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The SURE-LET Approach to Image Denoising

Thierry Blu, Senior Member, IEEE, and Florian Luisier

Abstract—We propose a new approach to image denoising,
based on the image-domain minimization of an estimate of the
mean squared error—Stein’s unbiased risk estimate (SURE). Un-
like most existing denoising algorithms, using the SURE makes it
needless to hypothesize a statistical model for the noiseless image.
A key point of our approach is that, although the (nonlinear)
processing is performed in a transformed domain—typically,
an undecimated discrete wavelet transform, but we also address
nonorthonormal transforms—this minimization is performed
in the image domain. Indeed, we demonstrate that, when the
transform is a “tight” frame (an undecimated wavelet transform
using orthonormal filters), separate subband minimization yields
substantially worse results. In order for our approach to be
viable, we add another principle, that the denoising process can
be expressed as a linear combination of elementary denoising
processes—linear expansion of thresholds (LET). Armed with the
SURE and LET principles, we show that a denoising algorithm
merely amounts to solving a linear system of equations which is ob-
viously fast and efficient. Quite remarkably, the very competitive
results obtained by performing a simple threshold (image-domain
SURE optimized) on the undecimated Haar wavelet coefficients
show that the SURE-LET principle has a huge potential.

I. INTRODUCTION

URING acquisition and transmission, images are often
Dcorrupted by additive noise. The main aim of an image
denoising algorithm is then to reduce the noise level, while
preserving the image features.

Transform domain image denoising—the most popular ap-
proaches to process noisy images consist in first applying some
linear—often multiscale—transformation, then performing a
usually nonlinear—and sometimes multivariate—operation on
the transformed coefficients, and finally reverting to the image
domain by applying an inverse linear transformation. Among
the many denoising algorithms to date, we would like to cite
the following ones.

e Portilla et al. [1]:! The authors’ main idea is to model
the neighborhoods of coefficients at adjacent positions and
scales as a Gaussian scale mixture (GSM); the wavelet
estimator is then a Bayes least squares (BLS). The re-
sulting denoising method, consequently called BLS-GSM,
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is the most efficient up-to-date approach in terms of peak
signal-to-noise ratio (PSNR).

* PiZurica et al. [2]:2 Assuming a generalized Laplacian
prior for the noise-free data, the authors’ approach called
ProbShrink is driven by the estimation of the probability
that a given coefficient contains significant informa-
tion—notion of “signal of interest”.

e Sendur et al. [3], [4]:3 The authors’ method, called
BiShrink, is based on new non-Gaussian bivariate distri-
butions to model interscale dependencies. A nonlinear
bivariate shrinkage function using the maximum a poste-
riori (MAP) estimator is then derived. In a second paper,
these authors have extended their approach by taking into
account the intrascale variability of wavelet coefficients.

These techniques have been devised for both redundant and
nonredundant transforms.

While the choice of the transformation is easily justified
by well-accepted general considerations—e.g., closeness to
the Karhunen—Log¢ve transformation, “sparsity” of the trans-
formed coefficients, “steerability” of the transformation—the
nonlinear operation that follows is more frequently based on
ad hoc statistical hypotheses on the transformed coefficients
that are specific to each author. The final performance of the
algorithms—typically, PSNR results—is, thus, inconclusively
related to the accuracy of this modelization.

SURE-LET denoising—In this paper, we want to promote
quite a different point of view, which avoids any a priori
hypotheses on the noiseless image—in particular, no random
process modelization—but for the usual white Gaussian noise
assumption. This approach is made possible by the existence of
an excellent unbiased estimate of the mean squared error (MSE)
between the noiseless image and its denoised version—Stein’s
unbiased risk estimate (SURE). If we evaluate denoising per-
formances by comparing PSNRs, then this MSE is precisely
the quantity that we want to minimize. Similar to the MSE, the
SURE takes the form of a quadratic expression in terms of the
denoised image (see Theorem1).

Our approach, thus, consists in reformulating the denoising
problem as the search for the denoising process that will
minimize the SURE—in the image domain. In practice, the
process is completely characterized by a set of parameters.
Now, to take full advantage of the quadratic nature of the
SURE, we choose to consider only denoising processes that
can be expressed as a linear combination of ‘“‘elementary”
denoising processes—linear expansion of thresholds (LET).
This “SURE-LET” stategy is computationally very efficient
because minimizing the SURE for the unknown weights gives
rise to a mere linear system of equations, which in turn allows to

2Available at http://telin.ugent.be/~sanja/.
3Available at http:/taco.poly.edu/WaveletSoftware/denoise2.html.
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consider processes described by quite a few parameters. There
is, however, a tradeoff between the sharpness of the description
of the process which increases with the number of parameters,
and the predictability of the MSE estimate, which is inversely
related to the number of parameters. We have already applied
our approach within a nonredundant, orthonormal wavelet
framework, and showed that a simple thresholding function that
takes interscale dependences into account is very efficient, both
in terms of computation time and image denoising quality4 [5].

SURE-related literature—Despite its simple MSE justifica-
tion (a mere integration by parts), the SURE does not belong to
the toolbox of the standard signal processing practitioner—al-
though it is, of course, much better established among statisti-
cians. The best-known use of the SURE in image denoising is
Donoho’s SureShrink algorithm [6] in which a soft-threshold
is applied to the orthonormal wavelet coefficients, and where
the threshold parameter is optimized separately in each sub-
band through the minimization of the SURE. Otherwise, the
approach that is most closely related to SURE-LET—but for a
multichannel image denoising application—is the contribution
by Pesquet and his collaborators [7]-[9] which perform sepa-
rate in-band minimization of the SURE applied to a denoising
process that contains both nonlinear and linear parameters.

Yet, the specificity of SURE-LET for redundant or
nonorthonormal transforms lies in the fact that this minimiza-
tion is performed in the image domain. While it is true that,
due to some Parseval-like MSE conservation, image domain
MSE/SURE minimization is equivalent to separate in-band
MSE/SURE minimization whenever the analysis transforma-
tion is—nonredundant—orthonormal [5], this is grossly wrong
as soon as the transformation is, either redundant (even when
it is a “tight frame”) or nonorthonormal. This is actually the
observation made by those who apply soft-thresholding to an
undecimated wavelet transform: the SureShrink threshold de-
termination yields substantially worse results than an empirical
choice (see Fig. 3). Unfortunately, this may lead practitioners
to wrongly conclude that the SURE approach is unsuitable for
redundant transforms, whereas a correct diagnosis should be
that it is the independent subband approach that is flawed.

Organization of the paper—In Section II, we expose the mul-
tivariate SURE theory for vector functions, and sketch the prin-
ciples of our linear parametrization strategy; we also address
practical issues like how the SURE is modified depending on
the choice for boundary conditions, and provide explicit SURE
formula for pointwise thresholding. In Section III, because we
want to exemplify the power of the SURE-LET approach, we re-
strict the processing to simple pointwise thresholds in the trans-
formed domain and show that, by using an undecimated Haar
wavelet transform, a SURE image-domain minimization yields
very competitive results with the best up-to-date algorithms [1],
[2], [4] (Section IV-C). In comparison, without any optimiza-
tion attempts in our implementation, the SURE-LET method is
quite CPU-time friendly. Yet, a huge margin of improvement
can be envisioned if intrascale and interscale dependencies are
taken into account. Both the competitiveness and robustness of
our method validate our new approach as an attractive solution
for image denoising.

4See our demo http://bigwww.epfl.ch/demo/suredenoising/.
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II. THEORETICAL BACKGROUND

‘We consider the standard simplified denoising problem: given
noisy data y,, = z,, + b, forn = 1... N where b,, is a white
Gaussian noise of variance o2, find a reasonably good estimate
xof x = {,,}n=1,2, .~.Our goal is, thus, to find a function of
the noisy data alone F(y) = (f(¥))n=1,2,..5 = X which will
minimize the MSE defined by

| N
- . 2
MSE = i nE:1 |Tp — @y |

)
1
MSE = N”& —x%.
A. Unbiased Estimate of the MSE

Since we do not have access to the original signal x, we
cannot compute ||X — x||?/N—the Oracle MSE. However,
without any assumptions on the noise-free data, we will see that
it is possible to replace this quantity by an unbiased estimate
which is a function of y only. This has an important conse-
quence: contrary to what is frequently done in the literature,
the noise-free signal is not modeled as a random process in our
framework—we do not even require x to belong to a specific
class of signals. Thus, the observed randomness of the noisy
data originates only from the Gaussian white noise b.

The following lemma which states a version of Stein’s lemma
[10], shows how it is possible to replace an expression that con-
tains the unknown data x by another one with the same expec-
tation, but containing the known data y only.

Lemma 1: Let F(y) be an N-dimensional vector function
such that £{|0f,(y)/0yn|} < oo forn = 1,...,N. Then,
under the additive white Gaussian noise assumption, the expres-
sions F(y)Tx and F(y)Ty — 0?div{F(y)} have the same ex-
pectation

ey

N N N 3fn(y)
£ {Z fn<y>xn} =5{Z fn(y>yn}—025{ > 5y }
n=1 n=1 n=1
div{F(y)}

(@)
where £{-} stands for the mathematical expectation operator.
Proof: We use the fact that a Gaussian white probability
density q(b,,) satisfies b,q(b,) = —o2¢'(b,). Thus, denoting
by &, {-} the partial expectation over the nth component of the
noise, we have the following sequence of equalities:>

gbn {fn(Y)xn} :gbn {fn(y)yn} - gbn {fn(y)bn}
= & {fa(¥)n) — / Fn(9)bn(bn) b

& {fa¥)yn} + 02 / Fu(9) (b )db,

=& {nhn} = o* [ 22 0, )an,
(by parts)
=&, {fa(¥)yn} — 0°&, { Wa"'—yi”} .

5To be fully rigorous, we need to assume that f,, (y)q(y, — .,) tends to zero
with |y, |, which is very broadly ensured whenever f,,(y) is bounded by some
fastly increasing function, like exp(||y||?/20'?) where 6’ > o.
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TABLE I
COMPARISON OF SOME OF THE MOST EFFICIENT DENOISING METHODS

o 5 10 15 20 25 30 50 100 5 10 15 20 25 30 50 100
Input PSNR 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13 34.15 28.13 24.61 22.11 20.17 18.59 14.15 8.13

Method Peppers 256 X 256 House 256 X 256
BiShrink [4] 37.18 33.38 31.28 29.80 28.67 27.76 2528 22.11 3835 34.71 32.89 31.63 30.64 29.83 27.54 24.51
ProbShrink [2] 3745 33.75 31.71 30.25 29.15 28.24 25.72 2248 38.51 35.15 33.43 32.19 31.21 30.38 27.98 24.76
BLS-GSM [1] 37.32 33.77 31.74 30.31 29.21 28.33 25.90 22.67 38.67 35.34 33.60 3235 3135 30.52 28.21 25.09
UWT SURE-LET 37.63 34.00 31.97 30.53 29.40 28.48 25.94 22.60 38.71 35.52 33.81 32.60 31.66 30.89 28.58 25.25
UWT Oracle 37.64 34.01 31.98 30.55 29.43 28.51 26.00 22.72 38.71 35.53 32.83 32.63 31.70 20.94 28.68 25.44

Method Al 512 x 512 Bridge 256 X 256
BiShrink [4] 38.72 35.34 33.51 3224 31.26 30.45 28.15 24.99 35.18 30.47 28.11 26.62 25.56 24.77 22.88 20.73
ProbShrink 2] 38.67 35.42 33.68 3245 31.51 30.66 28.46 25.40 35.08 30.36 27.97 26.52 25.52 24.79 23.03 2093
BLS-GSM [1] 38.98 35.57 33.81 32.60 31.67 30.91 28.73 25.75 35.26 30.49 28.11 26.65 25.66 24.92 23.11 20.98
UWT SURE-LET 38.88 35.43 33.60 32.36 31.42 30.66 28.57 25.69 35.23 30.54 28.24 26.82 25.83 25.10 23.27 21.09
UWT Oracle 38.88 3543 33.61 32.37 31 .43 30.67 28.59 25.76 35.23 30.55 28.25 26.83 25.8] 25 .11 23.30 21.16

Method Barbara 512 x 512 Boat 512 X 512

BiShrink [4] 37.35 33.51 31.37 29.87 28.72 27.79 25.30 22.46 36.72 33.17 31.30 29.98 28.96 28.14 25.97 2331
ProbShrink (2] 37.39 33.49 31.24 29.60 28.33 27.30 24.54 22.02 36.69 33.29 31.34 29.97 28.91 28.06 25.83 23.17
BLS-GSM [1] 37.79 34.02 31.84 30.29 29.10 28.12 25.44 22.59 36.98 33.58 31.70 30.37 29.35 28.54 26.35 23.70
UWT SURE-LET 36.98 32.65 30.16 28.45 27.18 26.23 24.13 22.26 3713 33.53 31.57 30.22 29.20 28.39 26.20 23.61
UWT Oracle 36.98 32.65 30.16 28.45 27.19 26.24 24.14 22.29 37.13 33.54 31.58 30.23 29.21 28.40 26.22 23.65

Method Crowd 512 x 512 Goldhill 512 x 512
BiShrink (4] 34.86 29.85 27.28 25.61 24.40 23.47 21.05 18.18 36.78 33.11 31.23 29.99 29.08 28.37 26.52 24.19
ProbShrink 2] 34.79 30.00 27.47 25.80 24.57 23.61 21.14 18.24 36.76 33.20 31.33 30.12 29.22 28.53 26.71 24.51
BLS-GSM [1] 34.97 30.07 27.52 25.87 24.67 23.73 21.29 18.37 36.98 33.36 31.50 30.28 29.39 28.69 26.85 24.61
UWT SURE-LET 35.10 30.20 27.64 25.96 24.74 23.78 21.32 18.43 36.85 33.20 31.37 30.17 29.30 28.61 26.83 24.69
UWT Oracle 35.10 30.20 27.64 25.96 2,74 23.78 21.33 18.45 36.85 33.21 31.37 30.18 29.30 28 .62 26.85 24.75

Note: Output PSNRs have been averaged over eight noise realizations.

Now, taking the expectation over the remaining components of
the noise, we get

Since the expectation is a linear operator, (2) follows directly.®
By applying Lemma 1 to the expression of the MSE, we then
get Stein’s unbiased risk—or MSE—estimate (SURE).
Theorem 1: Under the same hypotheses as Lemma 1, the
random variable

1 202
e=+ IF®) —yl*+ %div{F(y)} )

is an unbiased estimator of the MSE, i.e.,

e(e) = ¢ {IF) - x|}
Proof: By expanding the expectation of the MSE, we have
e{IF(y) - xI*} = {IF()I*} - 2¢ {F(y)"x}
+& {IIxl?}
=e{IFw)I*} - 26 {F(y)"y}

+20°€ {div {F(y)}} + € {[Ix]I*}

where we have applied Lemma 1. Since the noise b has zero
mean, we can replace £{||x[|?} by &{|lyl|’} — No?. A re-
arrangement of the y terms then provides the result of Theorem
1. [ |

We want to emphasize here the fact that in image denoising
applications the number of samples is usually large—typically
2562—and, thus, the estimate e has a small variance—typically
o 1/N. This estimate is, thus, close to its expectation, which is
indeed the true MSE of the denoising process.

B. SURE-LET Approach

Our general denoising strategy consists in expressing the de-
noising process, F(y), as a linear combination (LET: linear ex-
pansion of thresholds) of given elementary processes, F.(y)

F(y) = axFi(y). )

Here, the unknown weights a;, are specified by minimizing the
SURE given by (3). It is also possible, in order to evaluate the
performance of the algorithm, to compare the result with what
the minimization of the MSE would provide—i.e., the Oracle
optimization (see Table I). A limitation of the LET approach
is that the elementary denoising functions Fj, have to fulfill
the hypothesis of Lemma 1 (differentiability); moreover, the
number of parameters K must not be “too large” compared to
the number of pixels (typically, less than 100 for usual 256 x
256 images), in order for the variance of the SURE to remain
small.

The linearity of the expansion (4) is a crucial advantage
for solving the minimization problem, because the SURE is
quadratic in F(y). The coefficients ay, are, thus, the solution of
a linear system of equations

v /

~~

K
Y Fiy) Fi(y) a = Fi(y)"y — o*div {Fi(y)}
= i el

fork=1,2,...K
0
Ma =c. 5
Note that, since the minimum of e always exists, we are en-
sured that there will always be a solution to this system. When
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rank(M) < K, the function F is over-parameterized and con-
sequently, several sets of parameters ay, yield equivalent results;
in that case, we may simply consider the solution provided by
the pseudoinverse of M. Of course, it is also possible to reduce
the parametrization order K so as to make the matrix M full
rank—at no quality loss.

What this approach suggests is that the practitioner may
choose at will (restricted only by the differentiability constraint
of Theorem 1) a set of K different denoising algorithms—ide-
ally with complementary denoising behaviors—and optimize a
weighting of these algorithms to get the best of them at once.

Among the potentially interesting algorithms are those that
work in a transformed domain such as:

* the nonredundant wavelet transforms, either orthogonal or

bi-orthogonal [11];

¢ the classical undecimated wavelet transform [12];

e the curvelet [13] transform,;

e the contourlet [14] transform;

* the steerable pyramids [15], [16];
as well as the discrete cosine transform (DCT) or its overcom-
plete variant: the block discrete cosine transform (B-DCT). In
the remainder of this paper, we will consider only pointwise
thresholding in such transform domains.

C. Pointwise SURE-LET Transform Denoising

Transform domain denoising consists in first defining a
couple of linear transformations D—decomposition—and
‘R—reconstruction—such that RD = Identity: typically, D is
a bank of decimated or undecimated filters. Once the size of the
input and output data are frozen, these linear operators are char-
acterized by matrices, respectively D = (d; ;) i, j)e[1;0]x[1;N]
and R = (7i;)( j)eq;nxp;r) that satisfy the perfect re-
construction property RD = Id. Then, the whole denoising
process boils down to the following steps.
1) Apply D to the noisy signal y = x + b to get the trans-
formed noisy coefficients w = Dy = (w;)ie[1;1]-

2) Apply a pointwise thresholding function ©(w) =
(0i(wi))iep;1)-

3) Revert to the original domain by applying R to the thresh-
olded coefficients ©(w), yielding the denoised estimate
x = RO(w).

This algorithm can be summarized as a function of the noisy
input coefficients

x = F(y) = RO(Dy). (©6)

The SURE-LET approach suggests to express F as a linear
expansion of denoising algorithms F, according to

K
F(y) =Y a;RO,(Dy) )

=1 Fi(y)

where O () are elementary pointwise thresholding functions.

As we have noticed in the previous subsection [see (5)], re-
trieving the parameters aj boils down to the resolution of a
linear system of equations. Note that this linear parametrization
does not imply a linear denoising; indeed, the thresholding func-
tions ©;, can be chosen nonlinear.
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In the SURE-LET framework, Theorem 1 can be reformu-
lated in the following way.

Corollary 1: Let F be defined according to (6) where © de-
notes pointwise thresholding. Then the MSE between the orig-
inal and the denoised signal can be unbiasedly estimated by the
following random variable:

1 s 202 1., )
e=yIF@) -ylI"+ o ©(Dy) —o ®
where

* a= dlag{DR} = {[DR]I,h [DR]2727 ey [DR]L7L} is

a vector made of the diagonal elements of the matrix DR;;

« ©/(Dy) = O/(w) = (B(w), 11

In particular, when D = [D], D7, ... 7D;]T and R =
[R1,Ro,...,R ] where D;, R; are N; X N and N X N; ma-
trices, thena = [af,ad, . .. ,a?]T where a; = diag{D;R;}.

Proof: By applying Theorem 1, we only have to prove that
in the SURE-LET framework

div{F(y)} = «*©'(Dy). )

By using the reconstruction formula F(y) = RO(w), ie.,
fuly) = ZZL=1 71101 (w;), and the decomposition formula w =
Dy, ie., wi =Y ;_ di,xys, We can successively write the fol-
lowing equalities:

N

v (F(y)) = Y )

17
=3 Zrn,lﬂf(wl)awl

n=1 =1 "

N
- Z Z T 107 (wi) di

n=1[=1

N
0;(wi) Z di,nTn 1
n=1

———
[DR];

and, finally, conclude that div{F(y)} =
diag{ DR}"T©’(Dy). ]

As it appears in this corollary, the computation of the diver-
gence term—i.e., of diag{DR}—is a crucial point.

1) Evaluation of the Divergence Term—a: In the general
case where D and R are known only by their action on vectors,
and not explicitly by their matrix coefficients—typically, when
only D and R are specified—the analytical expression for a
is quite painful to compute: in order to build e, for each [ =
1,2,...L it is necessary to compute the reconstruction f; =
Re; (where [e;], = 6, is the canonical basis of R”), then
the decomposition Df; and keep the /th component. Given that
L is of the order of 2562—and even much more in the case of
redundant transforms—this process may be extremely costly,
even considering that it has to be done only once. Fortunately,
we can always compute a very good approximation of it using
the following numerical algorithm.

~

[
M=

Il
-

Fori=1---1T
1) Generate a normalized Gaussian white noise b; € RZ.
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2) Apply the reconstruction matrix to b; to get the vector
r; = Rb,; of size N x 1.

3) Apply the decomposition matrix to r; to get the vector
b, = DRb; of size L x 1.

4) Compute the element-by-element product of b’ with
b; to get a vector of L coefficients v; = diag{b}b}},
which can be viewed as a realization of the random vector

v = diag{DRbb™}.
end
An approximate value & for diag{DR} is finally obtained by

averaging the realizations v; over I runs (typically, I = 1000
provides great accuracy)

(11)

&:

~l =

I
E V.
i=1

The above algorithm is justified by the following lemma.
Lemma 2: Let b be a normalized Gaussian white noise with
L components. Then, we have the following equality:

3 {diag{DRbbT}} — diag{DR}. (12)
Proof:
£ {diag{DRbbT}} - diag{DRé’ili)B}
— diag{DR}. -
| ]

The numerical computation of diag{ DR} can be performed
offline for various image sizes, since it does not depend specif-
ically on the image—but for its size—nor on the noise level.

2) Influence of the Boundary Extensions: One of the main
drawbacks of any transform-domain denoising algorithm is the
potential generation of boundary artifacts by the transform it-
self. Decreasing these effects is routinely done by performing
boundary extensions, the most popular choice being symmetric
extension and periodic extension. Thus, the effect of these ex-
tensions boils down to replacing the transformation D by an-
other transformation, D’.

Indeed, usual boundary extensions are linear preprocessing
applied to the available data y and can, therefore, be expressed
in a matrix form. In particular, for a given boundary extension
of length FE, i.e., characterized by an ¥ X N matrix H, the
denoising process becomes

F(y) =[Idy Onxp|RN4+EO (DN+E [Piy})
=R'6(D’y)
where D v g (resp., Ry 4+ ) is the matrix corresponding to the
linear transformation D (resp., R) when the input signal is of
size¢ N + E. Any boundary handling can, therefore, be seen
as a modification of the decomposition matrix D that must be
taken into account when computing the divergence term, namely
diag{D’'R’}. This is where Lemma 2 is particularly useful: al-
though the implementation of the transformations D and R with
the adequate boundary extensions may be straightforward, the
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explicit computation of the coefficients of the matrices R’ and
D’ is tedious—and Lemma 2 avoids this computation.

3) Applications to Standard Linear Transforms: In some par-
ticular cases of linear transforms, it is possible to easily compute
diag{DRY} analytically, as shown in the following.

a) Nonredundant transforms: Here, we assume that the
number of samples is preserved in the transform domain, and
more precisely:

¢ D is a full rank matrix of size N x N;

* R is also a full rank matrix of size N x N.

Then, the following lemma shows how to compute the diver-
gence term of Corollary 1.

Lemma 3: When D is nonredundant, the divergence term a

in (8) is given by

a=[1,1,..., 1" (13)
— —
L times
Proof: Because DR = RD = 1Id, we have

a = diag{ DR} = diag{Id}. [

Note that, when additionally the transformation is or-
thonormal, the reconstruction matrix is simply the transpose
of the decomposition matrix, i.e., R = DT. Consequently, in
corollary 1, the SURE becomes

_ L IE) - yIP + Zae (Dy) - o
€= N y y N y g
2 2
29 AT

1 2
=—||©(Dy) - D +
N H ( Y) Y|| N

0'(Dy) — o*

(orthogonality of R)

1 N 2 20/ 2
=— E (0i(w;) — w;)” + 2070 (w;) ) — (14)

where w; is the ith component of Dy i.e., it is a sum of the spe-
cific MSE estimates for each transformed coefficient w;. The
optimization procedure can, thus, be performed separately in
the transform domain [5]. This is specific to orthonormal trans-
forms: nonredundant biorthogonal transforms do not enjoy this
property; i.e., the optimization in the transform domain is not
equivalent to the optimization in the image domain. Yet, Lemma
3 still applies and is actually particularly useful for applying our
SURE minimization strategy.

b) Undecimated filterbank transforms: Here, we will con-
sider linear redundant transforms characterized by .J analysis
filters G;(z) = 3°,, gi[n]z~™ and J synthesis filters G;(z) =
>, giln]z~™ as shown in Fig. 1.

A periodic boundary extension implementation of this struc-
ture gives rise to decomposition and reconstruction matrices D
and R made of J circulant submatrices—i.e., diagonalized with
an N-point DFT matrix—D; and R,; of size N x N each, with
coefficients

Diles =Y Gill =k +nN]

[Ri]k,l = Zgl[k — [+ TLN]

We then have the following lemma to be used in Corollary 1:
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Undecimated .J-band analysis-synthesis filterbank.

EE

Fig. 1.

Lemma 4: When D and R are periodically extended imple-
mentations of the analysis-synthesis filterbank of Fig. 1, the di-

vergence term arin (8) is givenby @ = [T, a3, ... a}]T where
<Z%[nN]> L1, gt (15)
H,_/

Ntimes

and where ; [n] is the nth coefficient of the filter G (z 1) Gi(z).
The extension to filterbanks in higher dimensions is straightfor-
ward—the summation in (15) running over a multidimensional
index n.

Proof: According to Corollary 1, we have to compute
a; = diag{D;R;}. Since D; and R;; are circulant matrices the
product D;R; is also circulant and is built using the N-peri-
odized coefficients of the filter G;(z~")Gy(2), i.e.,

DRl = Z%[k — 1+ nN]

the diagonal of which yields (15). [ |
It is often assumed that G; and G satisfy the biorthogonality
condition

£

-1
Gi(z—le—jZ‘nk/Z\li)éi(zejZ‘rrk/Z\L-) — )\i

0 ~~
Fi(zejZTl'k/J\'I,, )

(16)

ol
Il

where M; is a divisor of /N, because undecimated filterbanks
are usually obtained from critically sampled filterbanks—for
which (16) holds with A; = M;. In this case, since (16)
actually specifies the coefficients ~;[nM;], we find that
a; = N\ /M;[1,1,...,1]".

An example of such a transform is the standard undecimated
wavelet transform (UWT) which uses JJ + 1 (3J + 1 in two
dimensions) orthonormal filters (see Fig. 2). In that case, the
equivalent filters are given by

éi(z) :2iGi(Z)
=H(z)H(z*)...H (221.72) G (227.71)
fori =1,2,...,J
é]+1(2) :2JG]+1(Z) = H(Z)H(Zz) ...H (ZZJ?I) .
They satisfy (16) for A; = 1. This shows that a; =
271, 1,...,1)T for all 4 = 1,2,...J and @y 1 =

277[1,1,...,1]*. In a 2-D separable framework, these values
are extended straightforwardly, taking into account that the 2-D
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filters still satisfy (16) for A\; = 1: the general result is, thus,
that e; is given by the (2-D) downsampling factor 1/M;.

III. EXAMPLE OF A SURE-LET DENOISING ALGORITHM

In Section II-C, we have proposed a general form of denoising
function (7), which involves several degrees of freedom: the
linear transformation, the number K of linear parameters, and
the thresholding functions ©y. This section studies a possible
choice. The denoising performance of the resulting algorithm
will be evaluated in the next section.

First, we will restrict ourselves to the undecimated wavelet
transform, although other linear transforms may in some cases
be more advisable—e.g., the undecimated DCT, the curvelet
transform, etc. . .

A. Choosing an Efficient Thresholding Function

A pointwise thresholding function is likely to be efficient if it

satisfies the following minimal properties:

* differentiability: required to apply Theorem 1—this rules
out pure hard-thresholds;

* anti-symmetry: we assume that the coefficients are not ex-
pected to exhibit a sign preference;

* linear behavior for large coefficients: because when a coef-
ficient is large, it can be kept unmodified—noise corruption
is negligible.

A good choice has been experimentally found to be of the form
0i(w) = a; 1t1(w) + a; ota(w)
where t;(w) =w and t2(w) = w (1 _ () (17)
in each band ¢. The nonlinear term, ¢3(w), can be seen as a
regular approximation of a Hard-threshold.

Similarly to what was observed empirically in other set-

tings [5], [17], adding more thresholding functions only bring

marginal (~0.1-0.2 dB) improvement to the overall denoising
quality.

B. Solving for the Linear Parameters

Finding the parameters a; j that minimize the MSE estimate
€ amounts to solving the linear system of (5) in which it is nec-
essary to replace F(y) by

J 2
Z Z a; kF; 1 (y) + lowpass

i=1 k=1

where F; ;, is the image obtained by zeroing all the bands ¢’ #
1 and processing the subband 7 with the thresholding function
ti(w). Note that, as usual in denoising algorithms, the (J+1)th
band, lowpass, is not processed.

As shown in Section II-C3b, the divergence term in
(5) has an exact expression, namely div{F;;(y)} =
4753 ebandi L (w). Alternatively, in particular, in the case of
nonperiodic boundary image extensions, it is possible to use
the approximate algorithm presented in Section II-C2.

C. Summary of the Algorithm

1) Perform a boundary extension on the noisy image.

6In our tests, the best performer was the Haar wavelet.
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G(z™1)

x G(z72) — w2 — 1G(2?) x

H(z™

H(z2)— w3 —{1H(2?)

Fig. 2. Classical undecimated wavelet filterbank for 1-D signal.

2) Perform an UWT on the extended noisy image.
3) For ¢ = 1....J (number of bandpass subbands), For k =
1, 2:
a) Apply the pointwise thresholding functions ¢;, defined
in (17) to the current subband w;.
b) Reconstruct the processed subband by setting all the
other subbands to zero to obtain F; (y).
¢) Compute the first derivative of ¢;, for each coefficient
of the current subband w; and build the corresponding
coordinate of ¢ as exemplified by (5).
end
end
4) Compute the matrix M and deduce the optimal—in the
minimum SURE sense—linear parameters a; s using the
matrix formulation of (5).
5) The noise-free image X is finally estimated by the sum of
each F; ;, weighted by its corresponding SURE-optimized
Q; k-

IV. RESULTS

A. Wavelet-Domain Versus Image-Domain Optimization

Before comparing our SURE-LET approach with the best
state-of-the-art algorithms, we demonstrate here that, in order
to optimize the denoising process, it is essential to perform
the minimization in the image-domain. Instead, an indepen-
dent wavelet subband processing is suboptimal, often by a
significant margin, even in a “tight” frame representation.
This is because we usually do not have energy preservation
between the denoised “tight” frame coefficients w and the
reconstructed image x = Rw : ||Rw/| # ||W]||. This is not
in contradiction with the well-known energy conservation
between the “tight” frame coefficients w = Dy and the noisy
image y : [Dy|| = [|y]|-

In Fig. 3, we compare a classical wavelet domain SURE-
based optimization of our thresholding function (17) with the
image domain optimization based on Lemma 4 in the frame-
work of the undecimated Haar wavelet transform. We notice
that the rigorous image domain optimization provides large im-
provements—up to +1 dB—over the independent in-band op-
timization. A closer examination of the “optimal” thresholds in
both cases indicates that this difference may be related to the dif-
ference between the slopes of these functions around zero: the
image-domain solution is actually much flatter, making it able
to suppress small coefficients almost exactly.

(A) (B)

0| 0
- - -Wavelet domain optimization|

- - -Wavelet domain optimizatior

[}

—Image domain optimization

N

——Image domain optimization

s 4
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Fig. 3. Comparison of the proposed SURE-LET denoising procedure with a
SURE-based denoising algorithm optimized in the wavelet domain when using
the undecimated wavelet (Haar) transform: (a) House; (b) Al.
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Fig. 4. Influence of the boundary extensions when using the undecimated
wavelet (Haar) transform: (a) Peppers; (b) House.

B. Periodic Versus Symmetric Boundary Extensions

It is also worth quantifying the effects of particular boundary
extensions. In Fig. 4, we compare symmetric boundary
extensions (rigorous SURE computation, as described in Sec-
tion II-C-2) with the periodic ones. As it can be observed, the
symmetric boundary extension can lead to up to +0.5 dB of
PSNR improvements over the periodic one.

C. Comparison With State-of-the-Art Denoising Schemes

We have compared our Haar wavelet SURE-LET denoising
algorithm with some of the best state-of-the-art techniques for
which the code is freely distributed by the authors: BiShrink [4]
(dual tree complex wavelet decomposition), ProbShrink [2] (un-
decimated Daubechies symlets) and BLS-GSM [1] (full steer-
able—eight orientations per scale—pyramidal decomposition).
Depending on the size of the images, 256 x 256 or 512 x 512,
we have performed 4 or 5 decomposition levels.

For a reliable comparison, we have run all the algorithms?’
on a comprehensive set of standard grayscale® images of size

TWe have used the same parameters as those suggested by the authors in their
respective papers and softwares.

88-bit images with pixels values between 0 and 255.
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(B

Fig.5. (a)Part of the noise-free Boat image. (b) A noisy version of it: PSNR =
22.11 dB. (c) BiShrink denoising result: PSNR = 29.99 dB. (d) ProbShrink
denoising result: PSNR = 29.97 dB. (e) BLS-GSM denoising result: PSNR =
30.36 dB. (f) UWT SURE-LET denoising result: PSNR = 30.24 dB.

256 X 256 (Peppers, House, Bridge) and of size 512 x 512
(Al, Barbara, Boat, Crowd, Goldhill), each one corrupted with
additive Gaussian white noise at eight different power levels
o €[5,10,15,20,25,30,50,100], which corresponds to PSNR
decibel values [34.15,28.13,24.61,22.11,20.17,18.59,14.15,8.
13]. We have then averaged the output PSNRs over eight noise
realizations (the different algorithms are applied to the same
noise realizations).

Table I reports the PSNR results we have obtained with the
various denoising methods, the best results being shown in
boldface. As we can notice, our algorithm (UWT SURE-LET)
matches the best state-of-the-art results for most of the images,
except for Barbara where it may be argued that, either a finer
subband decomposition, or a more sophisticated, multivariate,
thresholding function should be used in order to capture the
texture information that characterizes this image. Note also
how the SURE minimization is close to the MSE one (Oracle
in Table I), which is an evidence of the robustness of the
SURE-LET approach.

‘We want to stress that the denoising algorithm we propose in
this section is limited to a pointwise thresholding, contrary to the
above mentioned algorithms which involve some kind of multi-
variate thresholding. Because it simply boils down to solving a
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Fig. 6. (a) Noise-free House image. (b) A noisy version of it: PSNR =
18.59 dB. (c) BiShrink denoising result: PSNR = 29.77 dB. (d)ProbShrink
denoising result: PSNR = 30.33 dB. (e) BLS-GSM denoising result:
PSNR = 30.50 dB. (f) UWT SURE-LET denoising result: PSNR =
30.90 dB.

linear system of equations, our algoritm is quite fast compared to
BLS-GSM which has the best denoising results. More precisely,
the execution of our current un-optimized Matlab implementa-
tion of the whole denoising task lasts on average 3.5 s for 256
X 256 images and about 26 s for 512 x 512 on a Power Mac
G5 with CPU speed of 1.8 GHz and 1 GB of memory, whereas
Portilla et al. BLS-GSM lasts, respectively, 25 and 100 s on the
same workstation. Note that the main part of our computational
time is dedicated to the independent reconstruction of all the
subbands.

Other preliminary tests indicate that if, for images like
Barbara, we choose transforms that have more subbands (such
as the undecimated DCT), our simple pointwise thresholding
strategy may provide slightly better results than BLS-GSM (typ-
ically, 4+0.2 dB); moreover, it is possible to select a transform
or the other based only on the SURE values. We may also envi-
sion that thresholding schemes that involve inter and intrascale
dependences substantially improve the denoising performance,
as this is the case with orthonormal wavelet transforms [5].

‘We can finally notice in Figs. 5 and 6 that our SURE-LET de-
noising procedure gives quite a decent visual quality compared
to the best state-of-the-art spatially adaptive method.
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V. CONCLUSION

We have presented a new approach to image denoising that is
especially useful when redundant or nonorthonormal transforms
are involved. In this paper, we have emphasized the theoretical
part of our approach and its implementation aspects, in order
to make the SURE-LET principle easily applicable for others.
Accordingly, we did not try to take advantage of all the de-
grees of freedom (multivariate thresholding, increased number
of parameters, more sophisticated transforms) to make our ex-
ample of algorithm optimal. And yet, the obtained results are
quite competitive with the best state-of-the-art denoising algo-
rithms—which require involved statistical image models. This
indicates that there is a substantial margin of improvement of
SURE-LET type algorithms.
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