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Abstract:
We describe a property satisfied by a class of nonlinear
systems of equations that are of the formF(Ω)X = Y.
HereF(Ω) is a matrix that depends on an unknownK-
dimensional vectorΩ, X is an unknownK-dimensional
vector andY is a vector ofN ≥ K) given measure-
ments. Such equations are encountered in superresolution
or sparse signal recovery problems known as “Finite Rate
of Innovation” signal reconstruction.
We show how this property allows to solve explicitly for
the unknownsΩ and X by a direct, non-iterative, algo-
rithm that involves the resolution of two linear systems of
equations and the extraction of the roots of a polynomial
and give examples of problems where this type of solu-
tions has been found useful.

1. Introduction

We consider the signal resulting from the convolution be-
tween a windowϕ(t) and the sum ofK Diracs with ampli-
tudexk located at timetk. Given theN uniform samples
yn (T = sampling step )

yn =

K∑

k=1

xkϕ(nT−tk) wheren = 1, 2, . . . , N, (1)

then FRI problems (see [1, 2]) consist in retrieving the pa-
rameterstk andxk. Solving such problems is conceptu-
ally interesting because it shows how to break the standard
Nyquist-Shannon bandlimitation rule for the exact recon-
struction of signals from their uniform samples [3].
The system of consistent equations (1) can be expressed
under the generic form of a nonlinear problem as shown
in Fig. 1 (see next page), where the parametersΩ =

[ω1, ω2, . . . ωK ] are related unambiguously to the un-
knownstk’s. Because of the variety of settings adapted
to this general approach, it happens to be necessary to dis-
tinguish between the parametersωk—which we shall call
“abstract parameters”—and the locationstk: typically, the
ωk’s will be the zeros of some polynomial and from these
ωk’s, we will be able to retrieve thetk ’s using a functional
relation of the formωk = λ(tk) for some invertible func-
tion λ(t).

At first sight, solving such a nonlinear system of equa-
tions is a daunting task. Fortunately, if the matrixF(Ω)

satisfies a property that we shall call “Generalized Anni-
hilation Property” (GAP), this reduces to solving two lin-
ear systems of equations sandwiching a nonlinear step that
amounts to polynomial root extraction in practical cases.
The filtersϕ(t) that satisfy the GAP are thus especially in-
teresting, since the related FRI problems enjoy a straight
non-iterative solution.

2. The Generalized Annihilation Property
(GAP)

We carry on with the previously identified general nonlin-
ear problem, namely

F(Ω)X = Y, (3)

where the unknowns areΩ = [ω1, ω2, . . . ωK ] andX =

[x1, x2, . . . xK ], and where the measurements areY =

[y1, y2, . . . yN ].
This system is said to satisfy the Generalized Annihilation
Property whenever there existK + 1 constant matrices,
Ak, andK + 1 scalar functions ofΩ, hk(Ω), such that we
have the identity

K∑

k=0

hk(Ω)Ak F(Ω) = 0. (4)

for any vector of parametersΩ. By right multiplying with
X, the above equation implies that any solutionΩ of (3) is
also a solution of the (generalized) annihilation equation

K∑

k=0

hk(Ω)AkY = 0. (5)

This equation can be expressed in a matrix formAH = 0

where the unknown isH = [ h0(Ω), h1(Ω), . . . , hK(Ω) ]T

and the matrixA =
[
A0Y,A1Y, . . . ,AKY

]
. Thus, in

order to solve (3) forΩ andX, the idea consists in finding
the scalar coefficientshk(Ω) that satisfy (5), then retriev-
ing ω1, ω2, . . . , ωK from the knowledge ofhk(Ω), and fi-
nally findingX such thatF(Ω)X = Y. Without elabo-
rating on the conditions that make this solution unique, a
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Figure 1: Algebraic equivalent of the consistency equations (1).

minimal requirement is that the matricesAk have at least
K rows.

In the simple case where thehk(Ω)’s are related to the
ωk’s through a polynomial relation

K∑

k=0

hk(Ω)z−k =

K∏

k=1

(1 − ωkz−1), (6)

solving (3) boils down to a three-step algorithm that can
be summarized as follows:

1. Compute a solutionH = [ 1, h1, . . . , hK−1, hK ]T of

[
A0Y,A1Y, . . . ,AKY

]
H = 0;

2. Compute the rootsωk of the z-transformH(z) =
∑K

k=0 hkz−k;

3. Compute a solutionX of F(Ω)X = Y.

Example—Spectral estimation problems boil down to a
nonlinear problem of the form (3) involving theVander-
mondematrix:
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where the frequencies to retrieve,fk, are related toωk

throughωk = ej2πfk . This problem satisfies the GAP
for band-diagonal matricesAk which are more precisely
given by:

Ak =
[
0N−K,k IN−K 0N−K,K−k

]
,

where0m,n is them × n zero matrix andIn is then × n

identity matrix. A minimal—yet not sufficient—condition
for the unicity of the solution isN ≥ 2K. Since theAk

can be seen as shifting operators byk samples, the annihi-
lation equation is analogous to a filtering equation—with
an annihilating filter. The annihilation algorithm is then
equivalent to Prony’s method [4]. Of course, spectral esti-
mation in the presence of noise has been addressed by nu-
merous researchers since the 1970’s [5, 6, 7, 8, 9, 10, 11].

3. Some GAP Kernels

The GAP is actually shared by many interesting filters
that can be used in sampling schemes, resulting in eas-
ily solvable FRI problems. Among them, the first ones
to be identified were the periodizedsinc, the infinite (i-e.,
not periodized)sinc and the Gaussian kernels [1]. Even
more interestingly, recent research indicates that this prop-
erty may somewhat be related to the Strang-Fix conditions
which makes a very intriguing connection with approxi-
mation theory [12], and considerably broadens the class
of FRI-admissible kernels. In all cases investigated so far,
the scalar coefficientshk(Ω) satisfy (6).

3.1 Periodized sinc (Dirichlet) filter

Solving the FRI problem in the case of a periodic stream
of Diracs is equivalent to considering (1) whereϕ is a pe-
riodizedsinc kernel, e.g., a Dirichlet kernel

ϕ(t) =
∑

k′∈Z

sinc(B(t − k′τ)) =
sin(πBt)

Bτ sin(πt/τ)

whereτ is the period of the Dirac stream andB some
bandwith (chosen so thatBτ is an odd integer) [2]. This
problem can be reformulated using the annihilation equa-
tion (4) by defining the following annihilation matrices

Ak =
[
0Bτ−K,k IBτ−K 0Bτ−K,Bτ−k

]
W

whereW = [e−j2πmn/N ] for |m| ≤ ⌊Bτ/2⌋ and1 ≤

n ≤ N , is theN -DFT submatrix of sizeBτ × N . Then,
the abstract parametersωk are related to the locationstk
throughωk = e−j2πtk/τ . This kernel has been found use-
ful for the estimation of UWB channels [13] and for image
superresolution [14].

3.2 Infinite sinc filter

The filterϕ(t) is given byϕ(t) = sinc Bt with B = 1/T .
When

(
ϕ∗x

)
(t) is sampled uniformly at frequencyB, the

nonlinear system of equations satisfies the GAP. The ab-
stract parametersωk are related to the locationstk through
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3.3 Gaussian filter

The filter ϕ(t) is given byϕ(t) = exp(−t2/σ2). When
(
ϕ ∗ x

)
(t) is sampled uniformly at frequencyT−1, the

nonlinear system of equations satisfies the GAP. The ab-
stract parametersωk are related to the locationstk through
ωk = exp(2tkT/σ2) and the annihilation matrices are
given by

Ak =
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A version of this solution (actually, for a Gabor kernel)
was used in Optical Coherence Tomography, showing the
possibility to resolve slices of a microscopic sample be-
low the coherence length of the illuminating reference
light [15].

3.4 Finite Support Strang-Fix filters

Through linear combinations of its shifts, the finite sup-
port filter ϕ(t) is assumed to reconstruct polynomials up
to some degreeL−1 (standard Strang-Fix condition [16])
or exponentialsealt where al − a0 is linear with l =

0, 1, . . . , L − 1. More precisely, in the standard Strang-
Fix case, we denote bycl,n the coefficients such that

∑

n∈Z

cl,nϕ(nT − t) = tl wherel = 0, 1, . . . , L − 1,

by T the sampling step, and by[0, S] the support ofϕ(t).
Then, the abstract parametersωk are related to the loca-
tionstk throughωk = tk and the annihilation matrices are
given by

Ak =
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.

Additionally, there is a constraint on the minimal number
of samplesN for the GAP to hold, which is thatN be
larger than⌈(S + maxk{tk})/T ⌉.

4. Conclusion

We have shown how to unify the different techniques used
in FRI signal reconstruction through an algebraic prop-
erty that we call the Generalized Annihilation property. In
essence, this property allows to solve nonlinear system of
equations within two noniterative steps. We hope that this
property can be used to solve other FRI problems (i.e, with
new kernels) in particular in dimensions higher than 1 (for
instance, like in [17]), and maybe to solve other types of
problems not directly related to sampling.
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