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ABSTRACT

Photoacoustic tomography (PAT) is a relatively recent imaging
modality that is promising for breast cancer detection and breast
screening. It combines the high intrinsic contrast of optical radiation
with acoustic imaging at submillimeter spatial resolution through
the photoacoustic effect of absorption and thermal expansion. How-
ever, image reconstruction from boundary measurements of the
propagating wave field is still a challenging inverse problem.

Here we propose a new theoretical framework, for which we
coin the term eigensensing, to recover the heat absorption profile
of the tissue. One of the main features of our method is that there
is no explicit forward model that needs to be used within a (usually)
slow iterative scheme. Instead, the eigensensing principle allow us to
computationally obtain several intermediate images that are blurred
by known convolution kernels which are chosen as the eigenfunc-
tions of the spatial Laplace operator. The source image can then
be reconstructed by a joint deconvolution algorithm that uses the
intermediate images as input. Moreover, total variation regulariza-
tion is added to make the inverse problem well-posed and to favor
piecewise-smooth images.

Index Terms— Photoacoustic Tomography, Wave equation,
source imaging, joint sparsity, deconvolution, total variation

1. INTRODUCTION

All imaging modalities have their strengths and drawbacks. To over-
come the individual deficiencies and to combine their strengths, re-
cently, a variety of the so called “hybrid methods” have been intro-
duced and studied. Probably the most developed both experimen-
tally and mathematically is photoacoustic tomography (PAT) [1].
Basically, photons are absorbed and create a thermally induced pres-
sure jump that leads to ultrasonic waves that can be reconstructed
with surprisingly high spatial resolution due to low scattering. PAT
is non-ionizing, just as ultrasound CT, but its excitation process has
been replaced by optical radiation that leads to clean and specific
sources of pressure wave fields [2].

The major challenge in PAT resides in the reconstruction of the
heat source function. From a physical point-of-view, PAT repre-
sents an inverse source problem belonging to the field of diffraction
tomography. Therefore, various algorithms used in PAT have bor-
rowed from other imaging modalities such as ultrasound, x-ray and
optical tomographies. Numerous approaches have been suggested
to reconstruct the initial pressure rise to the photoacouctic effect
in the tissue due to absorbed incident light. Among others, Radon
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transform approaches [3], back-projection algorithm [4], Fourier and
time-domain algorithms are all successful in recovering the source
function, but mostly they require extensive computation of the for-
ward problem within an iterative framework.

From a mathematical point-of-view, PAT belongs the inverse
problem of generalized spherical Radon transform. In general, this
approach provides a satisfactory result only for the regions that are
near the center of the detection geometry where the approximation
quality of the Radon transform does not deviate too much from the
approximation. Xu et al. [5] explained what parts of the image can
be stably recovered in the limited-view imaging theoretically. Finch
et al. [6] showed exact inverse solutions based on the Radon trans-
form approximation with full-view data.

Numerous approaches have been proposed for the inverse prob-
lem of PAT in discrete form. The standard linear system solutions
are incorporated in the reconstruction of the source function [7]
mostly through iterative algorithms. Compared with the approxi-
mation methods, iterative techniques give more accurate results, in
particular, when prior knowledge about the source function is known
and used to regularize the solution [8]. Finch ef al. [9] recently re-
ported a filtered back-projection type algorithm to recover the initial
source function from spherical means of the wave field over spheres
centered on the boundary of the measurement surface.

In most of the recent work, the sparsity has played a key role in
regularizing the solution for the inverse problem. In particular, point
source localization methods have also been developed and applied
in this setting [10]. Ammari et al. [11] developed the mathematical
modeling in PAT of small absorbers and propose MUSIC-type of
algorithms for the estimation of the location of the absorbing regions.
Badia and Nara [12] reported the uniqueness and the local stability
of the point source localization problem.

In this paper, we propose a new reconstruction framework to
extract the optical absorption profile of the breast tissue with high
accuracy from PAT data. The proposed framework allows for ef-
ficient recovery of the local absorption image of the breast tissue
without explicit forward model of the wave propagation. Moreover,
any prior knowledge about the characteristics of the image can be in-
corporated into a regularization framework that allows the recovery
of smooth and fine detailed images.

The paper is organized as follows. In Section 2, we introduce the
inverse problem of PAT. In Section 3, we provide the fundamentals
of Eigenensing framework. In Section 4, we develop the the pro-
posed method for a 2D imaging setup. In Section 5, the feasibility
of the porposed method is demonstrated with a 2D numeric phantom
representing spatial absorption map of a breast.



2. INVERSE SOURCE PROBLEM IN PAT

Optical radiation absorbed by the tissue deposits thermal energy.
Due to the photoacoustic effect, the subsequent thermal expansion
can be modeled as a heat source H (r,t) that gives rise a pressure
field u(r,t) governed by the wave equation in an acoustically ho-
mogeneous medium: (under the condition of thermal confinement)
1 8%u(r,t) B 0

oz~ catmh @
where £ is the isobaric volume expansion coefficient [K -1, Cpis
the specific heat [J/(K kg)], and c is the speed of sound. Human
breast is made of soft tissue with speed variations in the range of
10% and can thus be considered as an homogeneous medium [2].
The heating function can be further decomposed as the product

H{(r,t) = A(r)ge(t),

where A(r) is the spatial absorption function and g. () the tempo-
ral illumination function, which is known by the optical excitation
protocol. The spatial absorption function is to be recovered from the
boundary measurements of the pressure wave .

Viu(r,t) —

3. FUNDAMENTALS OF EIGENSENSING

We further assume that the region-of-interest is €2 with boundary
0f). We can then write the time harmonic solutions of the PAT wave
equation as

V2U(r,w) + %U(nw) = —(jw)A(r)Ge (w), )

which is the inhomogeneous Helmholtz equation. The problem
at hand is to recover the source function A(r) from the Cauchy
data (U|,q,, VU - esq), which consists of the pressure field and its
normal derivative along epq being the unit outward normal to the
boundary, respectively.

Without loss of generality, we can now consider a specific fre-
quency w with corresponding wave-number k = w/c. We also de-
note @ = (jw)Ge(w). From Green’s second identity for the wave
field U and a test function W(r), we obtain a link between the source
term and the surface measurements as follows

/ (UVPU —UVU)dV = ¢ (UVE — UVU) - epadS. (3)
Q aQ
Next we introduce the source distribution in the left hand-side by

using (2), resulting in,

/ [U(V?V + E*T) + aAT] dV = f (UVY—UVU)-epndS.
Q

a0

“
By construction, we then choose the test function W such that it is a
“free space” solution of the homogeneous Helmholtz equation

V30 + B*0 =0,

which is equivalent to ¥ being an eigenfunction of the spatial
Laplace operator V20U = AU, with A\ = —k2. Therefore, we coin
the term ““eigensensor” for W. Additionally, since the Laplace opera-
tor is shift-invariant, we can “sense” the source function at different
spatial positions and construct the sensing function

To(r) :é (A% W) (r) 5)

:/ ¥ (r—1') Ax)dr’ (6)
Q

:lj{ [UVY (r —1') =¥ (r —1') VU] - epadS, (7)
& Jaq
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where * is the 2-D or 3-D convolution operator and we have com-
pensated for the factor o (which is known). We can thus compute
the sensing image Iy at any r by the surface integral (7) using the
boundary measurements, which represents an interaction (6) of the
source function with the eigensensor. In sum, the boundary mea-
surements have been mapped to volumetric information without an
explicit forward model as in conventional methods.

4. 2D IMAGE RECONSTRUCTION

To demonstrate the feasibility of the proposed method, we developed
our method in an instructive 2-D setting. Let us first derive the sepa-
rable eigenfunction of the 2-D Laplace operator in polar coordinates

(r, ¢):

19 (0 1 0 5
2 (r= — ¥ = —k*U . 8
o (o) + | V0 = ). ®)
Using the separation of variables method and the non-singularity re-
quirement at the origin, we get the eigenfunction of the Laplace op-
erator in polar coordinates as the basis function for the polar Fourier
transform on the whole space

WE(r,6) =\ o T k)™, ©

where J,,, are the m"-order Bessel functions (m = 0,1,...). To
better appreciate the meaning of the eigensensors, we provide the
Fourier transform of W,

3

FLUENK o) = ok — k)T amel (g
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where k' and ¢}, are the radial and angular parts of the polar Fourier
space and which is nonzero only on a circle of radius k. Alterna-
tively, this states that plane waves of the same wavenumber, as the
basis function for the normal Fourier transform, can be superposed
to get a so-called cylindrical wave.

We can then formulate the image reconstruction problem as
a joint deconvolution of multiple sensing functions degraded by
known eigensensors by means of their known frequency domain
localization. In particular, given the set of sensing functions
1 whn computed from the measurements using eigensensors Wer
m =1,..., M and at finitely chosen photoacoustically measurable
wavenumbers such that 0 < k; < k,, < kn,n =1,..., N where k;
and kj, represents the lower and upper limits of k£, we solve for

M

N
~ 2
A=argmin S qu,k A 4 pge(4) aD
A n=1m=1 " 2

where the first term measures the data fidelity (under the £2-norm)
and the second term regularizes the source function with parameter
@ > 0 controlling the relative weights of the two terms. The reg-
ularization term is used to favor some solutions by penalizing the
other by measuring the lack of smoothness and sparseness with dif-
ferential operators. We choose the regularization term as the total
variation (TV) semi-norm

Jre() = [ VA o (12)
R2
which favors sparseness in the gradient of A. Recent advances in

convex optimization theory have led to efficient algorithms for such
minimization problem.



4.1. Minimization Algorithm

The main difficulty in solving (11) is due to the non-differentiability
of the regularization term. Standard approaches are to approximate
the TV semi-norm with a smooth and differentiable one or to approx-
imate it with a quadratic penalty technique. Here, we choose to use
the alternating direction method of multipliers (ADMM) for which
convergence has been proved [13]. For the sake of completeness, we
briefly review the application of the ADMM method for the current
problem.

Hereafter, we assume a discrete setting and replace (11) with the
following problem noticing that eigensensors for the same order m
are mutually disjoint in the frequency domain

a= argmlnf Z ||FIr,, — T'mFall3 +,uz [|Diall2 (13)

where a is an n X n gray-scale image representing the absorption
map, F is a two-dimensional discrete Fourier transform matrix and
I, = 25:1 F \Ilf,? is the Fourier transform of m™-order joint
eigensensor, i.e., it represents a welghted selection matrix in k-space

according to (10) and Ir,, = Zn 1 I\pkn is the m®-order ob-

servation of a. Next, >_.||Dsal|2 is a discretization of the total
variation (TV) of a with the common TV-L2 model where D;a =
[(DWa);; (D®a);] denotes the discrete gradient of a at pixel i with
D® and D® representing the two first order forward finite differ-
ence operators under periodic boundary conditions for a.

Algorithm 1: ADMM minimization algorithm
Data: I, ;s 0 > 0;p > 0
Result: a
begin
Initialize: oY, z
while Not Converged do
a* ™! «— argmin L,(a, 2*, a*) by solving (15)

0

!« argmin L,(a"T!, 2, aF) by solving (16)

z
1 oF 4 Daktl — e+l

Next , we first introduce auxiliary variables z; = ((21)4; (22)i)’s
which is an approximation of D;a and then replace (13) with a con-
strained minimization problem

M
1
mmf Z ||FIr,, — T ]-'a||2+,uZHzl||2 s.t. z; = D;a, Vi.

a,z;
Relaxing the equality conditions and penalizing their violations by

quadratic functions we get the scaled form [13] of the corresponding
augmented Lagrangian

Z [|\FIr,, —

+ gHDa—z—&—aﬂg

Ly(a,z,«) Fm]‘—aH%'i‘HZHZiHZ (14)
i

where « is a scaled dual variable and p is the penalty parameter.
Despite more decision parameters compared to (13), problem (14) is
easier to minimize with respect to z and a. First for a fixed z, the
minimization of (14) for a becomes the least square problem

M
1
min 5 mZ:j |IFIr,, = TwFal3 + LlDa—z+al3.  (15)
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Secondly, for a fixed a, the second and third terms are separable with
respect to z;, so minimizing (14) for z is equivalent to solving

min (|22 + 511 Dia— z +al}), ¥, (16)

for which the minimizer is given by the two dimensional shrinkage
formula[14]. We provide a summary of the method in Algorithm 1.

5. EXPERIMENTAL RESULTS

For PAT breast imaging system, the detection geometry is typically
assumed to have a 8cm radius and the generated pressure field is
sampled with fast ultrasound transducers capable of linear and planar
measurements of the wave field. The surface integral (5), which is
the core of the eigensensing framework, can be approximated thanks
to the high sampling densities that are achieved in current devices
[2]. For signals in the typical PAT range of 0.1-3MHz, the wavenum-
ber k will be between 500-12°500/m assuming constant speed of
sound in soft tissue,i.e., ¢ = 1500m/s which imposes approximately
0.4mm spatial resolution of the sensing functions to be constructed.

We perform numerical experiments to evaluate the performance
of our reconstruction algorithm on a numerical phantom of size
4096 x 4096 for the absorption map of a 16cm X 16cm breast tissue
given in Fig. 1 (a). We choose only the zeroth order eigenfunction
Wk in (9) for different wavenumber, k from the specified PAT range.
In our framework, each eigenfunction will perform a selection of
partial Fourier measurements only on a circle of radius k in the
k-space.

Due to incapability of most standard ultrasound transducers, de-
tectors miss the low frequency components— frequencies less than
0.1MHz- that are necessary for characterization of different tissues.
Therefore, we propose to compare the reconstruction result and the
original absorption map after a normalization process. We coin the
term SNR improvement (iISNR)

>, lla—all?
~ — b
ZiHao —all?

where a, a and a,, are the original image, the reconstructed image
and the initial back-projected image, respectively, which are all nor-
malized with respect to the mean and standard deviation of the data,
ie., a = (a —n)/o where 7 is the mean and o is the standard devi-
ation of the data.

For the experiments, we use the breast phantom in Fig. 1 (a) and
the image is scaled to [0, 1] followed by a degradation with additive
white gaussian noise at 20dB. We assume that the surface integral
(7), is well-approximated and we solve for (13) for a regularization
parameter p = 8 using partial Fourier samples along a number of
circles that corresponds to chosen wavenumbers from the range of
PAT. From Table 1, we demonstrate the results of the reconstruction
quality with respect to number of evenly chosen frequencies on the
Fourier domain. As it is expected, the quality of the reconstruction

iSNR = 10log;, (17)

Table 1: Comparison of reconstruction quality in terms of iSNR with respect
to number of wavenumber used (#k) evenly spaced on the k-space in the
range of PAT.

#k | iSNR (dB) | #k | iSNR (dB)
5 3.19 30 6.26

10 4.74 35 6.27

15 5.79 40 6.28

20 5.88 45 6.29

25 6.21 50 6.30




(a) (b) (c) (d)

Fig. 1: Reconstruction of heat absorption profile of a breast phantom; (a) original phantom (b) partial frequency sampling along 15 evenly chosen wavenumbers
from the range of PAT using eigensensing principle, (c) inverse Fourier transform of the measured partial Fourier data with iSNR 0dB (d) reconstruction with

total variation (TV) regularization iSNR 5.79dB

increases as the the number of chosen wave numbers increases which
allows more coverage of partial Fourier measurements. The results
in Table 1 also released that the necessary numbers of wavenumbers
to be be used are limited for images composed of piecewise smooth
absorption regions.

In Fig. 1, we show the reconstruction result for a case where we
evenly select 15 frequencies from the k-space. We observe the corre-
sponding joint mask in the Fourier plane in Fig. 1 (b) and the corre-
sponding inverse Fourier of the measured partial frequency data with
0 dB iSNR by (17). Finally, in Fig. 1 (d), we provide our solution
with 5.79 dB iSNR with respect to normalized data as explained ear-
lier. The result shows that reconstruction of fine spatial details while
preserving sharp boundaries is achieved with the proposed method
thanks to the TV regularization which is well-suited to the purpose
of reconstruction of images composed of piecewise smooth regions.

6. CONCLUSIONS

We presented a novel theoretical framework called eigensensing
principle and its application to PAT to recover the heat absorp-
tion profile of the breast tissue. We proposed a family of sensing
functions being an eigenfunction of the spatial Laplace operator
to relate the measurements of photoacoustically generated wave
field to the spatial absorption map of the tissue. We also showed
that the eigensensing principle allows for partial Fourier domain
measurements that can be used in a joint deconvolution framework.
The choice of the sensing functions to be the eigenfunction of the
spatial Laplace operator in polar coordinates allowed better Fourier
plane coverage per sensing function rather than choosing a plane
wave. Notice that Bessel functions in the proposed sensing function
asymptotically decay like 1/4/r which yields better spatial localiza-
tion than a plane wave which also improves the approximation of the
surface integration of the measurements with the sensing function.

We applied our method on a numerical phantom representing the
heat absorption profile of a breast tissue for a 2-D proof- of-concept
study. We chose total variation (TV) semi-norm as the regularization
term that favors sparseness in the gradient of the absorption profile
as a priori. The preliminary results showed that eigensensing princi-
ple yields promising results on detection of fine spatial details with
varying absorption characteristics which is of great importance in
distinguishing malignant breast tissued from normal ones.

Sparse image models for the reconstruction of the absorption
profile the breast tissue in PAT from overdetermined boundary field
measurements remains as a promising research area of further re-
search. Moreover, we also consider possibility and feasibility of the
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proposed method for real PAT data for imaging heat absorption pro-
file of the breast tissue.

7. REFERENCES

[1] L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging
from organelles to organs,” Science, vol. 335, no. 6075, pp. 1458-1462,
2012.

[2] M. Xu and L. Wang, “Photoacoustic imaging in biomedicine,” Rev.
Sci. Instrum., vol. 77, no. 4, pp. 041101, 2006.

[3] K. Wang and M. Anastasio, “Photoacoustic and thermoacoustic to-
mography: Image formation principles,” in Handbook of Mathemati-
cal Methods in Imaging, O. Scherzer, Ed., pp. 781-815. Springer New
York, 2011.

[4] M. Xu and L. V. Wang, “Universal back-projection algorithm for pho-
toacoustic computed tomography,” Phys. Rev. E, vol. 75, pp. 059903,
May 2007.

[5] Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, “Reconstruc-
tions in limited-view thermoacoustic tomography,” Medical Physics,
vol. 31, no. 4, pp. 724-733, 2004.

D. Finch and S. Patch, “Determining a function from its mean values
over a family of spheres,” SIAM Journal on Mathematical Analysis,
vol. 35, no. 5, pp. 1213-1240, 2004.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative re-
construction algorithm for optoacoustic imaging,” The Journal of the
Acoustical Society of America, vol. 112, no. 4, pp. 1536-1544, 2002.

[8] L. V. Wang and H.-I. Wu, “Biomedical optics, principles and imaging,”
Journal of Biomedical Optics, vol. 13, no. 4, pp. 049902—-049902-2,
2008.

[9] M. Haltmeier, D. Finch, and Rakesh, “Inversion of spherical means
and the wave equation in even dimensions,” SIAM Journal of Applied
Mathematics, vol. 68, no. 2, pp. 392412, 2007.

[10] Z. Dogan, I. Jovanovic, T. Blu, and D. Van De Ville, “3d reconstruc-
tion of wave-propagated point sources from boundary measurements
using joint sparsity and finite rate of innovation,” in Biomedical Imag-
ing (ISBI), 2012 9th IEEE International Symposium on, may 2012, pp.
1575 -1578.

[11] H. Ammari, E. Bossy, V. Jugnon, and H. Kang, “Mathematical model-
ing in photoacoustic imaging of small absorbers,” SIAM Rev., vol. 52,
pp. 677-695, November 2010.

[12] A. E. Badia and T. Nara, “An inverse source problem for Helmholtz’s
equation from the Cauchy data with a single wave number,” Inverse
Problems, vol. 27, no. 10, pp. 105001, 2011.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating direc-
tion method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1,
pp. 1-122, Jan. 2011.

[14] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimiza-
tion algorithm for total variation image reconstruction,” SIAM J. Img.
Sci., vol. 1, no. 3, pp. 248-272, Aug. 2008.

[6

—

[7

—



