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ABSTRACT

In the theory of linear models, the degrees of freedom (DOF)
of an estimator play a pivotal role in risk estimation, as it
quantifies the complexity of a statistical modeling proce-
dure. Considering the total-variation (TV) regularization, we
present a theoretical study of the DOF in Stein’s unbiased risk
estimate (SURE), under a very mild assumption. First, from
the duality perspective, we give an analytic expression of
the exact TV solution, with identification of its support. The
closed-form expression of the DOF is derived based on the
Karush-Kuhn-Tucker (KKT) conditions. It is also shown that
the DOF is upper bounded by the nullity of a sub-analysis-
matrix. The theoretical analysis is finally validated by the
numerical tests on image recovery.

Index Terms— Degrees of freedom (DOF), Stein’s un-
biased risk estimate (SURE), total variation (TV) regulariza-
tion, duality.

1. INTRODUCTION

Consider a classic linear model in finite-dimensional Hilbert
space [1]:

y = Ax0 + b (1)
with the fixed design matrix A : RN 7→ RM and the ob-
served data y ∈ RM , where b ∈ RM denotes the measure-
ment or modelling error. The goal of regression is to design
an estimator of x0 ∈ RN , that frequently arises in fields such
as statistical inference, machine learning, signal processing,
imaging sciences and other inverse problems [2].

In regularized regression, total variation (TV) and its non-
local versions have been a popular choice of regularizer dur-
ing the past two decades, especially in image processing [3,
4, 5, 6]. In this paper, we restrict ourselves to a standard TV-
regularized least square regression [4]:

x? = argmin
x

1

2

∥∥y −Ax
∥∥2
2
+ λ · g(Dx) (2)

where D = [D>1 D>2 ]
> : RN 7→ RN × RN : x 7→ (d1,d2)

(where d1 = D1x and d2 = D2x) is a 2-D first-order differ-
ence operator, consisting of both horizontal and vertical direc-
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tions D1 : RN 7→ RN and D2 : RN 7→ RN 1. The isotropic
total variation function is defined as g : RN × RN 7→ R :
(d1,d2) 7→

∑N
n=1

√
(d1)2n + (d2)2n.

Here, we regard the TV regularization (2) as a regression
procedure or fitting model. Let µ0 = Ax0. Denote any es-
timate of µ0 by µ̂ = Ax̂, where x̂ is any estimate of x0

2.
The notion of the degrees of freedom (DOF) was proposed in
[8, 9], which is used to quantify the complexity of a statistical
modeling procedureM : y 7→ µ̂(y). From the viewpoint of
regression (in classical statistics), the DOF is the number of
linearly independent parameters (variables). Here, we use a
more general definition of DOF of an adaptively fitted model
(see [10, Eq.(3.60)]), which implies that: the harder that we
fit to the data, the larger DOF we will have (i.e. the more
parameters we need to use in the fitted model). Refer to [10,
Chapter 3] for more elaborations of the effective DOF of a
model.

Assuming that the error b in (1) follows normal distribu-
tion, i.e. b ∼ N (0, σ2IM ), the well-known Stein’s lemma
asserts that the DOF, defined as [10, Eq.(3.60)], can be unbi-
asedly estimated by [11]:

d̂f = Tr
(
Jy(µ̂)

)
= Tr

(
AJy(x̂)

)
(3)

where Jy(µ̂) and Jy(x̂) denote the Jacobian matrices of µ̂
and x̂ w.r.t. y, respectively. Tr denotes the matrix trace. Then,
the Stein’s unbiased risk estimate (SURE), given by:

SURE =
1

M

∥∥y −Ax̂
∥∥2
2
+

2σ2

M
Tr
(
AJy(x̂)

)︸ ︷︷ ︸
d̂f

−σ2 (4)

is an unbiased estimate of the mean squared error (MSE) [12,
13, 14], i.e. E

{
SURE

}
= 1

ME
{∥∥µ̂− µ0

∥∥2
2

}
.

SURE provides a principled and efficient way for opti-
mization in various applications, see [15, 16, 17, 18, 19, 20,
21] for example. The main difficulty of SURE-based meth-
ods lies in the evaluation of DOF. For the TV regularization,

1In the 1-D case, the TV regularization reduces to a generalized lasso
problem, where the analysis operator is D. The DOF of the lasso problem
has been extensively studied before, e.g.,[7]. Here, we consider 2-D TV
case, where x is a 2-D signal (e.g., an image), for more applications to image
processing.

2We distinguish the notation x̂ from x?, in a sense that x̂ denotes any
estimate of x0, while x? refers to the exact TV solution to (2) only.
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the DOF can be practically computed by recursively differen-
tiating the sequence of iterates x(i+1) := f(x(i)) (i denotes
the iteration number of some optimization algorithms), that
converges to a solution of the TV minimization problem (2),
e.g. [22, 23, 24]. In the aspect of theoretical analysis, the
properties of DOF for the (generalized) lasso solution have
been investigated in [7, 25, 14, 26, 27, 2]. However, to the
best of our knowledge, the theoretical study of the DOF of
TV solution (2) has not been performed before.

In this paper, we explore the theoretical properties of the
TV solution x? in (2) and its DOF, and provide an upper
bound of the DOF. This study may pave a way for more
efficient evaluation of the SURE for the TV minimizer, and
can be extended to more general (convex) regularized M-
estimators, typically associated with non-smooth regulariz-
ers.

2. THE EXACT SOLUTION TO TV MINIMIZATION

Before analyzing the DOF of the TV solution, it is necessary
to first find the exact expression of the TV solution to (2). We
remind readers that all the proofs of lemmas and theorems in
Sections 2 and 3 are left to Section 5.

2.1. Notations and definitions

The set I is the D-support of the solution x? ∈ RN in (2),
if I = {i : (Dx?)i 6= 0} ⊆ {1, 2, ..., N}. Its D-cosupport,
denoted by J , is J = {j : (Dx?)j = 0}. Also, J = Ic (c
denotes the complement). |J | is the cardinality of the set J
[28].

xI ∈ R|I| and xJ ∈ R|J | extract the elements indexed
by I and J from x. (D1)J ∈ R|J |×N denotes a sub-matrix
of D1, whose rows are indexed by J in D1; (D2)J ∈
R|J |×N is defined similarly. DJ := [(D1)

>
J (D2)

>
J ]
> ∈

R2|J |×N , and DI := [(D1)
>
I (D2)

>
I ]
> ∈ R2|I|×N [26]. In

addition, IN denotes a N ×N identity matrix.
Throughout this paper, we always assume that the as-

sumption N (A) ∩ N (DJ ) = {0} holds, where N denotes
the null space of a matrix [28, 2]. Notice that this assumption
is very mild in many interesting applications [14, 28].

2.2. Exact solution to the TV minimization

Due to the non-smoothness of the TV term, it is almost in-
tractable to exactly solve (2) directly from the primal form.
The duality is able to find the exact solution to TV minimiza-
tion [29]. This was initiated by a seminal work of [30], where
the dual formulation of TV denoising (i.e. A = IN , ROF
model [3]) is proposed. For the invertible A, the dual was
proposed in [31]. We now extend the dual form to general A.
This new result is given by the following lemma.

Lemma 2.1 The dual to the primal problem (2) is given by:
min
qI

∥∥AΓJD>I qI−λ−1y
∥∥2
2

s.t. max
n=1,...,|I|

∥∥(qI)n∥∥2 ≤ 1

(5)
where ΓJ = Γ(Γ>A>AΓ)−1Γ>, the columns of Γ ∈
RN×s form an orthonomal basis of the null space of DJ
(where s := nullity(DJ )), i.e. DJΓ = 02|J |×s. DI is

defined similarly to DJ . qI :=
[
q>1,I q>2,I

]> ∈ R2|I|, and

(qI)n :=
[
(q1,I)n (q2,I)n

]> ∈ R2.

Remark 1: it is easy to check that Γ>A>AΓ is invertible
(such that ΓJ is well-defined), by the assumption N (A) ∩
N (DJ ) = {0}.

By solving the above dual problem (5), and the connection
between the primal variable x? and the dual q?

I (see the proof
below), the TV solution x? can be expressed as follows.

Lemma 2.2 The exact solution to the total variation regular-
ization is given by:

x? =
(
IN + λ · ΓJD>IM

−1
DI
)−1

ΓJA>y (6)

where M =

[
M 0
0 M

]
∈ R2|I|×2|I|, M = diag(µn) with

µn =
√
(d?

1,I)
2
n + (d?

2,I)
2
n, and d?

1,I = D1,Ix
? and d?

2,I =

D2,Ix
?.

Remark 2: Lemma 2.2 gives the expression of exact TV
solution, which is obtained by duality, following the rigorous
isotropic TV definition (given in (2)), rather than a smooth
approximation of TV, as in [4, 32].

Remark 3: The exact solution x? is fully characterized in
the support domain I, while restricted to satisfy DJx? = 0.
This is similar to the notion of active sub-manifold in [2].

3. MAIN RESULTS

3.1. Exact DOF for TV regularization

The main results of this paper are obtained from the above
lemmas. Theorem 3.1 gives the exact DOF expression for the
general TV regularization.

Theorem 3.1 The exact DOF for TV regularization is:
d̂f = Tr

(
(IN + λΓJD>I S?DI)

−1ΓJA>A
)

(7)
where ΓJ is defined in Lemma 2.1, the block-diagonal matrix

S? =

[
G? T?

T? R?

]
∈ R2|I|×2|I|, G? = diag

(
(d?

2,I)
2
n · µ−3n

)
,

R? = diag
(
(d?

1,I)
2
n·µ−3n

)
, and T? = diag

(
(d?

1,I)n·(d?
2,I)n·

µ−3n

)
, µn is given in (6).

Remark 4: This main result is limited to the TV mini-
mizer x? only. It is not applicable for other estimates x̂, since
this result is obtained based on the KKT optimality condi-
tions (see the proofs for more details), which are not satisfied
by other estimates x̂.

An upper bound of the DOF naturally follows from The-
orem 3.1.
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Corollary 3.1 The exact DOF, given by (7), satisfies:

d̂f ≤ nullity(DJ ) (8)

Remark 5: Recall that d̂f = nullity(DJ ) for the general-
ized lasso solution with full-column rank A and arbitrary D
[26]. This corollary states that the DOF of the TV minimizer
is no greater than that of the generalized lasso solution.

3.2. A simple case: TV denoising

For the TV denoising solution (corresponding to A = IN in
(2)), the DOF can be easily obtained from Theorem 3.1.

Proposition 3.1 The exact DOF for TV denoiser (with A =
IN in (2)) is:

d̂f = Tr
(
(Is + λΓ>D>I S?DIΓ)

−1) (9)

where s, DI and Γ are defined in Lemma 2.1, S? is given in
Theorem 3.1.

Remark 6: it is more straightforward to obtain the upper
bound (8) from (9). Indeed,

d̂f = Tr
(
(Is + λΓ>D>I S?DIΓ)

−1) ≤ Tr(Is) = s

4. NUMERICAL RESULTS AND DISCUSSIONS

In this part, we verify the theoretical results and illustrate the
accuracy of the proposed DOF estimator (and its associated
SURE) on a parameter selection problem in the context of
TV-based image recovery. In particular, SURE provides an
automatic and objective way to select the regularization pa-
rameter λ in (2), such that the restored image achieves mini-
mum MSE and best visual quality.

4.1. Image denoising

We consider Cameraman as a test image, corrupted by Gaus-
sian noise with the variance σ2 = 100. Fig.1-(1) depicts the
SURE, with the DOF computed by (9), as a function of regu-
larization parameter λ. We can see that the SURE, evaluated
by (9), is always very close to the true MSE (defined imme-
diately after Eq.(4)) for all values of λ, and the optimal value
is λ = 5.30, indicated by the minimum SURE. The optimally
denoised image is shown in Fig.1-(2) for visual inspection of
the denoising quality.

(1) MSE/SURE vs. λ (2) optimal denoising
PSNR=32.59dB
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160

regularization parameter
0.1 1 10

MSE
SURE

optimal λopt = 5.30

Fig. 1. The SURE-based optimization of λ (denoising).

4.2. Image deconvolution

The image Cameraman is blurred by a 2-D Gaussian kernel
(with variance 4.0), and subsequently contaminated by Gaus-
sian noise with σ2 = 5. The DOF of SURE is computed by
(7). Fig.2-(1) presents the variation of MSE/SURE w.r.t. the
regularization parameter λ. The best restored image with the
optimal λ = 0.09 is shown in Fig.2-(2).

(1) MSE/SURE vs. λ (2) optimal deconvolution
PSNR=25.19dB
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215
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225

regularization parameter
0.001 0.01 0.1 11

MSE
SURE

optimal λopt = 0.09

Fig. 2. The SURE-based optimization of λ (deconvolution).

5. PROOFS

5.1. Proof of Lemma 2.1

Before obtaining the dual, we need to first consider primal-
dual formulation, summarized in the following lemma.

Lemma 5.1 The primal solution x? and the dual q?
I are con-

nected via:

x? = ΓJ
(
A>y − λ ·D>I q?

I
)

(10)

where ΓJ is defined in Lemma 2.1.

Proof The primal-dual formulation of (2) is given by [31,
33]:

min
x

max
‖qn‖2≤1

1

2

∥∥Ax− y
∥∥2
2
+ λ · x>D>q, ∀n (11)

where the dual variable is q = [q>1 q>2 ]
> ∈ RN × RN , and

‖qn‖2 :=
√
(q1)2n + (q2)2n, ∀n. Denote the solutions by x?

and q?, the first-order optimality condition yields A>Ax? =
A>y − λ ·D>q?.

Let J be the D-support of x?, then DJx? = 0. We
express x? as: x? = Γξ?, where the columns of Γ ∈ RN×s

form an orthonormal basis of the null space of DJ , s is the
nullity of DJ , i.e. s := nullity(DJ ). Simple algebra leads
to ξ? = (Γ>A>AΓ)−1Γ>

(
A>y − λ · D>I q?

I
)
, where q?

I
collects the elements of q?, indexed by I. Substituting ξ?

into x? = Γξ? completes the proof. �

Now, we are ready to prove Lemma 2.1.
Proof of Lemma 2.1: Putting (10) into (11), using the ba-
sic facts that Γ>J = ΓJ , ΓJA>AΓJ = ΓJ and (I −
AΓJA>)2 = I−AΓJA>, we obtain:

L(x?,q) = −λ
2

2

∥∥AΓJD>I qI−λ−1y
∥∥2
2
+y>

(
I− 1

2
AΓJA>

)
y

Maximizing L(x?,q) is equivalent to (5). �
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5.2. Proof of Lemma 2.2

Proof First, we need to solve the dual problem (5). Recalling
that q = [q>1 q>2 ]

>, by Lagrangian, we obtain:

min
q

∥∥AΓJD>I qI−λ−1y
∥∥2
2
+λ−1·

|I|∑
n=1

µn

(
(q1,I)

2
n+(q2,I)

2
n−1

)
i.e.∥∥AΓJD>I qI−λ−1y

∥∥2
2
+λ−1(q>1,IMq1,I+q>2,IMq2,I−Tr(M)

)
where M = diag(µn) ∈ R|I|×|I|.

Differentiating w.r.t. q1 and q2, and combining with
(10), we obtain Mq?

1,I = D1,Ix
? := d?

1,I and Mq?
2,I =

D2,Ix
? := d?

2,I . By the KKT conditions [34], we claim that:

• if (q?
1,I)

2
n + (q?

2,I)
2
n − 1 = 0, then µn 6= 0. Thus,

(q?
1,I)n = µ−1n (d?

1,I)n and (q?
2,I)n = µ−1n (d?

2,I)n.

From the constraint, we obtain µn =
√
(d?

1,I)
2
n + (d?

2,I)
2
n.

This exactly satisfies µn 6= 0, by the definition of the
support I.

• If (q?
1,I)

2
n + (q?

2,I)
2
n − 1 6= 0, then µn = 0. It yields

that (d?
1,I)n = (d?

2,I)n = 0, which contradicts the def-
inition of support I. Thus, this case does not happen.

The solution can be rewritten as q?
I = M

−1
DIx

?, where
M is defined in (6). Substituting it into (10) leads to (6), after
some algebra rearrangements. �

5.3. Proof of Theorem 3.1

Proof First, we need to find Jy(x
?). Rewriting (6) as (IN +

λ·ΓJD>IM
−1

DI)x
? = ΓJA>y, and taking differentiation

w.r.t. y on both sides, we obtain:

Jy(x
?) + λΓJ Jy

(
D>IM

−1
DIx

?
)
= ΓJA>

After many algebra steps of vector calculus (omitted here to
save page space), we have:(

I + λΓJD>I S?DI
)
Jy(x

?) = ΓJA>

where S? is defined in (7).
Finally, by (3), the exact DOF becomes:

d̂f = Tr
(
AJy(x

?)
)

= Tr
(
A(IN + λΓJD>I S?DI)

−1ΓJA>
)

= Tr
(
(IN + λΓJD>I S?DI)

−1ΓJA>A
)

The proof is completed. �

5.4. Proof of Corollary 3.1

Proof Putting ΓJ = Γ(Γ>A>AΓ)−1Γ> into (7) yields:

d̂f = Tr
(
B−1Γ(Γ>A>AΓ)−1Γ>A>A

)
where B = IN+λΓ(Γ>A>AΓ)−1Γ>D>I S?DI . By matrix
inversion lemma, B−1 becomes:

B−1 = IN−Γ
(
Γ>D>I S?DIΓ + λ−1Γ>A>AΓ

)−1︸ ︷︷ ︸
T

Γ>D>I S?DI

Thus, we have:

d̂f = Tr
(
(IN − ΓTΓ>D>I S?DI)Γ(Γ

>A>AΓ)−1Γ>A>A
)

= Tr

(
Γ(Γ>A>AΓ)−1Γ>A>A

)
− Tr

(
ΓTΓ>D>I S?DIΓ(Γ

>A>AΓ)−1Γ>A>A

)
= Tr

(
(Γ>A>AΓ)−1Γ>A>AΓ︸ ︷︷ ︸

Is

)

− Tr

(
TΓ>D>I S?DIΓ (Γ>A>AΓ)−1Γ>A>AΓ︸ ︷︷ ︸

Is

)
= nullity(DJ )︸ ︷︷ ︸

s

−Tr(TΓ>D>I S?DIΓ)︸ ︷︷ ︸
≥0

≤ nullity(DJ )

The proof is completed. �

5.5. Proof of Proposition 3.1

Proof For the TV denoising problem, A = IN . Thus, ΓJ =
ΓΓ>, since Γ>Γ = Is. From Theorem 3.1, simply denoting
B = D>I S?DI , the DOF becomes:

d̂f = Tr
(
(IN + λΓJB)−1ΓJA>A

)
= Tr

(
(IN + λΓΓ>B)−1ΓΓ>

)
= Tr

((
IN − Γ(Γ>BΓ + λ−1Is)

−1Γ>B
)
ΓΓ>

)
= Tr

(
Γ
(
Is − (Γ>BΓ + λ−1Is)

−1Γ>BΓ
)
Γ>
)

= Tr
(
Is − (Γ>BΓ + λ−1Is)

−1Γ>BΓ
)

= Tr
(
(λΓ>BΓ + Is)

−1)
where the third line comes from matrix inversion lemma. �

6. CONCLUSIONS

In this paper, we presented a theoretical analysis for the de-
grees of freedom of the total variation solution. This was
achieved through the concept of duality, identification of D-
support I and KKT conditions. The result paved a way to de-
rive the SURE. The simulations confirm our theoretical find-
ings and show that our risk estimator provides a viable way
for automatic choice of the regularization parameter.

In principle, our analysis can be generalized to more gen-
eral convex regularized M-estimators. Extending our results
to the non-convex case would also be very interesting. This
would, however, require more sophisticated techniques in
variational and non-smooth analysis. The above problems
will be left to future work.
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