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Abstract- We investigate the functions of given ap- 
proximation order L that have the smallest support. 
Those are shown to be linear combinations of the B- 
spline of degree .L - 1 and its L - 1 first derivatives. We 
then show how to And the functions that minimize the 
asymptotic approximation constant among this finite di- 
mension space; in particular, a tractable induction re- 
lation is worked out. Using these functions instead of 
splines, we observe that the approximation error is dra- 
matically reduced, not only in the limit when the sam- 
pling step tends to zero, but also for higher values up to 
the Shannon rate. Finally, we show that those optimal 
functions satisfy a scaling equation, although less simple 
than the usual two-scale difference equation. 

I. INTRODUCTION 

Most interpolation formulae used in image processing 
are of the form 

f “pp’Ox(x) (1) 
k 

where T is the sampling step and ‘p the generating- 
or interpolating-function (e.g., a B-spline or a sine 
function). The c(k)‘s are expansion coefficients, chosen 
such that fapprox (z) is a good approximation of some 
hypothetical function f(x) that ideally represents our 
data. Typically, these coefficients are obtained via a 
prefiltering/sampling operator acting linearly on f 

C(k) = Sk(f) = 1 f(x,+(; - ‘1 $ (4 

which involves the resealed sampling function G(X). In 
the simplest case (interpolation), q(z) is a linear com- 
bination of shifted Dirac masses 6(x-n) [l], Now, when 
one is implementing a geometric transformation of an 
image, the expensive step is not so much in the determi- 
nation of the c(k)‘s-where some very efficient filtering 
algorithms are available-, but rather in the compu- 
tation of the expansion formula (1). Thus, the com- 
putational complexity is essentially O((N, + l)p) per 
pixel, where NV is the size of the support of cp(r) and p 
the number of dimensions [2]. Interestingly, the quality 
of the approximation (1) of f(r) does not depend so 
much on N,, but rather on the order L of the interpo- 
lator which is defined below. In return, NV determines 
the computational cost. Thus, it makes sense to search 
for the shortest possible functions that give the order of 
approximation L: this will provide the most efficient in- 
terpolation algorithms for a given standard of quality. 
Since several functions satisfy this minimum support 
condition, we will go one step further and optimize the 
interpolator so as to obtain the best image quality for 
a given complexity. 

I I. APPROXIMATION ERROR 

In this paper, we assume that fapprox(x) is the best 
(minimum error) approximation of f(x) within the sub- 
space swh&cp($= - n)}, which corresponds to tak- 
ing B(Z) in (2) to be the dual (Pi of P(Z) [3]. This 
optimal sampling function is best characterized in the 
Fourier domain 

where ‘I”” denotes the Fourier transform operator, i.e., 
d(w) = j (p(z)emew2 dx. In this paper, we thus consider 
the L2 approximation error ET(f) = Ilf - fapprox([L2 
between f and its approximated version. 

A. Approximation order 

Depending on the generating function cp, eT( f) tends 
more or less rapidly to zero as T + 0; the approxima- 
tion scheme, or the generating function cp(r), is thus 
said to be of order L if &T(f) 0: TL as T tends to 
zero. While this order is always considered to be in- 
teger in approximation theory, we recently constructed 
functions that actually have a non-integer order. We 
shall present them in a forthcoming paper. 

Strang and Fix [4] gave a necessary and sufficient 
condition (under adequate hypotheses, such as compact 
support) for cp(z) to be of order L, namely d(O) # 0 
and @ti)(2ns) = 0 for all n E Z and 1 = O...L- 1. 
Unser [5] showed how to compute the proportionality 
constant C; between ET(f) and TL in the Iimit when 
T --t 0. The exact formula 

c; = 

J 

c ]$@)(2nn)]* (4) 
n#O 

will be needed in the next section, since this is precisely 
the quantity that we will minimize. 

B. Quantitative study 

The approximation error has been studied in a more 
quantitative way in [6], [i’], [8], [9], showing that the 
quality of the approximation is fully characterized by a 
Fourier kernel which simplifies here to 

E(w) = & 
( 

l- Id( 
c, Id(w + 2nr)12 > . (5) 

In particular, if f satisfies Shannon’s sampling condi- 
tions, i.e., if the support of f(w) is contained within 
I-$, $1, then one has the exact relation (see also [lo]) 

ET(f)* = 
s 

jf(w)12E(wT) dw. (6) 
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What is more remarkable is that the above equation 
also gives the average error over all possible shifts for 
an arbirary function f, not necessarily bandlimited 
(cf. [6], Thm.2). We recently showed the relevance 
of this approximation kernel as regards the computa- 
tion of asymptotic expansions, upper bounds and shift- 
variance estimates [S], [9]. 

I I I. MINIMUM SUPPORT FUNCTIONS 

First, we give the following result which provides 
an explicit characterization of the shortest generating 
function of order L [ll]. 

Theorem 1: Minimizing for the support of the func- 
tion V(Z) under the Lth order constraint yields piece- 
wise polynomials that can be deduced from the B-spline 
function BL(z) of order L by 

L-l 

v(x) = c Pk&L(4. (7) 
k=O 

i.e., G(W) = P(L) [q] L, where the polynomial 

P(X) is defined as P(X) = C,“zi pkXk. 
This implies, among other things, that the widely 

used B-spline of degree n = L - 1 has minimum sup- 
port. It is the smoothest function that has this prop- 
erty; it is also the only one that satisfies the standard 
two-scale relation and easily leads to wavelet construc- 
tions. However, (7) describes a larger class of possible 
interpolation functions which have not been uncovered 
before. In particular, this suggests that we can select 
the coefficients pk in (7) such that (P(Z) satisfies some 
special properties. Also note that cp(r) is continuous if 
PL-1 = 0. 

A. Minimizing the approximation error 

We will now show that it is possible to outperform 
the B-splines in terms of the approximation error, by an 
appropriate choice of P. For this purpose, we use the 
explicit expression of the asymptotic constant C, (4). 
Replacing @ by its value found in (7), we get 

IC,(’ is a quadratic function of the coefficients of 

P/P(O), i.e., it can be written as ]C;12 = Tj”QP 
where P and Q are a column vector and a ma- 
trix given by P = [l,p1/po,...pL-1/~0]~ and Qk,l = 
(-1)” Cnfo(2ixn)k+‘-L, respectively. 

The minimization problem is thus easily solved for 
P. The resulting polynomial PL(z) is necessarily even; 
thus, the optimal function V‘(Z) is continuous when L 
is even, discontinuous with bounded jumps otherwise. 
In practice, the linear system of equations to be solved, 
tends to be ill-conditioned as L increases. We have thus 
derived an induction equation which obviates this prob- 
lem. We will denote by CL the asymptotic constant for 
(PL, a shorter form for Cc’. 

Z’Iaeorem 2: We have the following induction relation 

PL+l(x) = PL(X) + g- XZPL4(X). (9) 
L-l 

The recursion is triggered by PI(Z) = Pz(z) = 1. 
This theorem makes it easy to compute the optimal 
polynomial PL, which in turn provides the optimal 
function (PL(Z) through (7). For example, we find 

(P6(s) = (11) 

B. Sampling gain 

Using these minimal functions instead of B-splines 
brings a non-negligible gain as shown in Table I. For 
example, this means that we may reduce the sampling 
rate in the asymptotic regime, by a factor 1.463 for 
L = 4, if we use our new functions instead of the B- 
splines, and still maintain the same approximation er- 
ror. In other words, only two-third of the samples are 
sufficient if we choose the optimal approximator of or- 
der 4; moreover, this gain increases linearly with the 
order. Needless to say, the gain is even larger if we use 
approximating functions that have been shown to have 
much worse approximating constants than splines, such 
as Daubechies scaling functions (see [7], [9]). 

, The optimal fourth order function is plotted 
in Fig. 1 where it is compared to the cubic B-spline. 
Moreover, the plot in Fig. 2 of the ratio between the 
kernel E(w) corresponding to the optimal function and 
to the equivalent B-spline, shows that the approxima- 
tion using (Pi is always better than using &(2). The 
gain in approximation error even exceeds 6dB over half 
of the sampling bandwidth. According to (6), using 
the optimal function instead of a cubic spline for re- 
construction (here T = l), we expect at least a 6dB 
SNR gain for signals whose frequency content lays es- 
sentially in the first half of frequency domain. Obvi- 
ously, this gain increases dramatically when the signal 
is more low-pass. 

Note that our optimal functions are at most con- 
tinuous. Thus, they provide a counterexample to the 
intuitive conjecture [5] that the most regular func- 
tions should have the smallest asymptotic approxima- 
tion constant C;. 

C. Application to image processing 

These results may be of special relevance for image 
processing. We will see that we can obtain visible im- 
provements over cubic spline interpolation, the state-of- 
the-art method in this area [2], by using these optimized 
functions. This is of practical relevance since there is no 
penalty from the point of view of computational cost. 
The algorithms are essentially equivalent: the functions 
are cubic polynomials, have the same support, and the 
recursive prefilters have the same degree. 

To demonstrate this fact experimentally, we used a 
circular symmetric test image that exhibits increas- 
ingly high frequencies near the center (see Fig. 3a). 
This image was rotated 16 times by a T angle, us- 
ing different interpolators; the final cumulative results 
are shown in Fig. 3b-e. Clearly bilinear interpolation, 
which is the fastest but has only two approximation or- 
ders, produces the worst results. The improvement of 
cubic splines over Keys interpolation algorithm, which 
is cubic as well, can be explained by the fact that the 
cubic splines have one more order of approximation, 
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L = 4 [l], [a]. The best results are obtained using 
our new optimized functions (Fig. 3e). The important 
practical point is that this improvement came to no 
additional cost: the algorithms in Figs c,d,e have all 
the same computational complexity (they all use cubic 
kernels of the same size). 

D. Scaling relation 

It should be added that, due to the nice multires- 
olution properties of B-splines, the new functions de- 
scribed in this paper also follow a multi-scale difference 
equation. For instance, if L = 4, there is a linear rela- 
tion relating (~4 at scales 1, 2 and 4: 

(P4(2) = c gk(P4@ - k) + c hk$‘4(42 - k) (12) 
k k 

where the frequency transfer functions of g,+ and hk are 
G(t) = g(l+ 2)” and H(z) = -&(l +Z + z* + z~)~. 

IV. DISCUSSION AND CONCLUSION 

We have presented a new family of functions that 
have optimal approximation characteristics. They are 
the smallest-support functions that have a given ap- 
proximation order, and that minimize the asymptotic 
constant C$. We showed theoretically that the gain 
brought by using these functions instead of splines is 
very large for small sampling steps; moreover, for larger 
steps, the gain remains significant, as shown by Fig. 2. 
We also provided an image processing example that 
demonstrates the improved performance of the new 
method. What makes this kind of optimization worth- 
while is that it does not result in any additional com- 
putational cost. 
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TABLE I 
GAIN IN THE SAMPLING DENSITY BROUGHT BY USINO THE MINIMAL 

INTERPOLATION INSTEAD OF THE B-SPLINE EQUIVALENT 

L Ill 2 3 4 5 

/ [+l’ /) 1 1 1.223 1.463 1.707 

6 7 8 9 10 I 

1.951 2.195 2.437 2.680 2.922 

Fig. 1. Optimal function vopt (solid) and B-spline function 
(dashed) for L = 4 

Fig. 2. Ratio between the optimal approximation kernel and 
the corresponding B-spline kernel for L = 4 
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a) original image 

b) bilinear interpolation c) Keys interpolation 

cl) cubic spline interpolation e) optimal cubic interpolation 

Fig. 3. Comparison between four mttrpolation methods for rotating the image a (see text) 
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