sampling kernel '(t) is, in this example, the box function and the original signal
x(t) is piecewise constant. The finite difference y � y leads to the new samples z that are equivalent to those obtained by sampling dx(t)=dt with the new
kernel '(t) � � (t) which, in this case, is a linear spline.

C. Piecewise Polynomial Signals

Consider a piecewise polynomial signal with pieces of max-
imum degree . That is

(13)

where . Clearly, the derivative of order of
is a stream of differentiated Diracs given by

. This means that, if we
are able to relate the samples of to those of , we
can use Theorem 3 to reconstruct . This is, indeed, possible
by recalling the link existing between discrete differentiation
and derivation in continuous domain. More precisely, consider
a function with Fourier transform and consider the
following difference: . The Fourier transform of

is

It, thus, follows that:

(14)

We now use the above formula in our sampling formulation.
Consider the samples where is a
generic sampling kernel. Let denote the finite difference

. It follows that:

(15)

where, in , we have used (14), and follows from inte-
gration by parts. Thus, the samples are equivalent to those
given by the inner products between the derivative of and
the new kernel . This equivalence is illustrated graph-
ically in Fig. 5. In the same way, it is straightforward to show that

the th finite difference represents the samples obtained by
sampling with the kernel , where
is the B-spline of degree .

Now, assume that is of compact support and that it
can reproduce polynomials of maximum degree . Then

has support and can reproduce polynomials of
maximum degree . Thus, if the new kernel satisfies the
hypotheses of Theorem 3, the samples are a sufficient rep-
resentation of and, therefore, of .2 This leads to the
following theorem.

Theorem 4: Assume a sampling kernel of compact sup-
port and that can reproduce polynomials of maximum degree

. An infinite-length piecewise polynomial signal with
pieces of maximum degree as defined in (13)
is uniquely defined by the samples if
there are at most polynomial discontinuities in an interval of
size and .

Proof: Assume again . Given the samples
, compute the th finite difference . As shown

before, and
. The new

kernel has support and can reproduce
polynomials of maximum degree . Since by hypothesis

has at most polynomial discontinuities in an interval
of size , has at most Diracs in that
interval with a total number of weights . Since we are
assuming , the hypotheses of Theorem 3
are satisfied, thus, the samples are sufficient to reconstruct

and, therefore, .
A numerical example is shown in Fig. 6. In this case, the

signal is piecewise constant and we assume that the signal can
have at most two arbitrarily close discontinuities . For
this reason the sampling kernel must be able to reproduce poly-
nomials of degree two and, in this example, is a quadratic spline

. The observed samples are shown in Fig. 6(b) and the
first-order finite difference of results in the samples which
are shown in Fig. 6(c). These samples are equivalent to those ob-
tained by sampling , which is a stream of Diracs, with

2Note that the reconstruction of x(t) from x (t) is unique since, by defi-
nition, x(t) = 0 for t < t [see (13)].
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Fig. 6. Sampling of piecewise polynomial signals. In this example, the original signal is piecewise constant and is shown in (a). The signal can have up to two
arbitrarily close discontinuities (K = 2). The sampling kernel is in this case a quadratic spline and the observed samples y are shown in (b). The first-order
finite difference of the samples y leads to the samples z shown in (c). From this sample, it is then possible to reconstruct the original signal exactly and the
reconstructed signal is shown in (d).

the new kernel . Thus, the hypotheses of
Theorem 2 and Theorem 4 are satisfied and the samples are
sufficient to reconstruct and . The reconstructed
piecewise constant signal is shown in Fig. 6(d).

IV. FROM COARSE APPROXIMATIONS TO

INFINITE RESOLUTIONS

It is well known that wavelets play a fundamental role in many
signal processing applications, compression being the most vis-
ible example [32]. In this section, we explore the use of scaling
functions and wavelets to sample FRI signals. Moreover, we
will use the multiresolution property of the wavelet transform
to make a connection between our sampling results and the
problem of increasing the resolution of a given signal. While
it is not our aim to provide a detailed and rigorous treatment of
wavelets for which we refer to standard texts [9], [17], [25], [33],
we want to highlight the properties of wavelets and scaling func-
tions that are of interest in our sampling formulation. To keep
the notation as simple as possible, we concentrate only on the
case of orthogonal wavelets.

A function is an admissible scaling function of if
and only if it satisfies the following three conditions [27], [30].

1) Riesz basis criterion: .
2) Two-scale relation: .
3) Partition of unity: .

Condition 1 ensures that generates a basis for the subspace

with

The two-scale relation guarantees that the subspaces
generated by the scaled versions

of with the usual notation , are
embedded and form a multiresolution decomposition of .
Finally, partition of unity ensures that such a decomposition is
dense in [27], [30].

In our context, the partition of unity has a second meaning:
It tells us that any valid scaling function is able to reproduce
at least constant functions and as such can be used to sample
piecewise constant signals with no more than one discontinuity
in an interval of size .

The two-scale relation can be written in the frequency domain
as follows:
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where is a residual with for ,
and must be at least equal to one because of the partition
of unity. Usually, one tries to design scaling functions with a
large value of since this normally guarantees that the function
has a certain regularity [9]. The term also
indicates that scaling functions satisfy Strang–Fix conditions of
order .

Given a valid scaling function, there exists a corresponding
wavelet that generates a basis of . The wavelet is
expressed as a linear combination of shifted versions of

(16)

and is designed so that the scaled wavelet spans the “de-
tail” subspace .

In the orthogonal case, the two-scale relation of (16) can be
written in the frequency domain as follows:3

(17)

where and for
. This relation tells us that a wavelet has zeros at

and using the moment property of the Fourier transform, we
have

In other words, while the scaling function reproduces polyno-
mial of up to degree , the corresponding wavelet ‘kills’
polynomials of the same order. This is, in fact, the much cele-
brated vanishing moment property of the wavelet transform.

Consider now the representation of a signal in
terms of wavelets and scaling functions

(18)

and assume that and satisfy the hypotheses of the the-
orems in Section III. That is, is a stream of Diracs or a
piecewise polynomial signal with a local finite rate of innova-
tion, and is a compact support scaling function that can
reproduce polynomials of a certain degree. Then the sampling
theorems of Section III ensure that, for a proper choice of (i.e.,

), the inner products of (18) are sufficient to char-
acterize or, in other words, that the finite resolution version

is sufficient to reconstruct the
signal exactly. This means that by knowing at a finite res-
olution, we can infer the value of the wavelet coefficients
with and, therefore, arbitrarily increase the resolution
of our approximation to eventually recover the original contin-
uous-time signal. For example, in the case of a stream of Diracs,
we can state the following corollary to Theorem 2.

Corollary 2: Assume a scaling function of compact
support and that can reproduce polynomials of maximum
degree . The coarse approximation

3A similar relation applies to the biorthogonal case, as well.

of a stream of Diracs is a sufficient
representation of if there are at most Diracs in an interval
of size .

An example of the reconstruction of a piecewise polynomial
signal from its coarse representation is illustrated in Fig. 7. We
consider a discrete-time piecewise linear signal with
points Fig. 7(a). The signal is sampled with a Daubechies
scaling function with two vanishing moments and the sampling
period is points . The distance between
two consecutive discontinuities is such that the hypotheses of
Theorem 4 are satisfied. The 16 sample values are shown in
Fig. 7(b). The coarse approximation of the signal (what we
have called ) is shown in Fig. 7(c). The reconstruction
of with the annihilating filter method is instead exact to
machine precision and is shown in Fig. 7(d).

Notice that the coarse version of is the version
that we would normally obtain when using a classical sampling
scheme where the reconstruction process is linear and the whole
sampling operation is equivalent to projecting onto the sub-
space . Thus, this example gives a
clear indication of the gain that one obtains by replacing a clas-
sical linear reconstruction method with a nonlinear, yet with
reasonable complexity, scheme based on the annihilating filter
method.

Scaling functions and wavelets are intimately related as
indicated in particular by (16). It seems, therefore, natural to
imagine that, in some cases, wavelets can be used to sample
FRI signals in much the same way as scaling functions. This is,
in fact, true in the case of piecewise polynomial signals.

Assume is a piecewise polynomial signal with pieces of
maximum degree and consider the samples

, where we are assuming and
is a wavelet with at least vanishing moments. Denote

by the support of and assume that there is at most one
discontinuity in an interval of size . It follows that:

where in , we used the fact that

and follows from integration by parts. Since
for , the new kernel can reproduce polynomials of max-
imum degree , and it is easy to show that it has the same
support as . The signal is a stream of differen-
tiated Diracs and by hypothesis there is at most one Dirac in an
interval of size with a total number of weights .
This means that the hypotheses of Theorem 4 are satisfied and
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Fig. 7. Illustration of the reconstruction of a piecewise linear signal with the sampling scheme presented in Sections III and IV. (a) Original discrete-time piecewise
linear signal. In this case the original signal has 128 points. (b) Sample values obtained with a Daubechies filter with two vanishing moments. In this example,
the sampling period is T = 8; thus, we are taking only 16 samples. (c) Coarse reconstruction x (t) of the signal or projection onto the subspace spanned by
' (t) = 2 '(t=2 � n). (d) Reconstruction with the annihilating filter method using the 16 samples of (b).

is a sufficient representation of . We can, thus, summa-
rize these findings with the following corollary to Theorem 4.

Corollary 3: Assume a wavelet function with van-
ishing moments and compact support . An infinite-length
piecewise polynomial signal with pieces of maximum
degree is uniquely defined by the samples

if there is at most one discontinuity
in an interval of size .

The above corollary, thus, indicates that the knowledge of a
piecewise polynomial signal at a single scale is normally suffi-
cient to reconstruct the entire signal exactly.

V. EXPONENTIAL CASE

We have seen in Sections III and IV that we can use the
property that reproduces polynomials to reduce our sam-
pling problem to that of finding the coefficients and of
the discrete signal , and
this is achieved using the annihilating filter method. The inter-
esting point is that the annihilating filter method can also be used
for an observed signal of the form and

. For this reason, FRI signals can be sampled and
reconstructed using kernels that reproduce exponentials. The re-
construction scheme is the same as in the polynomial case. First,

the signal is estimated from the samples
, then locations and amplitudes of the Diracs are retrieved

from .
Assume that our kernel is of compact support and that it is

able to reproduce exponential of the form with
and . For instance, is an E-spline

with and or a
composite function . Consider again a stream of
Diracs . The samples are then
given by and, using (5), it follows that:

This means that, as in the polynomial case, proper linear com-
binations of the samples lead to a signal of the form

, where and .
Since is an integer, the new measurements have a form
similar to the measurements of the polynomial case and, as



1752 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 5, MAY 2007

in that case, the exponentials and the amplitudes are re-
trieved using the annihilating filter method. Finally, from the s
and s, we retrieve the amplitudes and locations of the original
Diracs. Again, since the kernel has compact support, this recon-
struction algorithm can be applied to any stream of Diracs with
local rate of innovation . We can, thus, sum-
marize the above analysis as follows.

Theorem 5: Assume a sampling kernel of compact sup-
port and that can reproduce exponentials with

and . An infinite-length stream of
Diracs is uniquely determined from
the samples defined by if there are at
most Diracs in an interval of length .

Notice that this theorem reduces to Theorem 2 when
. Moreover, notice that, by using the same procedure

indicated in the previous sections, it is possible to extend the
above results to the case of stream of differentiated Diracs and
of piecewise polynomial signals. We omit the proofs of these
extensions since they are straightforward.

The exponent in the exponential can be either real
or complex. An interesting case is when is purely imaginary
and is given by , . In this case, in
fact, we have

In other words, when , it is possible to retrieve the
Fourier coefficients , of from its
samples. This partial knowledge of the spectrum of , which
is incidentally not bandlimited, is sufficient to reconstruct the
original signal exactly as shown by Theorem 5 and its exten-
sions. This analysis also establishes an even tighter link between
our sampling scheme and the one presented in [34] which is also
based on the reconstruction of from its Fourier coefficients.
Our method, however, remains very attractive in many situations
since it is local and can be used with a wider range of different
kernels as shown in the next section.

VI. KERNELS WITH RATIONAL FOURIER TRANSFORM

Consider a classical continuous-time linear time-invariant
system where the input and output are related by
linear differential equations of the form

The transfer function of this system is rational and is similar to
the one in (6). This system represents the basic building block
in classical system theory, and is sufficiently general to model
most linear electrical, mechanical or electro-mechanical sys-
tems. Most important, many such systems can be used to sample
signals with finite rate of innovation. The reason why we can use
such kernels in our sampling formulation is that we can con-
vert a kernel with rational Fourier transform as in (6) into

a kernel that reproduces exponentials. This is achieved by fil-
tering the samples 4 with an FIR filter
with transform .

For example, assume that and
. Then , and we have

where follows from the linearity of the inner product and
from the fact that the Fourier transform of

is . Therefore, by filtering the samples
with the filter , we obtain a new set of samples

that are equivalent to those that would have been obtained by
sampling the original signal with the E-spline .

Likewise, when the original kernel has poles at lo-
cations , by filtering the samples

with the filter we
have that and the new
kernel is of compact support and reproduces the exponentials

.
In the most general case, the kernel has a frequency response

as in (6) and by filtering the samples with the digital filter
, we obtain a new kernel with

Fourier transform . Functions with such
Fourier transform are sometimes called generalized E-spline
[28] and clearly are still able to reproduce the exponentials

. Moreover, notice that since we are
assuming , these new kernels have compact support.

Thus, the above analysis together with Theorem 5 and its ex-
tensions, allows us to say that acquisition devices with rational
Fourier transform can be used to sample signal with FRI. The
condition that need to be satisfied, however, is that the poles of
this system are located at , ,
and the necessary number of such poles depends as usual on the
local complexity of the signal. Clearly, these linear systems also
need to be stable or at least meta-stable. For this reason, the real
part of their poles has to be negative or zero.

As an example, we now show how to estimate a piecewise
constant signal at the output of an circuit.

Example 1: Consider the classical circuit shown in Fig. 8
and call with its transfer func-
tion. Assume that the input voltage is a step function

. The output is given by
. The output voltage is then

uniformly sampled with sampling period leading to the
samples . Alternatively,
we can say that with .5 Our
aim is to retrieve from the samples . Notice that at this
stage neither the original signal nor the sampling kernel

have compact support. Yet, we know from the theories de-
veloped in the previous sections that can be reconstructed
from its samples. Two actions are needed in order to reconstruct

4We are assuming T = 1 for simplicity.
5Recall that the identity '(t) = h(�t) implies that '̂(!) = H(�!).
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Fig. 8. Reconstruction of a piecewise constant signal x(t) from its samples y . In this example, the acquisition device is a typical RC circuit. The input voltage
x(t) is piecewise constant and the output y(t) is uniformly sampled. From the samples y and after a proper digital filtering, it is possible to retrieve the exact
locations t and amplitudes A of the discontinuities of x(t).

it. First, the sampling kernel needs to be converted into an ex-
ponential spline. Second, the derivative of the signal needs to be
computed. As indicated before, this is achieved by filtering the
samples with a proper digital filter. In this case, the digital
filter has transform .

The filtering of with yields

The filtering of with gives [see also (15)]

Thus, the new samples are equivalent to those that
one would obtain by sampling with the new
kernel . The signal is a
Dirac centered at and with amplitude . The new kernel

is of compact support and
can reproduce a constant function and the exponential .
This means that the hypotheses of Theorem 5 are satisfied
and that we can retrieve and from the samples .
To show how to retrieve these two parameters, recall that

and assume for
simplicity that . Then

and
. For this reason, we have

and

Thus, we retrieve the amplitude from the first sum and the
location from the second one.

Notice that with this circuit we can sample any piecewise
constant signal that has at most one discontinuity in an interval
of length . To sample signals with higher local rate of innova-
tion, we need an electrical circuit with more than one pole. For
instance, to sample a piecewise constant signal that may contain
two arbitrarily close discontinuities, we need a third-order
circuit with three poles at location , , and .

Fig. 9. Oversampled acquisition for noise reduction. In the oversampled sce-
nario, the sampling period is reduced to T=M , where M is integer and repre-
sents the oversampling factor.

VII. NOISY SCENARIO

In many practical situations, the samples we have access to
are corrupted by noise and the usual assumption is that the noise
is additive, white and Gaussian. Thus, we measure
where is the additive noise.6 We have seen that in our recon-
struction schemes we first estimate the signal’s moments from
the samples and then the signal is reconstructed from its mo-
ments using techniques encountered in spectral estimation. This
second problem, i.e., robust estimation of the signal from its
noisy moments, has been extensively studied, in particular, by
the array processing community and any of the techniques de-
veloped in that context can, in principle, be used in our scenario,
as well. For an insightful review of those techniques, we refer
to the recent paper [13] and to the book [22].

In this section, instead, we concentrate on the estimation of
the moments from the noisy samples. In particular, we present a
simple algorithm that reduces the estimation error by oversam-
pling. We also show that the proposed estimator is asymptotically
unbiased.

The new sampling setup is shown in Fig. 9. Here, the sup-
port of the kernel remains the same, but the sampling period
is reduced by an integer factor . The observed (noiseless)
samples can be written as . From
now on, we assume that is a stream of Diracs,

, that the signal has finite length and call the
finite set of samples generated by the signal .
Moreover, we assume that the sampling kernel has compact sup-
port and can reproduce polynomials up to degree . This means
that, if we choose a function that is quasi-biorthonormal of
order with , we have

and (19)

6In our setup, we are assuming that the input continuous-time signal x(t) is
noiseless and that noise is introduced by the acquisition device after sampling.
In many practical situations, the original signal may already have noise. In this
case, if the sampling kernels are orthogonal with respect to their shifts, the noise
is still uncorrelated after sampling, but this is not the case otherwise. This latter
situation (e.g., correlated noise) is not considered here.
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where

Note that can be chosen to have compact support.
Let us concentrate for the moment on the case , or

the case where we are oversampling by a factor two. Since two
consecutive samples are now obtained by shifting the kernel by

rather than , we can separate even and odd samples and
treat them independently. In particular, the even and odd sam-
ples are given by

(20)

For this reason, we can write [see (7) and (20)] in two
different ways. First, using (19) with and

Second, using (19) with and

In other words, in the oversampled case, the moments of
can be retrieved from either the even or the odd samples.

In the noisy scenario, we can use this fact to reduce the ef-
fect of noise. Call the noisy
samples. We separate the even from the odd samples and esti-
mate the moments of from these two sets independently.
We have

Our final estimated moment is then the average

The extension to the case where is now clear. The
observed samples are di-
vided into their polyphase components ,

. The moments of are retrieved from each

TABLE I
EFFECT OF THE OVERSAMPLING IN THE RECONSTRUCTION OF A STREAM OF

DIRACS. THE SAMPLES HAVE BEEN CORRUPTED WITH ADDITIVE GAUSSIAN

NOISE. HERE, M INDICATES THE OVERSAMPLING FACTOR. THE ERROR IS

MEASURED AS THE AVERAGE ABSOLUTE DIFFERENCE BETWEEN THE TRUE

AND THE ESTIMATED DIRACS’ LOCATIONS AND IS EXPRESSED AS A FUNCTION

OF THE SAMPLING PERIOD T . THUS, AN AVERAGE ERROR 0:25T MEANS

THAT THE RECONSTRUCTION HAS AN AVERAGE ACCURACY

OF A QUARTER OF THE SAMPLING PERIOD

set of samples independently and the final estimated mo-
ments are given by the average

Since the noise is assumed i.i.d Gaussian with variance , the
mean-square estimation error is

(21)
where and, since and are bounded and

is of compact support, is upper bounded independently
of . Therefore, (21) indicates that, on average, we reduce the
effect of noise by a factor and that our estimation of the
moments is asymptotically consistent and unbiased. Moreover,
since the reconstruction of is obtained through operations
that are continuous for small perturbations, the reconstruction
of from the moments is asymptotically unbiased, as well.
For a precise proof of this last statement we refer to [22] and
[23].

A quantitative analysis of the benefit of oversampling is pre-
sented in Table I. In this experiment, we assume that the input
signal is made of Diracs with fixed amplitude one and
that the Diracs are uniformly distributed in .
The observed samples are corrupted by additive Gaussian noise
with variance . The sampling kernel is given by the convo-
lution of the E-spline with and a B-spline of
order . This means that the kernel can reproduce
with and . In this context,
the E-spline is only used to increase the stability of the recon-
struction algorithm since the function is more stable than

. The table shows the average absolute error in estimating
the Diracs’ locations over 1000 experiments for different values
of the noise. The reconstruction algorithm operates as follows:
the noisy samples are hard thresholded with a threshold equal
to , then the moments are estimated using the above scheme.
Finally, locations and amplitude of the Diracs are retrieved from
the moments using the usual approach of Section III.

We can notice from the table that the reconstruction error is
indeed reduced by oversampling. Also, the results are consis-
tent with the theory. For instance, the two cases
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Fig. 10. Illustration of the reconstruction of a stream of K = 3 Diracs in the noisy case. Notice that in this simulation we are not using oversampling (M = 1).
(a) Original signal. (b) Sample values before adding noise. (c) Noisy samples. In this case, the noise is additive white Gaussian with standard deviation � = 0:1.
(d) Reconstructed signal (continuous line) and original signal (dashed line).

TABLE II
LOCAL COMPLEXITY VERSUS RECONSTRUCTION FIDELITY. IN THIS

SIMULATIONS WE ARE NOT USING OVERSAMPLING (M = 1)

and lead to roughly the same
performance as anticipated by the theory. An example of the
reconstruction is shown in Fig. 10. In this case, we do not use
oversampling , the input signals has Diracs and
the noise has standard deviation .

It is also of interest to analyze the stability of the algorithm for
different values of . Table II shows the average error for the
case . As it can be noticed, the reconstruction
process is very stable for small values of . This seems to in-
dicate that, in the case of noisy measurements and strong noise,
our reconstruction scheme is reliable when the input signal has
a low local rate of innovation (e.g., at most one Dirac in an in-
terval of size ).

To conclude, we show in Fig. 11 a last simulation for the
case of piecewise constant signals. In this example, the sampling

kernel is the box function and the algorithm tries to estimate
one discontinuity per time. The noise standard deviation is

. The reconstruction shown is in fact quite faithful with an
SNR 27 dB.

VIII. CONCLUSION

We have presented new schemes to sample signals with finite
rate of innovation. We have shown that it is possible to sample
and perfectly reconstruct many FRI signals using a wide range
of sampling kernels. The classes of kernels that can be used
include functions satisfying Strang–Fix conditions and, there-
fore, scaling functions for wavelet bases, E-splines, and func-
tions with rational Fourier transform. This last class of kernels
is of particular interest in engineering since many acquisition
devices used in communications, control, and, also, A/D con-
version, can be modeled in this way. Thus, these new sampling
schemes may have an impact in these engineering areas in the
future.

Another important feature of our sampling scheme is that
the reconstruction algorithm is local. This makes this technique
more resilient to noise. We have, in fact, shown that signals
with small local rate of innovation can be well reconstructed
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Fig. 11. Reconstruction of a piecewise constant signal. (a) The original signal. (b) Reconstructed signal (SNR = 27 dB).

also in the presence of noise. In this context, we have also pre-
sented a novel algorithm that reduces the effect of the noise by
oversampling.

Extensions to the multidimensional case, as well as to the
case of piecewise sinusoidal signals are presented in [2] and
[21], respectively, and may have applications in image super-
resolution and spread-spectrum communication.
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