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Summary

Estimating the displacements between two images is often addressed using a small dis-
placement assumption, which leads to what is known as the optical flow equation. We
study the quality of the underlying approximation for the recently developed Local All-
Pass (LAP) optical flow algorithm, which is based on another approach—displacements
result from filtering. While the simplest version of LAP computes only first-order dif-
ferences, we show that the order of LAP approximation is quadratic, unlike standard
optical flow equation based algorithms for which this approximation is only linear. More
generally, the order of approximation of the LAP algorithm is twice larger than the differ-
entiation order involved. The key step in the derivation is the use of Padé approximants.
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Brightness constancy
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satisfies I2(r) = I1(r− u(r)).

Standard algorithms (Lucas-Kanade, Horn-Schunck) are based on a linearization of the
brightness constancy equation—the optical flow equation:

I2(r) = I1(r)− u(r)t∇I1(r) + O
(
‖u(r)‖2

)
,

under a small ‖u(r)‖ hypothesis; i.e., it is an approximation of order 1.

LAP optical flow estimation

The Local All-Pass (LAP) algorithm is based on the principle “shifting = filtering”:
when u(r) = u does not depend on r, we have

I2(r) = h(r) ∗ I1(r)

where h(r) = δ(r − u) is, obviously, an all-pass filter. The second principle is that
any all-pass filter can be expressed as h(r) = p(r) ∗ p−1(−r), where p(r) is arbitrary.

LAP optical flow equation

Brightness constancy is equivalent to a filtering equation
p(−r) ∗ I2(r) = p(r) ∗ I1(r), where p(r) is a space-varying filter.

The LAP algorithm essentially consists in approximating the spatially varying filter
p(r) and converting it into u(r). Method: express p(r) locally as a linear combination
of derivatives (up to order n) of Gaussian functions
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,

then solve for the unknown coefficients ak,l by minimizing the means-square LAP equa-
tion in a block around r, and finally convert to the local value of u(r).

The LAP is very fast and accurate, outperforms the state of the art when brightness
constancy is satisfied. Example of optical flow retrieved:

Ground-truth displacement field (15 pixels max)
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median error = 0.01 pixel
mean error = 0.102 pixel
comp. time = 6 s

HS [2]
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median error = 0.604 pixel
mean error = 0.868 pixel
comp. time = 47 s

LDOF [3]
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median error = 0.701 pixel
mean error = 1.310 pixel
comp. time = 30 s

MPOF [4]
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median error = 0.623 pixel
mean error = 0.964 pixel
comp. time = 279 s

Approximation order

Using Fourier variables, standard and LAP approximations of the brightness constancy
equation I2(r) = I1(r−u(r)) can be seen as resulting from the approximation of the

exponential function by, either a polynomial, or a fraction of polynomials (Padé)

I2(r) = I1(r− u(r)) =
1

4π2

∫
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Optical flow equation e−ju(r)tω = 1− ju(r)tω + O
(
|u(r)tω|2

)

LAP flow equation e−ju(r)tω =
Pn(−ju(r)tω)

Pn(ju(r)tω)
+ O

(
|u(r)tω|2n+1

)

Theorem.Consider a location r0 and the local all-pass filter hr0(r) = pr0(r) ∗
p−1
r0
(−r) where

p̂r0(ω) = Pn(−ju(r0)
t
ω)e−

1
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Then, if I1(r) is sufficiently regular, we have

I2(r)− hr0(r) ∗ I1(r) = O
(
‖u(r0)‖

2n+1
)
;

i.e., this approximation is of order 2n.

Padé approximants
The continued fraction expansion of the exponential function [5,p.70] provides the order 2n Padé approx-
imant:
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Another option is to use the induction equation




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ε0(x) = ejx − 1,

εn(x) = j

∫ x

0
εn−1(ξ)(e

j(x−ξ) − 1) dξ, for n ≥ 1.

which provides Pn(x) through εn(x) = Pn(−jx)ejx − Pn(jx).

P1(x) = 2 + x ; order 2,

P2(x) = 6 + 3x +
x2

2
; order 4,

P3(x) = 20 + 10x + 2x2 +
x3

6
; order 6 etc.

Discussion
In our current practice, the LAP is used with n = 1 (only first order derivatives involved, three basis
filters) or n = 2 (only first and second order derivatives involved, six basis filters). The approximation
order theorem shows that the LAP algorithm is of approximation order 2 or of order 4, significantly higher
than the order 1 of the standard optical flow equation.

Moreover, in the case where n = 1, the related Padé approximant would suggest a variant of the optical
flow equation which, despite using only first derivatives, is of order 2:

I2(r) +
1

2
u(r)t∇I2(r) = I1(r)−

1

2
u(r)t∇I1(r) + O

(
‖u(r)‖3

)
.

Finally, the rational Padé approximation validates the choice of basis of the LAP algorithm: partial
derivatives of a symmetric function—a Gaussian function in our case.
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