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Abstract—It is a classic problem to estimate continuous-
time sparse signals, like point sources in a direction-of-arrival
problem, or pulses in a time-of-flight measurement. The earliest
occurrence is the estimation of sinusoids in time series using
Prony’s method [1]. This is at the root of a substantial line of
work on high resolution spectral estimation (see [2] Chapter 4).
The estimation of continuous-time sparse signals from discrete-
time samples is the goal of the sampling theory for finite rate of
innovation (FRI) signals [3]. Both spectral estimation and FRI
sampling usually assume uniform sampling.

But not all measurements are obtained uniformly, as exem-
plified by a concrete radioastronomy problem we set out to
solve. Thus, we develop the theory and algorithm to reconstruct
sparse signals, typically sum of sinusoids, from non-uniform
samples. We achieve this by identifying a linear transformation
that relates the unknown uniform samples of sinusoids to the
given measurements. These uniform samples are known to satisfy
the annihilation equations. A valid solution is then obtained by
solving a constrained minimization such that the reconstructed
signal is consistent with the given measurements and satisfies the
annihilation constraint.

Thanks to this new approach, we unify a variety of FRI-
based methods. We demonstrate the versatility and robust-
ness of the proposed approach with five FRI reconstruction
problems, namely Dirac reconstructions with irregular time
or Fourier domain samples, FRI curve reconstructions, Dirac
reconstructions on the sphere and point source reconstructions in
radioastronomy. The proposed algorithm improves substantially
over state of the art methods and is able to reconstruct point
sources accurately from irregularly sampled Fourier measure-
ments under severe noise conditions.

Index Terms—Finite rate of innovation (FRI), approximation,
sparse reconstruction, irregular sampling, continuous-time spar-
sity, radio interferometry

I. INTRODUCTION

CONSIDER a classic array signal processing problem in
radio interferometry. The electromagnetic (EM) waves

emitted by celestial sources in the sky are collected by an
array of antennas. The received signals at two antennas differ
by a phase shift, which depends on the relative distance of the
antennas and the point source locations in the sky (Fig. 1).
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Fig. 1. Schematic diagram of a radio interferometer. The cross-correlations of
the received signals at different antennas are related to the Fourier transform
of the sky image (see Table I) at certain non-uniform frequencies.

It can be shown that the cross-correlation of the received EM
waves is related to the Fourier transform of the underlying sky
image (see Table I) sampled at non-uniform frequencies [4].
The goal is to reconstruct these point sources, which are
modeled as a weighted sum of Dirac delta distributions, from
the irregularly sampled Fourier measurements in continuous
space.

The classic approach in radioastronomy is to assume that
the point sources are located on a discrete grid (i.e., griding).
The associated discretized sky image is then reconstructed by
taking the inverse discrete Fourier transform (see e.g. Fig. 2(a))
followed by an iterative deconvolution process [5]. Recently,
it has been shown that the conventional discretized approach
is related to compressed sensing, where the `1 norm of the
discretized sky image is minimized subject to the data-fidelity
constraint [6]–[8]. Note that the reconstruction accuracy of the
sky image is inherently limited by the resolution of the grid:
In order to obtain a more accurate reconstruction, a denser
grid has to be used. Additionally, the measurement matrix,
which relates the sky image to the Fourier measurements, is
determined by the layout of the antenna arrays. It does not
necessarily satisfy the restricted isometry property required in
standard compressed sensing theory.

Alternatively, we can address the point source reconstruction
problem directly in continuous space by using algorithms
developed for signals with finite rate of innovation [3] (FRI).
A common feature of these signals is that they can either be
represented as or transformed to a weighted sum of sinusoids,
which is also the case for point source reconstruction (see (16)
in Section V). The key to the reconstruction of FRI-type
signals [3], [9]–[17] is the annihilating filter method, which is
related to Prony’s method [1] in spectrum estimation: We can
build a finite length discrete filter (i.e., the annihilating filter)
such that its convolution with uniformly sampled sinusoids
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Fig. 2. Accurate reconstruction of point sources’ locations from partial
Fourier domain measurements (number of irregular Fourier samples: 8000,
SNR = 5dB). (a) Spatial domain representation (a.k.a. “dirty image” in
radioastronomy) associated with the given partial Fourier measurements. (b)
Probability density of the reconstructed point source locations with the FRI
approach (number of independent noise realizations:1000; average estimation
error of Dirac locations: 8.07× 10−3). For comparison with other methods
see Fig. 11.

is zero. The point source locations are then given by the
roots of a polynomial, whose coefficients are specified by the
annihilating filter. However, despite the ability to reconstruct
the point sources directly in continuous-domain, the classic
FRI approach cannot deal with irregularly sampled data.

In this paper, we propose a robust reconstruction algo-
rithm that removes the uniform-sampling limitation from the
FRI framework. Therefore, it allows to reconstruct the point
sources in the continuous space with irregularly sampled
Fourier measurements. We achieve this by establishing a linear
relation between a set of unknown uniform Fourier samples,
which can be annihilated by a discrete filter, and the given
measurements (Fig. 3). We recast the point source reconstruc-
tion as an approximation problem, where we would like to find
a sum of Dirac that is consistent with the measurements: The
discrepancy between the measured and re-synthesized samples
(based on the reconstruction) should stay within the (known or
estimated) noise level. A valid solution of the signal approx-
imation problem is obtained with a constrained optimization,
where the approximation error is minimized subject to the
annihilation constraint (see Section III for details). Thanks to
the new approach, point sources are recovered accurately in
continuous space even in severe noise conditions (see Fig. 2
and Fig. 11). The proposed approach shows a substantial
improvement in both accuracy and resolvability of closely
located sources over a state of the art method based on discrete
`1 minimization (see Fig. 11).

It turns out that our contribution is much more general than
the specific algorithm to solve the point source reconstruction
in radioastronomy: In fact, all FRI reconstruction problems
can be formulated concisely within the same algorithmic

framework. In the proposed approach, we work directly with
the given samples, which themselves may not be annihilated
right away. With previous approaches [3], [18], [19], a linear
transformation had to be applied to the samples first [20],
[21]. We not only simplify the problem formulation but also
can address cases that were overlooked and considered very
challenging to solve with FRI (e.g., the Dirac reconstruction
with non-uniform samples). We demonstrate the versatility
and robustness with several examples, including the important
Dirac reconstructions with irregular time / Fourier domain
samples (Section IV-A and IV-B), FRI curve reconstructions
(Section IV-C) and the recovery of Diracs on the sphere
(Section IV-D).

Our goal is to provide a unified algorithmic framework,
which is simple yet flexible so as to cope with various FRI
sampling problems. To facilitate future research and the appli-
cations of the proposed algorithm, a Python implementation
of all the examples is made available online1.

Before proceeding, we briefly point to literature related to
sparse signal recovery. We shall not review various algorithms
for the classic spectrum estimation in detail but rather refer
readers to standard textbooks (e.g., [2]) for comprehensive
reviews. One notable algorithm in spectrum estimation is
iterative quadratic maximum likelihood (IQML) [22] and
was an inspiration for our approach. In a classical sparse
recovery setting, the signal is recovered by minimizing the
`1 norm of the target sparse signal [23]. Recently, it has
been extended to continuous domain by minimizing the total
variation [24] (or in general an atomic norm [25]) of the
continuous sparse signal. It has been shown that the sparse
signal can be reconstructed exactly provided that a minimum
separation condition is met [24]–[28]. Alternatively, the op-
timal reconstruction can be formulated as a structured low-
rank approximation, where the rank of a data matrix (typically
of Toeplitz / Hankel structure) is minimized subject to a data
fidelity constraint. This non-convex optimization is then solved
either heuristically [29]–[31] or via convex relaxation [32]–
[34].

The paper is organized as follows. We briefly review the
classic sampling and reconstruction framework for signals with
finite rate of innovation in Section II. It serves as the basis
for Section III, where we propose a novel algorithmic frame-
work. Both the problem formulation and the implementation
are developed. Next we demonstrate the versatility and the
robustness of the proposed approach by solving four different
FRI problems in Section IV. Further, we illustrate in detail
the application to radio interferometry in Section V before we
conclude in Section VI.

II. THE CLASSIC FRI RECONSTRUCTION FRAMEWORK

From an algorithmic point of view, if a continuous domain
signal is or can be transformed into a finite sum of sinusoids,
then it is a finite rate of innovation (FRI) signal [3], [18]. The
FRI sampling problem then boils down to estimating frequen-
cies of the sinusoids from the given measurements. From this
perspective, it coincides with the classic harmonic retrieval

1The codes are available at http://lcav.epfl.ch/people/hanjie.pan
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Fig. 3. Any continuous domain signal, which can be represented as a sum
of sinusoids by applying a certain transformation T , is an FRI signal. The
classic FRI framework reconstructs the continuous domain signal from a set
of uniform samples. Our focus in this paper is on cases where measurements
are taken irregularly. We will identify a linear mapping G that relates uniform
samples to these measurements with a good approximation.

problem [35], which is encountered in many applications [4],
[36], [37].

One such example is point source reconstruction in radioas-
tronomy as discussed briefly earlier. Similar principles are used
for target localization in radar systems as well as in acoustic
source localization with microphone arrays.

Another example is X-ray crystallography, where the goal
is to determine the atom locations from measured diffraction
patterns. The diffraction patterns are the Fourier transform of
an autocorrelation function, which is a sum of sinusoids [36].
The distances between atoms are directly related with the
frequencies of these sinusoids.

The classic FRI approach (Fig. 3) for solving the frequency
retrieval problem consists in sampling the continuous domain
signal uniformly. On the one hand, these uniform samples
have a one-to-one correspondence with uniformly sampled
sinusoids: by applying an inverse mapping (typically an in-
verse DFT transformation) to the uniform samples, we get
an estimate of the sampled sinusoids. On the other hand, it
is easy to show that these sampled sinusoids satisfy a set of
annihilation equations [3], [18]: There exists a discrete filter
(a.k.a. “annihilating” filter), which depends on the unknown
frequencies of the sinusoids, such that its convolution with the
sampled sinusoids is zero. The annihilating filter coefficients
are reconstructed uniquely (up to a scaling factor) by solving
a linear system of equations. The frequencies of the sinusoids
are obtained from the roots of a polynomial whose coefficients
are specified by the annihilating filter. Once we have recovered
the frequencies of the sinusoids, the reconstruction of the
sinusoids’ amplitudes amounts to a simple least square mini-
mization, which reverts to solving a linear system of equations.

Various reconstruction algorithms have been proposed to
improve the robustness, notably total least square minimiza-
tion [3], matrix pencil approach [21], [38] and the Cadzow
denoising [18], [39]. In the total least square minimization,
one obtains the filter that minimizes the `2 norm of the
annihilation error; the matrix pencil approach takes advantage

of the shift-invariant subspace property in the structured data
matrix; the Cadzow denoising method exploits the fact that
the convolution matrix associated with the annihilating filter
has a Toeplitz structure and is rank deficient. The Cadzow
method denoises the data by iterating between a thresholding
step (to ensure that the matrix is singular) and a projection
step (to make the matrix Toeplitz). Recent works [30], [31]
generalize such a strategy by formulating the reconstruction
problem explicitly as a structured low-rank approximation.

For the rest of the paper, we focus on more general cases
where the continuous domain signal may not be sampled
uniformly. In this case, we can no longer estimate the sampled
sinusoids from the given measurements directly. We will
develop a generic approach to solve the FRI reconstruction
problem in this non-uniformly sampled case.

III. A GENERIC FRI RECONSTRUCTION ALGORITHM

In this section, we propose a robust reconstruction algo-
rithm for signals with finite rate of innovation from arbitrary
samples. The reconstruction problem is recast as a constrained
optimization (Section III-A). We discuss the essential ingredi-
ents (Section III-B), the optimization strategy (Section III-C1)
as well as the implementation details (Section III-C2) of the
proposed algorithm.

A. FRI Reconstruction as a Constrained Optimization
We reformulate the generic FRI reconstruction question as

an approximation problem, where we would like to fit an FRI
model to the given measurements, or

Given a set of measurements, reconstruct an FRI
signal that is consistent with the measurements.

The consistency constraint requires that if we re-synthesize
the measurements based on the reconstructed FRI signal
parameters, the difference with the given measurements should
stay within the noise level (or in general within the allowed
approximation error). But how can we ensure that the recon-
structed signal satisfies our FRI signal model? One key feature
of many FRI signals is that they can be transformed into a sum
of sinusoids. The uniform samples of sinusoids are known
to be annihilated by a filter with a specific structure that is
related to the FRI signal parametrization [3], [18]. Therefore,
a signal being FRI is algorithmically equivalent to satisfying
the annihilation constraint, after some linear transformation
(see Fig. 3).

Problem 1 (Constrained Minimization):

min
b,c∈C

‖a−Gb‖22
subject to b ∗ c = 0,

(P1)

where (Fig. 4)
• a is the given set of measurements (sampled non-

uniformly in general);
• b is the vector of uniform samples of the sinusoids to be

annihilated. The convolution constraint guarantees that b
is effectively a sum of sinusoids;

• c is the annihilating filter coefficients, which belongs to
a certain feasible set C (see a precise discussion in the
next subsection);
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The Generic FRI Reconstruction Problem
Goal: Reconstruct an FRI signal b that is consistent (up to

the noise level ε2) with the given measurements a:

find b, c ∈ C
subject to b ∗ c = 0, // b is FRI

‖a−Gb‖22 ≤ ε2 // consistency

Key: (i) The linear mapping G between a and b;
(ii) Constrained minimization (P1);

(iii) Stopping criterion: compare ‖a−Gb‖22 with the
noise level ε2 (Section III-B3);

(iv) Random initialization (Section III-B4).

• G models the linear mapping2 between the measurements
a and the uniform sinusoid samples b. In general, in the
presence of noise, we need to increase the number of
measurements.

Superficially, the data term ‖a − Gb‖22 looks similar to the
one used in compressed sensing (CS) based approaches. Yet,
it arises from a completely different approach to resolution
(see Fig. 5):
• On the one hand, in CS-based sparse recovery the final

recoverable resolution is directly related to the step-size
of the uniform grid that supports the samples b (see
e.g., [25] Remark 1.2): Perfect reconstruction is obtained
for Diracs that are separated by a minimum distance
that is proportional to the grid step-size. The matrix
G then encodes the “non-uniform” down-sampling that
provides the known measurements a; for that reason, G
is necessarily a fat matrix.

• On the other hand, in FRI the final resolution is only
related to the noise (or model mismatch) level. This
error is typically given by the Cramér-Rao lower bound,
which is reached by FRI-based reconstruction algorithms
experimentally [18], [31]. The samples b have to be
taken on a uniform grid in order for the annihilation
equation to be satisfied, but the step-size of the grid is
flexible and is unrelated to the resolution of the method.
In that context, the matrix G models a different type
of linear relation3 between arbitrary uniform samples b
and arbitrary non-uniform known measurements a than in
compressed sensing; for that reason, G can — and will,
in this paper — be a tall matrix.

2For simplicity, we will assume that the linear transformation G has full
column rank throughout the paper.

3One would expected that a G matrix that maps too few uniform samples to
the non-uniformly sampled measurements, would lead to worse reconstruction.
However, this imbalance seems not to be critical experimentally (see examples
in Section IV-B and Section V-C).
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Fig. 5. Problem setup differences between compressed sensing and finite rate
of innovation (FRI). (a) In compressed sensing based approaches, the recover-
able resolution (commonly known as the minimum separation requirement in
compressed sensing) is related to the step-size of the underlying grid. (b) In
FRI, the reconstruction accuracy is independent of the spacing between the
uniform samples (see texts after (P1) in Section III-A).

Note that (P1) is non-convex with respect to (b, c) jointly.
Despite various attempts to solve similar constrained optimiza-
tions [22], [40], a reliable algorithm for finding the optimal
solution of (P1) has yet to be discovered. But do we actually
need to obtain the optimal solution of (P1)? In many cases,
we know (or can estimate accurately) the noise level present
in the given measurements. Hence, we may use this additional
information in validating whether a solution is feasible or not:
we claim that any solution b is valid as long as it satisfies
both the annihilation and consistency constraint for the given
measurements (up to the noise level ε2), which we formalize
as Problem (P2).

Problem 2 (Constrained Approximation with Noise Level):

find b, c ∈ C
subject to b ∗ c = 0,

‖a−Gb‖22 ≤ ε2.
(P2)

One way to find a valid solution of (P2) is to resort to
the constrained minimization (P1). However, we should keep
in mind that it is not the optimal solution of (P1) that we
seek but rather a valid solution that satisfies the constraints
in (P2). Indeed, for any non-zero ε, (P2) has infinitely many
solutions, among which one is the optimal solution of (P1).
From an approximation point of view, all these solutions are
valid because, for each of them, the reconstructed parametric
signal explains the given measurements up to the noise level4.
This subtle difference is important, since it allows to develop
a reliable algorithm in the rest of this section.

4Notice that ε controls the approximation error with the ground truth: From
the triangle inequality, the difference (2-norm) between the re-synthesized
measurements with the ground truth signal and any one of the valid solution
of (P2) is at most 2ε. This corresponds to a maximum 2ε/

√
λmin(GHG)

difference between the reconstructed and the ground truth b, where λmin(·)
is the smallest eigenvalue of a matrix.
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B. Essential Ingredients

Before we present the algorithm that solves (P2), we want
to highlight five key elements of the proposed constrained
formulation.

1) “Bilinearity” of the Annihilation Constraint: The anni-
hilation equation is nonlinear with respect to the (b, c)-pair.
However, if we fix one variable (e.g., c), then the annihilation
constraint reduces to a linear constraint with respect to the
other variable (e.g., b here). Motivated by the bilinearity of
the annihilation constraint, we define a right dual operator.

Definition 1: Denote the annihilation constraint in (P2) as
T(b)c = 0, then the right dual of T(·) is an operator R(·)
such that R(c)b = T(b)c for all b, c.

In many FRI reconstruction problems, the annihilation
equations are convolutions, which implies that T(b) and
R(c) are Toeplitz-structured convolution matrices. We can
justify the right dual definition from the commutativity of the
convolution: b ∗ c = c ∗ b.

Thanks to the bilinearity of the annihilation constraint, it
can be shown that the bivariate optimization (P1) is equiv-
alent to a constrained optimization with respect to c alone.
This equivalent formulation provides an iterative strategy for
finding a valid solution of (P2) (see Section III-C).

2) Forward Mapping: Unlike most annihilating filter based
reconstruction algorithms [3], [18], [19], we deal with the
measurements directly without pre-processing the given mea-
surements first (e.g., a truncated DFT transformation). The lin-
ear mapping G, which links the measurements to a sequence
that can be annihilated, is integrated in the reconstruction
algorithm. Thanks to the new approach, we are not only able to
extend the FRI framework to cases with irregularly measured
samples but also streamline otherwise rather complicated FRI
reconstructions (see Section III-C2).

3) Stopping Criteria: Because of the non-convexity of (P1),
we should not expect the algorithm to always find the global
optimal solution in general. In fact, it is not the optimal
solution of (P1) that we should seek but rather a solution that
(i) satisfies the annihilation constraint and (ii) has a fitting error
‖a −Gb‖22 below the noise level [41]. After all, our goal is
to use the constrained minimization as a tool to find a valid
solution of (P2) — any solution that meets the two criteria is
a valid one for the FRI reconstruction.

The criteria are constructive: If we can guarantee that the re-
constructed signal always satisfies the annihilation constraint,
which is the case with the proposed algorithm (see details in
Section III-C1), then we only need to check the fitting error
in order to decide whether to terminate the algorithm or not.

4) Random Initialization: Because of the non-convexity
of (P1), a commonly used strategy is to initialize the algorithm
with a “good” candidate solution, which is hopefully close to
the ground truth, e.g., the total least square reconstruction. In
our proposed algorithm, we choose to initialize the annihilating
filter coefficients c with a random vector instead.

The randomness of the initialization actually gives the
algorithm the flexibility to have fresh restarts to increase
the likeliness of meeting the stopping criteria — if the algo-
rithm fails to find a solution that meets the aforementioned
stopping criteria (Section III-B3), we can always reinitialize

the algorithm with a different annihilating filter. The random
initialization strategy has been shown to result in a valid
solution within a finite number of initializations (typically less
than 15) in extensive tests [42].

5) Feasible Set C of the Annihilation Filter Coefficients:
Observe that (P1) is scale invariant with respect to the
annihilating filter coefficients c. Without any normalization,
we have a trivial solution c ≡ 0. Experimentally, we have
observed that the most robust performance is achieved by
restricting5 cH

0c = 1, where c0 is the random initialization
for the algorithm (see [19] as well).

C. An Iterative Algorithm to Solve (P2)

1) Inspiration from (P1): For a given c, (P1) is a con-
strained quadratic minimization with respect to b. By sub-
stituting the solution b (in a function of c) to (P1), we end up
with an optimization over the annihilating filter coefficients c
alone. Denote the annihilation constraint in (P1) as a matrix
vector product: T(b)c = 0. It can be shown that (P1) is
equivalent to (see Appendix A):

min
c

cHTH(β)
(
R(c)(GHG)−1RH(c)

)−1
T(β)c

subject to cH
0c = 1,

(1)

where β = (GHG)−1GHa, and R(·) is the right dual of T(·)
defined in Definition 1.

Then, the reconstructed FRI signal can be expressed in a
function of c as:

b = β − (GHG)
−1

RH(c)
(
R(c)(GHG)

−1
RH(c)

)−1
R(c)β.

(2)
In general, it is very difficult to solve (1). But we can draw
inspiration from this equivalent formulation and devise an
iterative algorithm for finding a valid solution of (P2).

More specifically, our strategy amounts to minimizing the
objective function in (1) iteratively: At each iteration, we build
the matrix

(
R(c)(GHG)

−1
RH(c)

)−1
with c = cn−1, the filter

coefficients from the previous iteration. The updated c is then
obtained by solving a quadratic minimization:

min
c

cHTH(β)
(
R(cn−1)(GHG)

−1
RH(cn−1)

)−1
T(β)c

subject to cH
0c = 1,

(3)
which has a simple closed form solution. For the consideration
of numerical stability, we are not going to implement the
solution of (3) directly but revert to solving an equivalent
linear system of equations instead (see Section III-C2). The
uniform sinusoidal samples bn is updated based on (2) with
the reconstructed cn at the current iteration.

Note that since (2) is obtained by solving (P1) for a given c,
by construction, bn obtained this way will always satisfy the
annihilation constraint: R(cn)bn = 0. Hence, we only need
to compute the approximation error ‖a −Gbn‖22 and check
whether it is below the noise level in order to terminate the
iteration (see comments in Section III-B3).

5Other (natural, but less successful) normalization strategies [3], [18]
include a quadratic constraint ‖c‖22 = 1; or a linear constraint on one
component of c, e.g., eH

0c = 1, where e0 = [1, 0, · · · , 0]T .
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The proposed approach may be judged similar to the
iterative quadratic maximum likelihood [22] method in the
spectrum estimation community, with the important difference:
we only use the constrained optimization as a way to find a
valid FRI reconstruction (P2). Hence, it is not the convergent
solution of (P1) that matters (as in [22]) but rather any
solution that meets the stopping criteria in Section III-B3.
The randomness in the initialization and the linear constraint
give the algorithm more flexibility and has been shown [42]
to achieve more robust reconstruction results for the FRI
problems.

2) Efficient Implementation: A direct implementation of (3)
for the update of the annihilating filter coefficients involves
several nested matrix inverses and would not only be ineffi-
cient (compared with solving linear system of equations) but
also numerically unstable even with double-precision accuracy.

We can obtain the solution of (3) by solving a larger
(compared with the dimension of c) linear system of equations
with a simple trick: We introduce an auxiliary variable as a
substitute of a matrix inverse applied to the input vector. Extra
equations, which only involve multiplication of the matrix
(instead of its inverse), are subsequently added to ensure that
the resultant problem is equivalent to the original one.

Proposition 1: The solution of (3) is given by solving a
linear system of equations



0 TH(β) 0 c0
T(β) 0 −R(cn−1) 0
0 −RH(cn−1) GHG 0
cH
0 0 0 0







cn
`
v
λ


 =




0
0
0
1


 ,

(4)
where `, v, and λ are newly introduced auxiliary variables.
Similarly, the reconstructed FRI signal bn is updated as the
solution of [

GHG RH(cn)
R(cn) 0

] [
bn
`

]
=

[
GHa
0

]
, (5)

where ` is the auxiliary variable.
Proof: See Appendix B.

Instead of calculating several matrix inverses, we only need
to solve a larger linear system of equations and extract the
corresponding components of the solution in order to update
c and b from iteration to iteration. For a vector b of size
L, the computational complexity at each iteration is O(L3)
(see [43] Chapter 3).

In the actual implementation, we randomly initialize the
algorithm with a maximum number of iterations, e.g., 50.
At each iteration, we compute the approximation error ‖a −
Gbn‖22 with the current reconstruction bn and compare it with
the noise level. If the error is below the noise level, then the
iteration is terminated. In the case where the algorithm fails to
find such a solution after the maximum number of iterations is
reached, we reinitialize the algorithm with a different random
vector. We summarize the proposed algorithm in Algorithm 1.
In [42], this strategy (50 inner iterations and 15 random ini-
tializations) is shown to succeed in 99.9% cases. Alternatively,
we can always run the algorithm with a (fixed) maximum
number of random initializations and return the reconstructed
(b, c)-pair that has the smallest fitting error. This strategy is

Algorithm 1: Robust FRI Signal Reconstruction
Input : Measurements a of the FRI signal,

transformation matrix G, noise level ε2

Output: Uniform sinusoid samples b, annihilating filter
coefficients c

for loop ← 1 to max. initializations do
1 Initialize c with a random vector c0;

for n← 1 to max. iterations do
2 Build the augmented matrix with cn−1 and

update cn by solving (4);
3 Build the augmented matrix with cn and update

bn by solving (5);
if ‖a−Gbn‖22 ≤ ε2 then

4 Terminate both loops;
end

end
end

5 b← bn, c← cn.

useful for cases where we do not know (or do not have a good
estimate of) the noise level a priori, albeit less efficient than
the approach used in Algorithm 1: With a given (or estimated)
noise level, Algorithm 1 usually terminates much earlier before
reaching the maximum number of random initializations.

IV. FOUR ALGORITHMIC EXAMPLES FOR VARIOUS TYPES
OF FRI SIGNALS

In the previous section, we presented a generic reconstruc-
tion algorithm for signals with finite rate of innovation. To
demonstrate the versatility of the proposed algorithm, we
showcase several FRI reconstruction problems, including the
Dirac reconstruction with non-uniform time / Fourier domain
samples (Section IV-A and IV-B), FRI curve reconstruction
(Section IV-C) and the reconstruction of Diracs on the sphere
(Section IV-D).

A common misconception on annihilating-filter based FRI
reconstruction algorithms is that they can only deal with uni-
formly taken samples, which have one to one correspondence
with uniform samples of a sum of sinusoids, e.g., the DFT
coefficients in the reconstruction of the Dirac stream (6).
Such an artificial limitation is waived as soon as we are
able to identify the forward mapping (or an approximation
of it) that links the sequence to be annihilated and the
given measurements, i.e., G in (P2). We show that we can
either find the exact mapping (Section IV-A) or approximate
it by interpolation (Section IV-B). The new formulation is
flexible in the choice of the objective function or a proper
constraint: instead of being restricted by the reconstruction
algorithm, e.g., the Cadzow denoising method, we can use a
different formulation, which is simpler and gives more robust
reconstruction results (Section IV-C and Section IV-D).
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Fig. 6. Reconstruction of a stream of Diracs (6) from ideally low-pass
filtered samples taken at irregular time instances (8). (a) Exact reconstruction
in the noiseless case (filter bandwidth B = 11, number of samples L = 11).
(b) Robust reconstruction in the noisy case (SNR = 5dB, filter bandwidth
B = 81, number of samples L = 81, average reconstruction error for tk:
1.30× 10−3).

A. Stream of Diracs with Irregular Time Domain Samples

Consider a τ -periodic stream of Diracs:

x(t) =
∑

k′∈Z

K∑

k=1

αkδ(t− tk − k′τ), (6)

where αk and tk are unknown signal parameters. The goal is
to reconstruct these parameters from a set of ideally low-pass
filtered samples that are taken at irregular (but known) time
instances t′1, · · · , t′L:

y` =

K∑

k=1

αkϕ(t′` − tk) for ` = 1, · · · , L. (7)

Here ϕ is the Dirichlet kernel ϕ(t)
def
= sin(πBt)

Bτ sin(πt/τ) and B is
the bandwidth of the ideal lowpass filter.
• Uniform Samples of Sinusoids: Observe that x(t) is a

linear combination of the same function with different
shifts — if we transform the signal to the Fourier domain,
the spectrum is a sum of sinusoids:

x̂m =
1

τ

K∑

k=1

αke−j
2πm
τ tk ,

where x̂m is the Fourier series coefficients of the periodic
signal x(t). Since x̂m is a uniformly sampled sum of
sinusoids, we know that it can be annihilated by a discrete
filter.

• Relation with the Given Measurements: It is easy to show
that the given measurements are linearly related with x̂m
via a truncated inverse DFT transformation:

y` =
1

B

∑

|m|≤b τB2 c
x̂mej

2πm
τ t′` . (8)

In terms of the reconstruction algorithm, we can rearrange
the samples y` and x̂m as column vectors a and b, respec-
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Fig. 7. Exact reconstruction of weighted Diracs (9) with periodic spectrum
from irregularly sampled Fourier measurements. Dirichlet interpolation kernel
is used to relate the uniform samples of sinusoids to the measurements (period
of the spectrum: 2π × 21; number of samples L = 21).

tively; the linear mapping (8) between b and a is denoted by
the matrix G. Then the “denoised” FRI signal as well as the
associated annihilating filter c = [c0, · · · , cK ]T are given by
Algorithm 1. The Dirac locations are reconstructed by taking
the roots of the polynomial whose coefficients are specified
by c; while the amplitudes are reconstructed with least square
minimization [3], [18].

We summarize the reconstruction results in Fig. 6 for
both the noiseless and noisy cases, where Gaussian white
noise is added to the lowpass filtered samples. Note that
the irregular sampling scheme does not change the minimum
number of samples required in order to recover the original
signal (Fig. 6(a)): With at least 2K + 1 samples, the exact
reconstruction (up to numerical accuracies) is obtained. In
the presence of noise, we need to over-sample the signal.
The proposed algorithm is robust enough to give a reliable
reconstruction in the presence of severe noise (SNR = 5dB).

B. Weighted Sum of Diracs with Irregular Fourier Domain
Samples

In this example, we consider a slightly different Dirac
reconstruction problem than that in the previous section. In
particular, consider a sparse signal that consists of K weighted
Diracs:

x(t) =

K∑

k=1

αkδ(t− tk), (9)

with limited time support between −τ/2 to τ/2, i.e., |tk| ≤
τ/2. Instead of taking the time domain samples (as in the
previous example), the Fourier transform

X(ω) =

K∑

k=1

αke−jωtk , (10)

is measured at some frequencies ω` for ` = 1, · · · , L.
The question at hand is: Can we recover the original

signal (9) from non-uniform Fourier samples X(ω`)? In many
applications, e.g., magnetic resonance imaging [44], hologra-
phy [45], crystallography [36] and radio interferometry [46],
direct Fourier domain measurements are available thus making
the sparse reconstruction problem of particular interest.
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Fig. 8. Reconstruction of weighted Diracs (9) from non-uniform Fourier samples (10). The FRI framework makes use of the piecewise linear interpolation (11)
with 21 uniform knots. (a) Reconstruction with noiseless Fourier domain samples (number of samples L = 42, average reconstruction error for tk: 1.95×10−3).
(b) Robust reconstruction with noisy Fourier measurements (number of samples L = 105, SNR = 5dB, average reconstruction error for tk: 2.34× 10−3).

• Uniform Samples of Sinusoids: Since the Fourier trans-
form (10) is a weighted sum of sinusoids, the uniformly
sampled Fourier transform on a grid: X(2πm/τ) for
m ∈ Z, can be annihilated.

• Relation with the Given Measurements: In general, the
given Fourier measurements are taken non-uniformly.
Hence, we cannot apply the annihilating filter method
directly. However, not everything is lost: We may inter-
polate the Fourier transform over a finite interval, e.g.,
ω ∈ [−Mπ,Mπ]:

X(ω) ≈
∑

|m|≤bMτ2 c
X

(
2πm

τ

)
ψ

(
ω

2π/τ
−m

)
, (11)

where ψ(·) is a certain interpolation kernel, e.g., a spline
function.

By evaluating (11) at ω`, we establish a linear mapping (i.e.,
G in the reconstruction algorithm) between the given Fourier
measurements a : X(ω`) and the unknown sampled sinusoids
b : X(2πm/τ). Provided that we have sufficiently many
measurements, i.e., L ≥ Mτ , then we can reconstruct (9)
with Algorithm 1 (see [30] for a similar strategy in spectral
estimation).

We may justify such an approach by considering a specific
case, where the Fourier transform X(ω) is periodic with period
2πM for some M such that Mτ is an odd number. It is
proved that we can represent X(ω) exactly by interpolating
with the Dirichlet kernel ψ(ω) = sin(πω)

Mτ sin( πωMτ )
in this case (see

Appendix C and Fig. 7).

Note that rather than enforcing the interpolation equa-
tion (11) as a hard constraint on the reconstructed signal, we
only use it to derive a data-fidelity metric in (P2) that measures
the approximation quality. The tradeoff is that we can no
longer reconstruct the signal exactly in general — We do not
have the actual mapping G0 (which depends on the unknown
signal parameters αk and tk) but only its approximation from
the interpolation (11): G = G0 + Gε. Consequently, we will

have a model mismatch even in the noiseless cases6 (Fig. 8(a)).
As we have mentioned in Section III-C2, one possible way to
circumvent the difficulty in choosing ε in (P2) is to run the
algorithm with fixed random initializations. The solution that
gives the minimum fitting error is taken as the reconstruction.

We demonstrate the effectiveness of the interpolation strat-
egy (11) in Fig. 8, where the interpolation kernel is the first
order B-spline:

ψ(ω) =





1− ω if ω ∈ [0, 1),

1 + ω if ω ∈ [−1, 0),

0 otherwise.

We have chosen 21 interpolation knots located uniformly on
the interval [−21π, 21π], where the Fourier transform X(ω) is
approximated. Complex-valued Gaussian white noise is added
to the Fourier samples in the noisy case (SNR = 5dB). Even
with such a coarse approximation, we still obtain robust and
accurate reconstruction of Diracs in the presence of noise
(Fig. 8).

C. FRI Curves
As we mentioned in the introduction, the Cadzow de-

noising algorithm [18] tries to find a structured matrix
(typ. Toeplitz / block-Toeplitz) that satisfies the rank constraint
while being as close as possible to the noisy data matrix.
With the Cadzow denoising method, we are restricted to work
directly with a sequence that can be annihilated (so that we can
enforce the rank constraint on the matrix). In comparison, we
have more freedom with the proposed algorithm in defining
what is the unknown data b other than the obvious choice as
the sampled sinusoids. We demonstrate this flexibility with an
example of curves with finite rate of innovation [16].

Consider an interior indicator image associated with a curve:

IC(x, y) =

{
1 if (x, y) ∈ C̊
0 otherwise,

6Equivalently, we can view the noiseless measurements a = G0b as being
“noisy” with respect to G, which is used in the data-fidelity constraint in (P2):
a = Gb+ noise, with noise = −Gεb.
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Fig. 9. FRI curve coefficient error against different noise levels (curve
coefficients ck,l size: 3×3, sample size: 45×45, bandwidth B1 = B2 = 25,
periods τ1 = τ2 = 1). The results are averaged over 500 independent noise
realizations.

where C̊ denotes the interior of the curve C. Our goal is to
reconstruct the curve locations in the continuous domain from
a set of ideally lowpass filtered samples of the binary image
IC(x, y).
• Uniform Samples of Sinusoids: We may treat the deriva-

tive of the indicator image as an infinite sum (in fact a
line integration) of Diracs along the curve. In the Fourier
domain, the Wirtinger derivative (i.e., ∂ def

= ∂
∂x + j ∂∂y )

is therefore a sum of sinusoids. Consequently, we know
that the Fourier transform of the derivative image on a
uniform grid

∂̂Ik,l =

(
2πk

τ1
+ j

2πl

τ2

)
ÎC

(
2πk

τ1
,

2πl

τ2

)
(12)

satisfies the annihilation equations: ck,l ∗ ∂̂Ik,l = 0.
The curve locations are specified by the roots of a 2D
polynomial with coefficients ck,l. Readers are referred
to [16] for detailed discussions on FRI curves.

• Relation with the Given Measurements: Similar to the
1D case in Section IV-A, the Fourier transform of the
indicator image on a uniform grid is related with the
ideally lowpass filtered samples7 via a truncated inverse
DFT. Combined with (12), we have a linear mapping from
the unknown sampled sinusoids ∂̂Ik,l to the measured
spatial domain samples.

In our original approach [16], we first obtain ÎC
(

2πk
τ1
, 2πlτ2

)

by applying a truncated DFT transformation to the given sam-
ples. Then we apply Cadzow’s method to denoise ∂̂Ik,l, since
it is ∂̂Ik,l that satisfies the annihilation. Unfortunately, doing
so inevitably amplifies the high frequency noise components,
which explains the relatively limited performance of Cadzow’s
method for FRI curve reconstructions (Fig. 9).

In our new approach, we do not have such a restriction
anymore: in (P2), we can choose a directly as the pixel values
Im,n, the unknown b as the Fourier transform ÎC

(
2πk
τ1
, 2πlτ2

)
,

and the linear mapping G as the truncated inverse DFT
transformation. The right dual matrix R(·) in this case is
no longer the convolution matrix associated with the filter
ck,l alone — we should right multiply the convolution matrix

7Note that with the same argument as in Section IV-A, we can deal with
ideally lowpass filtered samples that are taken non-uniformly.

(a) Noisy Samples
(SNR = 5dB) (b) Cadzow’s Method [18]

(c) Structured Low-rank
Approximation [31] (d) Proposed Approach

Fig. 10. Visual comparisons of the reconstructed curves with Cadzow’s
method, structured low-rank approximation [31] and the proposed approach
(noise level: 5dB, curve coefficients ck,l size: 3× 3, sample size: 45× 45,
periods τ1 = τ2 = 1). The solid black line is the reconstructed curve; while
the dotted red line is the ground truth.

by a diagonal matrix whose entries are specified by the
corresponding frequencies

(
2πk
τ1
, 2πlτ2

)
in (12).

We summarize the reconstruction results obtained with total
least square minimization [3], [18], Cadzow’s method [18],
structured low-rank approximation [31] and the proposed
method in Fig. 9, where different levels of Gaussian white
noise is added to the ideally lowpass filtered samples. Since
the annihilating filter coefficients are invariant with respect
to any non-zero scaling, we measure the reconstruction error
with a scale-invariant standard deviation of the error between
the ground truth c and the reconstructed coefficients c′:
std(γc′ − c). Here the scalar γ is chosen in such a way
that ‖γc′ − c‖22 is minimized. An example at noise level
SNR = 5dB is also included for visual comparisons (Fig. 10).
The proposed algorithm is more robust even in such a severe
noise condition.

D. Diracs on the Sphere
In most cases, the given measurements of an FRI signal

cannot be annihilated directly. With previous approaches, we
had to apply an inverse transformation in order to obtain a
sequence that can be annihilated. However, such an inverse
transformation is not always easy to identify. Additionally, it
makes the reconstruction problem unnecessarily complicated.

We demonstrate how the proposed algorithmic framework
helps simplify the formulation of FRI problems. Consider
an example of Diracs defined on the 2-sphere S2 def

={
r ∈ R3|rTr = 1

}
:

I(θ, ϕ) =

K∑

k=1

αkδ(cos θ − cos θk)δ(ϕ− ϕk),
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for 0 ≤ θ, θk < π and 0 ≤ ϕ,ϕk < 2π. Here θk and ϕk are
the unknown angles of the colatitude and azimuth of the k-th
Dirac and αk is its amplitude.

Similar to the planar case, if we apply a Fourier-like
transformation to Diracs, we will get a sum of sinusoids. More
specifically, the Fourier-like transformation on S2 involves
spherical harmonics. It can be shown (see Appendix D) that
the coefficients of the spherical harmonic decomposition is

Îl,m = Nl,m

l−|m|∑

n=0

pn,|m|

K∑

k=1

αk(cos θk)n(sin θk)|m|e−jmϕk ,

(13)
with |m| ≤ l and 0 ≤ l ≤ L0, for some fixed coefficients
pn,|m| that can be precomputed. Here Nl,m is a normalization
factor associated with the spherical harmonics of degree l and
order m.

The FRI reconstruction problem that we want to solve is
as follows: Reconstruct (αk, θk, ϕk) for k = 1, · · · ,K from a
given set of spherical harmonic coefficients (13). In an actual
setup, the measurements are spatial domain samples (on S2),
which have a linear relationship [15], [17] with the spherical
harmonic coefficients (13). With the proposed algorithm, we
can reconstruct the signal from the spatial domain samples
directly. But the complexity is beyond the scope of this section
and hence is omitted.
• Uniform Samples of Sinusoids: Complicated as

it may appear, (13) is a linear combination
of uniformly sampled sinusoids: bn,m

def
=∑K

k=1 αk(cos θk)n(sin θk)|m|e−jmϕk , then

bn,m =

K∑

k=1

α̃
(1)
n,ku

m
k =

K∑

k=1

α̃
(2)
m,kv

n
k , (14)

where α̃(1)
n,k = αk(cos θk)n, uk = sin θk e−jϕk for m ≥ 0

and uk = 1
sin θk

e−jϕk for m < 0; α̃(2)
m,k = αk(sin θk)|m|

and vk = cos θk. Consequently, we know that there exist
two discrete filters such that

bn,m ∗
m
c(1)m = 0 ∀n and bn,m ∗

n
c(2)n = 0 ∀m.

• Relation with the Given Measurements: The expres-
sion (13) is nothing but a linear mapping from the
sampled sinusoids bn,m to the given measurements (i.e.,
the spherical harmonics Îl,m).

Thanks to this analysis, we are now ready to formulate the
Dirac reconstruction problem on the sphere as two (for uk
and vk each) constrained approximations of the form (P2).
Take the reconstruction of vk as an example:
• a is the given spherical harmonics Îl,m;
• b is bn,m as defined in (14);
• c is the annihilating filter coefficients c(2)k ;
• G is the linear relation between the given measurements
Îl,m and bn,m in (13).

By reconstructing uk and vk from the given spherical har-
monics, the angles ϕk and θk are uniquely specified. The
Dirac amplitudes αk can be easily obtained using least square
minimization once we have reconstructed the values of ϕk and
θk.

TABLE I
SUMMARY OF RADIO ASTRONOMY TERMS

Term Meaning
sky image Brightness distribution of the sky.
point sources Celestial sources that can be modeled as Dirac

delta distributions.
visibility Cross-correlations of the received signals at

different antennas. It is related to the Fourier
transform of the sky image.

uv-coverage Fourier domain coverage. A radio interferom-
eter can only cover part of the Fourier domain
at some irregular frequencies.

dirty image Inverse Fourier transform of the irregularly
sampled Fourier transform of the sky image.

One major challenge in the earlier work [17] was to find the
correct inverse transformation that should be applied to Îl,m.
In comparison, such an inverse mapping is no longer required
with the proposed framework, which leads to a significantly
more simplified formulation.

V. APPLICATION TO RADIO INTERFEROMETRY

In this section, we apply the proposed reconstruction al-
gorithm to a simplified radio interferometry problem. Cases
with more realistic settings will be considered in a follow-up
astronomy-oriented paper.

A. Data Acquisition and Signal Model

A radio interferometer consists of an array of antennas that
collect the electromagnetic (EM) waves emitted by celestial
sources in the sky. In a far field context, we can assume that
these sources are located on a hypothetical celestial sphere and
that the signals arriving at each antenna follow parallel lines
(Fig. 1). Consequently, the received signals at two different
antennas differ by a time delay, which is determined by
the relative locations of the antennas with respect to the
celestial sources. It can be shown that under the assumption
of a narrow field-of-view, the cross-correlation between the
received EM waves at two different antennas (a.k.a. visibility
in radioastronomy) is related to the Fourier transform of the
underlying sky image I(x, y) at a certain frequency (see [4]
Chapter 3, equation (3.10)). Since there is a finite number
of antennas with fixed locations, the radio interferometer will
only have a partial Fourier domain coverage.

The conventional approach reconstructs the point sources
in the discrete space by de-convolving the dirty image it-
eratively, which is the inverse discrete Fourier transform of
the irregularly sampled Fourier measurements. Alternatively,
as we demonstrate in the next section, we can directly address
the reconstruction problem in the continuous-domain. In par-
ticular, our focus in this section is on the reconstruction of a
sky image, which consists of point sources within the field of
view:

I(x, y) =

K∑

k=1

αkδ(x− xk, y − yk). (15)
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Here δ(·, ·) is the Dirac delta distribution or generalized
function, (xk, yk) is the location of the k-th point source, and
αk ≥ 0 is its intensity.

To summarize, the point source reconstruction problem in
radio interferometry is as follows: How can we reconstruct
the K Diracs on a 2D plane (15) from a given set of Fourier
domain measurements at irregular frequencies:

Î
(
ω
(`)
1 , ω

(`)
2

)
=

K∑

k=1

αke−jω
(`)
1 xk−jω(`)

2 yk , (16)

for ` = 1, · · · , L? Note that in a realistic setting, these
frequencies

(
ω
(`)
1 , ω

(`)
2

)
should be based on the layout of the

radio telescope. We have considered a simplified experimental
setup here so as to be as close as possible to the algorithmic
examples in the previous section. We leave the extra compli-
cations encountered in practice for an ongoing work on the
processing of real data acquired with a radio telescope.

B. Reconstruction of Point Sources

Note that we have considered a similar 1D Dirac recon-
struction problem in Section IV-B. Hence, we adopt the same
strategy and approximate the Fourier transform over a finite
area, e.g., ω1×ω2 ∈ [−Mπ,Mπ]× [−Nπ,Nπ]. For practical
considerations, we have chosen the Dirichlet interpolation
kernel:

ψ(ω1, ω2) =
sin(πω1) sin(πω2)

MNτ1τ2 sin
(
πω1

Mτ1

)
sin
(
πω2

Nτ2

) ,

for some M and N such that Mτ1 and Nτ2 are odd numbers.
The interpolation equation provides the link between the given
Fourier measurements Î

(
ω
(`)
1 , ω

(`)
2

)
and the sampled sinu-

soids Î(2πm/τ1, 2πn/τ2) for |m| ≤
⌊
Mτ1
2

⌋
and |n| ≤

⌊
Nτ2
2

⌋
,

which can be annihilated by a discrete 2D filter.
In general, the solution that satisfies the 2D annihilation

equations is a curve instead of a few isolated Diracs [16]. In
fact, any Dirac that is located on the curve will satisfy the
same set of 2D annihilation equations. One way to overcome
such a difficulty is to reconstruct the Dirac’s x and y locations
separately by enforcing the annihilation constraint along each
direction. Specifically, we would like to find two annihilating
filters, whose z-transforms are

C(1)(z1) =

K∑

k=0

c
(1)
k z−k1 = c

(1)
0

K∏

k=1

(
1− ukz−11

)
,

and C(2)(z2) =

K∑

k=0

c
(2)
k z−k2 = c

(2)
0

K∏

k=1

(
1− vkz−12

)

with uk = e−j
2π
τ1
xk and vk = e−j

2π
τ2
yk . The rows and columns

of the Fourier transforms Î(2πm/τ1, 2πn/τ2) are annihilated
by the filter

[
c
(1)
0 , · · · , c(1)K

]
and

[
c
(2)
0 , · · · , c(2)K

]
, respectively:

c(1)m ∗
m
Î

(
2πm

τ1
,

2πn

τ2

)
= 0 and c(2)n ∗

n
Î

(
2πm

τ1
,

2πn

τ2

)
= 0.

The Dirac locations are then reconstructed by solving two
constrained approximation problems (P2). For the sake of

brevity, we detail the exact formulation for the reconstruction
of the Dirac vertical locations yk only. The formulation for
the reconstruction of xk can be derived similarly.

Denote the annihilating filter coefficients ck and the given
Fourier measurements Î

(
ω
(`)
1 , ω

(`)
2

)
as column vectors c =

[
c
(2)
0 , · · · , c(2)K

]T

and a, respectively. We rearrange the un-

known Fourier transform values Î(2πm/τ1, 2πn/τ2) column
by column as a vector b . Then the constrained minimization
that we would like to solve is:

min
b,c

∥∥a−Gb
∥∥2
2

subject to R(c)b = 0,

cH
0c = 1,

where G =
[
G̃(−bMτ1/2c) · · · G̃(bMτ1/2c)

]
with

[
G̃(m)

]
`,n

=

ψ
(
ω

(`)
1

2π/τ1
−m, ω

(`)
2

2π/τ2
− n

)
; and8

R(c) =

2bMτ1/2c blocks︷ ︸︸ ︷


R̃(c) 0 · · · 0

0 R̃(c)
. . .

...
...

. . . . . . 0

0 · · · 0 R̃(c)



,

with R̃(c) the convolution matrix associated with the filter c.
Once we have reconstructed the Dirac vertical and horizon-

tal locations with the proposed algorithm in Section III, we
still need to identify the correct associations — in principle,
the 2D Diracs can be located on any one of the K! possible
combinations. The naive way would be the exhaustive search,
where we try all the possible combinations and reconstruct the
Dirac amplitudes αk with the least square minimization. If the
re-synthesized Fourier samples (16) based on the reconstructed
parameters (αk, xk, yk) are within the noise level, then we
have correctly identified the Dirac locations.

However, such a straightforward approach is only computa-
tionally feasible for cases with few Diracs. Experimentally,
we observed that we can find the correct associations of
vertical and horizontal locations with a simple trick: We first
reconstruct the amplitudes of the Diracs with the least square
minimization by pretending there were K2 Diracs (i.e., all
the intersections of the reconstructed {xk}Kk=1 and {yk}Kk=1).
Among these K2 possible locations, we select K of them with
the largest amplitudes. We should reconstruct αk by solving
the least square minimization once more with the correctly
identified K Dirac locations on the 2D plane.

C. Simulation Results

We apply the algorithm to reconstruct 2D Diracs, which
are located randomly in [−0.5, 0.5] × [−0.5, 0.5]. The
Dirac amplitudes follow a log-normal distribution: αk ∼
logN (log 2, 0.5). The Fourier transform is sampled at L =

8As pointed out by a reviewer, it is possible to write R(c) compactly as the
Kronecker product between R̃(c) and an identity matrix of size 2 bMτ1/2c:
R̃(c)⊗ Id2bMτ1/2c.
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Fig. 11. Reconstruction of point sources from irregular Fourier measurements (SNR = 5dB, number of Fourier measurements: L = 8500). (a) The given
noisy Fourier samples and their spatial domain representation via inverse FFT (a.k.a., the the dirty image in radioastronomy). (b) The compressed sensing
result by minimizing the `1 norm of the sky image (estimation error for point sources’ locations: 7.34× 10−2). (c) The reconstructed point sources with FRI
(estimation error for point sources’ locations: 8.44× 10−3). (d) Probability density of the estimated point sources’ locations with FRI approach (number of
independent noise realizations: 1000; the average estimation error: 1.09× 10−2).

8500 irregular frequencies, which are randomly generated with
higher concentrations around low frequencies. This is because
low frequency Fourier measurements correspond to the cross-
correlations between antennas that are close to each other,
a case that is more convenient in practice. We have chosen
15 × 15 interpolation knots located uniformly on the area
[−12π, 12π] × [−12π, 12π], where the Fourier transform is
approximated. Complex-valued Gaussian white noise is added
to the Fourier transforms so that the signal-to-noise ratio is
5dB. The algorithm is able to reconstruct the Diracs correctly
even in the presence of severe noise (Fig. 11). With our current
Python implementation (which can be further optimized), it
takes 42 seconds for the reconstruction on average with a
Macbook Pro laptop. Following [47], we also include the
classical sparse recovery result obtained when the `1-norm
of the discretized sky image is minimized. As evidenced
in Fig. 11, this approach is not only less accurate than the
FRI method, but it also fails to resolve Diracs that are closely
located.

VI. CONCLUSION

Motivated by the point source reconstruction problem in
radio interferometry, we have developed a robust algorithmic
framework for FRI reconstruction with arbitrary measure-
ments, including the non-uniform sampling cases. We have
unified all FRI-based methods concisely with a constrained
formulation by establishing a linear relation between the given

measurements and a set of unknown uniform samples of si-
nusoids. We have demonstrated the versatility of the proposed
approach with various FRI signal recoveries in addition to
an application to radio interferometry. The algorithm out-
performs state of the art methods and is able to recover
point sources accurately even in severe noise conditions. For
future work, it would be interesting to consider an alternative
(convex) formulation for FRI reconstructions, where a properly
chosen atomic norm (see e.g., [25]) is minimized subject to a
data-fitting constraint.

APPENDIX A
DERIVATION OF THE EQUIVALENT FORMULATION OF (P1)

The constrained optimization for the reconstruction of FRI
signals is

min
b,c

‖a−Gb‖22
subject to R(c)b = 0

cH
0c = 1,

(17)

where c0 is a random initialization for the annihilating filter
coefficients.

For a fixed c, (17) is a constrained quadratic minimization
with respect to b. The associated Lagrangian is:

L(b, `) =
1

2
‖a−Gb‖22 + `HR(c)b,

where ` is the Lagrange multiplier. From the optimality
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conditions, we have:
{
GH(Gb− a) + RH(c)` = 0,

R(c)b = 0.
(18)

Since G has full column rank (see footnote 2), from (18) we
have

b = β − (GHG)
−1

RH(c)
(
R(c)(GHG)

−1
RH(c)

)−1
R(c)β,

(19)
where β = (GHG)

−1
GHa.

We can substitute (19) into the objective function:

‖a−Gb‖22 =βHRH(c)
(
R(c)(GHG)

−1
RH(c)

)−1
R(c)β

+ ‖a−Gβ‖22
(a)
=cHTH(β)

(
R(c)(GHG)

−1
RH(c)

)−1
T(β)c

+ terms independent of c,

where (a) results from the definition of the right dual matrix
in Definition 1.

APPENDIX B
EQUIVALENT FORM FOR THE SOLUTION OF (3)

The Lagrangian associated with the constrained optimiza-
tion (3) is

L(c, λ) =
1

2
cHTH(β)

(
R(cn−1)(GHG)−1RH(cn−1)

)−1
T(β)c

+ λ(cH
0c− 1).

From the optimality conditions, we have
{
TH(β)

(
R(cn−1)(GHG)−1RH(cn−1)

)−1
T(β)c + λc0 = 0,

cH
0c = 1.

(20)
Denote an auxiliary variable

` =
(
R(cn−1)(GHG)−1RH(cn−1)

)−1
T(β)c,

then (20) is equivalent to




TH(β)`+ λc0 = 0,

R(cn−1)(GHG)−1RH(cn−1)` = T(β)c,

cH
0c = 1.

(21)

We can apply the same manipulation again by introducing an-
other auxiliary variable v = (GHG)−1RH(cn−1)`, then (21)
is equivalent to:





TH(β)`+ λc0 = 0,

R(cn−1)v = T(β)c,

GHGv = RH(cn−1)`,

cH
0c = 1.

(22)

If we rearrange (22) in a matrix / vector form, we have (4).
Once we have the updated annihilating filter coefficients

cn, (5) is obtained directly by rewriting the optimality condi-
tions (18) with c = cn as a linear system.

APPENDIX C
EXACT INTERPOLATION WITH DIRICHLET KERNEL

Since x(t) has finite time support between − τ2 and τ
2 ,

we can rewrite x(t) with its periodized version multiplied
by a rectangular window: x(t) = rect(t/τ)

∑
n∈Z x(t − nτ).

Hence, the Fourier transform of x(t) is

X(ω) =

∫ ∞

−∞
rect(t/τ)

∑

n∈Z
x(t− nτ)e−jωtdt

(a)
=

∫ ∞

−∞
rect(t/τ)e−jωt · 1

τ

∑

m∈Z
X

(
2πm

τ

)
ej

2πm
τ tdt

=
∑

m∈Z
X

(
2πm

τ

)∫ ∞

−∞

1

τ
rect

(
t

τ

)
e−j(ω−

2πm
τ )tdt

=
∑

m∈Z
X

(
2πm

τ

)
sinc

(
τ

2

(
ω − 2πm

τ

))
, (23)

where (a) is from the Poisson sum formula.
Further, from the periodicity of X(ω), we can rewrite the

infinite summation in (23) as

X(ω) =
∑

n∈Z

∑

|m|≤bMτ2 c
X

(
2πm

τ

)
sinc

(
τ

2

(
ω− 2π(m+nMτ)

τ

))

=
∑

|m|≤bMτ2 c
X

(
2πm

τ

)∑

n∈Z
sinc

(
τ

2

(
ω− 2π(m+nMτ)

τ

))

=
∑

|m|≤bMτ2 c
X

(
2πm

τ

)
sin
(
τω−2πm

2

)

Mτ sin
(
τω−2πm

2Mτ

) .

APPENDIX D
SPHERICAL HARMONICS OF DIRACS ON THE SPHERE

Conventionally, spherical harmonics of degree l and order
m is defined as Y ml (θ, ϕ) = Nl,mP

|m|
l (cos θ)ejmϕ. Here the

normalization factor Nl,m = (−1)(m+|m|)/2
√

2l+1
4π

(l−|m|)!
(l+|m|)! ;

and P |m|l is the Legendre polynomial of degree l and order m
(|m| ≤ l):

P
|m|
l (t) = (−1)|m|(1− t2)|m|/2

d|m|

dt|m|
Pl(t),

where Pl(t)
def
= 1

2ll!
dl

dtl
(t2 − 1)l. The spherical harmonic

coefficient is given by the inner product between the signal
and the spherical harmonics basis on S2:

Îl,m = 〈I(θ, ϕ), Y ml (θ, ϕ)〉

=

∫ 2π

0

∫ π

0

I(θ, ϕ)Nl,mP
|m|
l (cos θ)e−jmϕ sin θdθdϕ

=Nl,m

K∑

k=1

αkP
|m|
l (cos θk)e−jmϕk .

Note that the |m|-th order derivative of the Legendre polyno-
mial Pl(t) is a polynomial of degree l− |m|. Hence, we may
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rewrite P |m|l in terms of canonical polynomial bases as:

P
|m|
l (t) = (−1)|m|(1− t2)|m|/2

l−|m|∑

n=0

pn,|m|t
n,

for some coefficients pn,|m|, which are independent of where
the polynomial is evaluated, and can be precomputed. Conse-
quently the spherical harmonic coefficient of the Diracs is:

Îl,m = Nl,m

l−|m|∑

n=0

pn,|m|

K∑

k=1

αk(cos θk)n(sin θk)|m|e−jmϕk .
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[10] I. Maravić and M. Vetterli, “Exact sampling results for some classes of
parametric nonbandlimited 2-D signals,” IEEE Transactions on Signal
Processing, vol. 52, no. 1, pp. 175–189, 2004.

[11] P. Shukla and P. L. Dragotti, “Sampling schemes for multidimensional
signals with finite rate of innovation,” IEEE Transactions on Signal
Processing, vol. 55, no. 7, pp. 3670–3686, 2007.

[12] L. Baboulaz and P. L. Dragotti, “Exact feature extraction using finite rate
of innovation principles with an application to image super-resolution,”
IEEE Transactions on Image Processing, vol. 18, no. 2, pp. 281–298,
2009.

[13] J. Berent, P. L. Dragotti, and T. Blu, “Sampling piecewise sinusoidal
signals with finite rate of innovation methods,” IEEE Transactions on
Signal Processing, vol. 58, no. 2, pp. 613–625, 2010.

[14] C. Chen, P. Marziliano, and A. C. Kot, “2D finite rate of innovation
reconstruction method for step edge and polygon signals in the presence
of noise,” IEEE Transactions on Signal Processing, vol. 60, no. 6, pp.
2851–2859, 2012.

[15] S. Deslauriers-Gauthier and P. Marziliano, “Sampling signals with a
finite rate of innovation on the sphere,” IEEE Transactions on Signal
Processing, vol. 61, no. 18, pp. 4552–4561, September 2013.

[16] H. Pan, T. Blu, and P. L. Dragotti, “Sampling curves with finite rate of
innovation,” IEEE Transactions on Signal Processing, vol. 62, no. 2, pp.
458–471, Janurary 2014.
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[21] J. Urigüen, T. Blu, and P. Dragotti, “FRI sampling with arbitrary
kernels,” IEEE Transactions on Signal Processing, vol. 61, no. 21, pp.
5310–5323, November 2013.

[22] Y. Bresler and A. Macovski, “Exact maximum likelihood parameter
estimation of superimposed exponential signals in noise,” IEEE Trans-
actions on Acoustics, Speech and Signal Processing, vol. 34, no. 5, pp.
1081–1089, 1986.

[23] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Informa-
tion Theory, vol. 52, no. 4, pp. 1289–1306, April 2006.

[24] E. J. Candès and C. Fernandez-Granda, “Towards a mathematical theory
of super-resolution,” Communications on Pure and Applied Mathemat-
ics, vol. 67, no. 6, pp. 906–956, 2014.

[25] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed sensing
off the grid,” IEEE Transactions on Information Theory, vol. 59, no. 11,
pp. 7465–7490, 2013.

[26] C. Aubel, D. Stotz, and H. Bölcskei, “A theory of super-
resolution from short-time Fourier transform measurements,” Journal
of Fourier Analysis and Applications, Sep. 2015. [Online]. Available:
http://www.nari.ee.ethz.ch/commth//pubs/p/super-res-journ

[27] G. Tang, B. N. Bhaskar, and B. Recht, “Near minimax line spectral
estimation,” IEEE Transactions on Information Theory, vol. 61, no. 1,
pp. 499–512, 2015.

[28] Y. Li and Y. Chi, “Off-the-grid line spectrum denoising and estimation
with multiple measurement vectors,” IEEE Transactions on Signal
Processing, vol. 64, no. 5, pp. 1257–1269, 2016.

[29] I. Markovsky, “How effective is the nuclear norm heuristic in solving
data approximation problems?” in 16th IFAC Symposium on System
Identification (Sysid 2012), vol. 45, no. 16. Elsevier, 2012, pp. 316–321.

[30] F. Andersson, M. Carlsson, J.-Y. Tourneret, and H. Wendt, “A new
frequency estimation method for equally and unequally spaced data,”
IEEE Transactions on Signal Processing, vol. 62, no. 21, pp. 5761–
5774, 2014.

[31] L. Condat and A. Hirabayashi, “Cadzow denoising upgraded: A new
projection method for the recovery of Dirac pulses from noisy linear
measurements,” Sampling Theory in Signal and Image Processing,
vol. 14, no. 1, pp. p–17, 2015.

[32] Y. Chen and Y. Chi, “Robust spectral compressed sensing via structured
matrix completion,” IEEE Transactions on Information Theory, vol. 60,
no. 10, pp. 6576–6601, October 2014.

[33] J. C. Ye, J. M. Kim, K. H. Jin, and K. Lee, “Compressive sampling
using annihilating filter-based low-rank interpolation,” arXiv preprint
arXiv:1511.08975, November 2015.

[34] G. Ongie, S. Biswas, and M. Jacob, “Structured low-rank recovery of
piecewise constant signals with performance guarantees,” arXiv preprint
arXiv:1604.04888, 2016.

[35] “Special issue on spectral estimation,” Proceedings of the IEEE, vol. 70,
no. 9, September 1982.

[36] R. P. Millane, “Phase retrieval in crystallography and optics,” Journal
of the Optical Society of America A, vol. 7, no. 3, pp. 394–411, 1990.

[37] T. Blu, H. Bay, and M. Unser, “A new high-resolution processing method
for the deconvolution of optical coherence tomography signals,” in
Proceedings of the First IEEE International Symposium on Biomedical
Imaging: Macro to Nano (ISBI’02), vol. III, July 7–10, 2002, pp. 777–
780.

[38] I. Maravić and M. Vetterli, “Sampling and reconstruction of signals with
finite rate of innovation in the presence of noise,” IEEE Transactions
on Signal Processing, vol. 53, no. 8, pp. 2788–2805, 2005.

[39] J. A. Cadzow, “Signal enhancement—A composite property mapping
algorithm,” IEEE Transactions on Acoustics, Speech and Signal Pro-
cessing, vol. 36, no. 1, pp. 49–62, 1988.

[40] B. De Moor, “Total least squares for affinely structured matrices and
the noisy realization problem,” IEEE Transactions on Signal Processing,
vol. 42, no. 11, pp. 3104–3113, 1994.



PAN et al.: TOWARDS GENERALIZED FRI SAMPLING WITH AN APPLICATION TO SOURCE RESOLUTION IN RADIOASTRONOMY 15

[41] C. Gilliam and T. Blu, “Fitting instead of annihilation: Improved
recovery of noisy FRI signals,” in Proceedings of the Thirty-ninth IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’14), May 4–9, 2014, pp. 51–55.

[42] ——, “Finding the minimum rate of innovation in the presence of
noise,” in Proceedings of the Forty-first IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP’16), March 20–
25, 2016, pp. 4019–4023.

[43] G. H. Golub and C. F. Van Loan, Matrix computations. Johns Hopkins
University Press, 2012, vol. 3.

[44] P. C. Lauterbur, “Image formation by induced local interactions: ex-
amples employing nuclear magnetic resonance,” Nature, vol. 242, pp.
190–191, 1973.

[45] D. Gabor, “A new microscopic principle,” Nature, vol. 161, no. 4098,
pp. 777–778, 1948.

[46] R. Perley, F. Schwab, and A. Bridle, Synthesis imaging in radio
astronomy. San Francisco, CA (US); Astronomical Society of the
Pacific, January 1989.

[47] H. Garsden, J. Girard, J.-L. Starck, S. Corbel, C. Tasse, A. Woiselle,
J. Mckean, A. S. Van Amesfoort, J. Anderson, I. Avruch et al., “LOFAR
sparse image reconstruction,” Astronomy & Astrophysics, vol. 575, p.
A90, 2015.

Hanjie Pan (S’11) was born in Jiangsu, China,
in 1988. In 2010, he received the B.Eng. degree
with first honor in Electronic Engineering from The
Chinese University of Hong Kong (CUHK), Shatin,
Hong Kong. He received the M.Phil degree from
the same institution in 2013. He is currently a PhD
student with Laboratory of Audiovisual Communi-
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