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Noisy data

Usual acquisition devices provide signals

Y = [y1, y2, . . . , yN ]T

that are corrupted with noise.

Frequent modelization using an additive white Gaussian noise
hypothesis

Y
︸︷︷︸

“noisy” signal

= X
︸︷︷︸

“original” signal

+ B
︸︷︷︸

“noise”

where E {BBT} = σ2Id.

Signal denoising consists in fiding a “good” candidate X̂ of X using
only the noisy signal Y: i.e., find the algorithm F such that

X̂ = F(Y)
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An Abundant Literature

Many approaches available
1 Explicit hypotheses on the signal

Statistics-based (Bayesian)
Regularization
Model fitting

2 Heuristic approaches
Filtering
Non-Local Means
Any combination of approaches 1 when the hypotheses are not
satisfied/checked

In the details, algorithms also differ whether they operate in the signal
domain directly, or in a transformed domain.

NOTE: Most approaches involve parameters which are often set
empirically.

The goal of this talk is not to compare algorithms,
but to propose a method to obtain (fast) algorithms.
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Statistical approaches

Based on an explicit knowledge of the prior probability density of the
signal to restore. Various objectives are possible, among which

Maximum A Posteriori (MAP)

Minimum MSE (e.g., Wiener)

This means that these methods assume that the following are given

The probability density of the noise q(B) = 1
(2πσ2)N/2 exp

(

− ‖B‖2

2σ2

)

;

The probability density of the original signal p(X).

Goals of this talk

Show that it is possible to

avoid statistical assumptions on the original signal (SURE)

devise non-iterative algorithms (LET) that are optimal
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Maximum a Posteriori

The MAP consists in choosing the estimate X̂ that maximizes the
posterior probability density

p(X̂|Y) = max
X

p(X|Y)

which in this case amounts to maximize q(Y − X)p(X).

Optimal detector: given noisy measurements of a signal X having a
finite number of values X1, X2, . . . , XK occurring with probabilities p1,
p2,. . . , pK , the MAP minimizes the error probability

P

{

X̂ "= X
}

NOTE: Description of the prior p(X) may require many parameters.

For signals with large, or infinite number of levels, the probabilistic
optimality of the MAP becomes irrelevant ! MSE.
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Minimum MSE: Wiener

The Wiener “filter” consists in finding the linear1 estimate, X̂ = ÂY,
that minimizes the Mean Square Error (MSE)

E

{
1

N
‖ÂY − X‖2

}

︸ ︷︷ ︸

MSE between X̂ and X

= min
A

E

{
1

N
‖AY − X‖2

}

Solution: Requires only the knowledge of the covariance matrix
R = E {XXT} of the original signal

X̂ = R
(

R + σ2Id
)−1

Y

NOTE: Although very popular, linear processing is not well-adapted to the
processing of transient signals.

1if E {X} = 0 — an affine estimate is used, otherwise.
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Minimum MSE: Non-linear case

It is possible to solve Wiener’s problem without the linear processing
hypothesis (see e.g., Raphan/Simoncelli); i.e., find the optimal processing
F(·) that yields the estimate X̂ = F(Y) such that

E

{
1

N
‖F(Y) − X‖2

}

is minimized.

Solution: X̂ = E {X|Y}, the posterior expectation. This expression can
be simplified to

X̂ = Y + σ2∇r(Y)

r(Y)

where r(Y) = (p ∗ q)(Y) is the (marginal) probability density of Y.

NOTE: The optimal MSE processing is infinitely differentiable.

The optimal algorithm only requires the knowledge of the pdf of the
noisy signal ! no prior information is needed!
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Example

Assuming a Laplace prior, p(X) =
∏N

n=1
λ
2 e−λ|xn|, these statistical

approaches yield a pointwise thresholding involving T = λσ2:

MAP x̂n = softT (yn)

Wiener x̂n =
yn

1 + T 2

2σ2

MMSE x̂n = yn − T
e−λyn erfc

(
−yn+T

σ
√

2

)

− eλyn erfc
(

yn+T

σ
√

2

)

e−λyn erfc
(

−yn+T

σ
√

2

)

+ eλyn erfc
(

yn+T

σ
√

2

)

 

 

MAP

Wiener

MMSE
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Regularization approaches

Choice of a functional J(X) that is known to be small when applied to
the original signal. Typical choices are

Tikhonov (e.g., smoothness prior): J(X) = ‖RX‖2

Sparsity prior: J(X) = ‖X‖$0 ! J(X) = ‖X‖$1

Total variation (edge prior): J(X) =
∑

n |xn − xn−1|

The signal estimate X̂ is then selected as the solution of

min
X

J(X) such that ‖Y − X‖2 ≤ Nσ2

NOTE: Using Lagrange’s multipliers method, J(X) can be re-interpreted
as a statistical prior and the optimization equivalent to a MAP.

No explicit distance minimization between original and denoised signal.
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Estimation of the MSE without signal prior

Thanks to the white Gaussian noise hypothesis, Stein’s estimate

SURE(Y) =
1

N
‖F(Y) − Y‖2 +

2σ2

N
div

(

F(Y)
)

− σ2

satisfies2 E {SURE(Y)} = E

{

‖X̂ − X‖2/N
}

.

Moreover, SURE(Y) has a small variance (∝ 1/N), thus

1

N
‖X̂ − X‖2 ≈ SURE(Y)

NOTE: Particularly adapted for large data sizes (e.g., images).

No assumptions on the original signal X, no statistical characterization.

2Expectation taken over all possible realizations of the noise.
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A simple proof

On the one hand

E
{

‖F(Y) − X‖2
}

= E
{

‖F(Y)‖2
}

− 2 E {XTF(Y)}
︸ ︷︷ ︸

E{(Y−B)TF(Y)}

+ ‖X‖2

︸ ︷︷ ︸

E{‖Y‖2}−Nσ2

= E
{

‖F(Y) − Y‖2
}

+ 2 E {BTF(Y)} − Nσ2

and on the other hand (Stein’s Lemma)

E {BTF(Y)} =

∫

q(B)BT

︸ ︷︷ ︸

−σ2∇q(B)T

F(X + B) dNB

=

∫

σ2q(B) div
(

F(X + B)
)

dNB (by parts)

= E
{

σ2 div
(

F(Y)
)}
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SURE minimization

Because it is an estimate of the MSE of a processing, it is natural to
minimize the SURE for finding good estimates of the parameters that
define the processing.

Example: Donoho’s SureShrink; find the optimal threshold T such that
SUREsoft(.,T ) is minimal3.

N.SUREsoft(.,T ) =
∑

n

∣
∣soft(yn, T )− yn

∣
∣
2

︸ ︷︷ ︸
( ∑

|yn|<T

y2
n

)

+ T 2#|yn|≥T

+
∑

n

2σ2 d soft

dy
(yn, T )

︸ ︷︷ ︸

2σ2#|yn|≥T

− Nσ2

NOTE: Very few other examples in the SP literature (Pesquet et al.).

3#|yn|≥T is the number of coefficients yn such that |yn| ≥ T .
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Prior-free parametric processing

A change of emphasis

Standard Choice of a parametric prior, find the parameters from the
noisy data, then derive the optimal processing (e.g., MAP)

Proposed Parametrize the processing directly, then find the optimal
parameters (SURE minimization)

In the SURE-based approach, the signal estimation problem is replaced
by a processing approximation problem — i.e., approximation of a
functional, not a signal:

Y )−→ X̂
︸ ︷︷ ︸

standard

replaced by Y )−→ F(·)
︸ ︷︷ ︸

proposed

Optimization over a class of processings
vs. optimization over a class of signals
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Linear approximation

It is particularly attractive to perform a linear decomposition of the
processing onto a basis of elementary processings

F(·)
︸︷︷︸

X̂=F(Y)

=

Linear Expansion of Thresholds (LET)
︷ ︸︸ ︷

K
∑

k=1

ak Fk(·)
︸ ︷︷ ︸

elementary
“thresholds”

Advantages

Explicit description of the processing;

Using enough (reasonable) basis elements, it is possible to
approximate most non-linear parametric processing;

Minimization of a quadratic objective (e.g., SURE) yields a linear
system of equations (non-iterative solution).
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SURE-LET processing

Minimization of the SURE for processings described as a LET: the
coefficients ak of the linear combination are obtained as

{ak}k=1...K = arg min
{ak}k=1...K

1

N

∥
∥
∥

K
∑

k=1

akFk(Y)−Y
∥
∥
∥

2
+

2σ2

N

K
∑

k=1

ak div
(

Fk(Y)
)

−σ2

i.e., by solving a linear system of equations:

K
∑

k=1

akFl(Y)TFk(Y) = Fl(Y)TY − σ2 div Fl(Y) for l = 1, 2, . . .K

NOTE: When model order K increases, the variance of SURE increases
! MSE estimation quality decreases.

Non-iterative optimization, naturally fast.
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Transformed domain denoising

It is frequent to use linear transformations (wavelets, DCT) to represent
signals/images better: e.g., to “decorrelate” them, or to sparsify them:

W = DY
︸ ︷︷ ︸

analysis

! Y = RW
︸ ︷︷ ︸

synthesis

where RD = Id. Typical transformations may be

orthogonal — useful because of MSE preservation ! separate
processing of transformed coefficients;

redundant — useful because simple (coefficientwise) processing of
transformed coefficients is sufficient to produce high-quality results.

Transformed domain LET processing: F(Y) =
K

∑

k=1

akRΓk(W)
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Pointwise wavelet thresholding

Principle: use an orthogonal (non-redundant) wavelet representation
(e.g., symlet 8) and threshold each wavelet band using

γa,b(w) = aw + bwe−
w2

12σ2

where a, b minimize the SURE in each subband.
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Example of result

Noisy SureShrink SURE-LET pointwise

50

100

150

200

250

50

100

150

200

250

PSNR=15 dB PSNR=28.08 dB PSNR=28.33 dB

NOTE: Adding more parameters brings almost no improvement. Better
denoising efficiency requires multivariate thresholding rules.
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InterScale wavelet thresholding

The relative locality of the DWT implies that there may be a spatial
correlation between different wavelet scales: three potential
tree-structures — LH, HH and HL

LH1 HH1

HL1

LH2 HH2

HL2

LH3 HH3

HL3LL3

!
!

!
!

!!"

!
!
!"

“parent” !

“child” ! w

wp

Interscale thresholding consists in expressing the denoised estimate as

x̂w [n] = γ(w[n], wp[n])
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InterScale wavelet thresholding

Principle: separate the parent into large and small coefficients, and
within each zone so defined, apply a pointwise thresholding function:

γ(w, wp) = e−
(wp)2

12σ2

(

aw + bwe−
w2

12σ2

)

︸ ︷︷ ︸

small parents

+(1 − e−
(wp)2

12σ2 )
(

a′w + b′we−
w2

12σ2

)

︸ ︷︷ ︸

large parents

NOTE: DWT is orthogonal, hence w and wp are statistically independent
! same SURE formula as for the pointwise case.

PROBLEM: the wavelet coefficients are not exactly aligned from band to
band (filtering and downsampling effect). How to obtain a parent aligned
exactly with his child?
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Parent/child alignment: Group-Delay Compensation

Adequate high-pass filtering of the
lowpass LLj — which contains the
whole parent tree: W compensates
the group-delay difference between
the low-pass and the high-pass band.

Thierry Blu The SURE-LET Methodology 22 / 36

Image denoising
The SURE-LET Approach

SURE-LET algorithms in image denoising
Possible extensions

Orthogonal representations
Non-Orthogonal/Redundant Representations

Overview of the interscale SURE-LET denoising
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Example of result

Noisy SureShrink SURE-LET interscale

50

100

150

200

250

50

100

150

200

250

PSNR=15 dB PSNR=28.08 dB PSNR=29.29 dB

Best non-redundant transform-domain algorithm.
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Extension to multichannel denoising

Direct generalization by replacing:

scalar-valued by vector-valued wavelet coefficients;

scalar-valued by matrix-valued LET parameters.

Assuming R=covariance matrix of the noise, and g(x) = exp(−x/12)

γ(wn,pn) = g(pT
nR−1pn)g(wT

nR−1wn)
︸ ︷︷ ︸

small parents and small coefficients

aT
1 wn

+
(

1 − g(pT
nR−1pn)

)

g(wT
nR−1wn)

︸ ︷︷ ︸

large parents and small coefficients

aT
2 wn

+ g(pT
nR−1pn)

(

1 − g(wT
nR−1wn)

)

︸ ︷︷ ︸

small parents and large coefficients

aT
3 wn

+
(

1 − g(pT
nR−1pn)

)(

1 − g(wT
nR−1wn)

)

︸ ︷︷ ︸

large parents and large coefficients

aT
4 wn

NOTE: Automatically selects the best color space.
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Overview of the Multichannel SURE-LET denoising
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Undecimated pointwise wavelet thresholding

It has been observed 10 years ago (Coifman, Guo et al.) that redundant
DWT are substantially more efficient for image denoising.

Two iterations of a 1D UDWT

︸ ︷︷ ︸

R

︸ ︷︷ ︸

D

Perfect reconstruction condition: R.D = Id
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Undecimated pointwise wavelet thresholding

Thresholding rule

Defining Γa,b(W) = [γa1,b1(w1), γa2,b2(w2), . . . γaN ,bN (wN )], the
processing takes the form F(Y) = R.Γa,b

(

D.Y
)

where

γa,b(w) = aw + bw
(

1 − e−( w
3σ )8

)

and where the (ak, bk) are all identical within the same wavelet subband
— i.e., two parameters per subband.

The optimal set of parameters {a, b} is then found by minimizing the
global image-domain SURE.

NOTE: Contrary to the nonredundant case, a hard-like threshold works
better than a softer version.
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Undecimated pointwise wavelet thresholding

Undecimated discrete symlet transform

Noisy SureShrink SURE-LET

50

100

150

200

250

50

100

150

200

250

PSNR=15 dB PSNR=28.08 dB PSNR=29.49 dB

NOTE: Surprisingly, it is the simplest wavelet type (Haar) that works best.
Smallest support?
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Undecimated pointwise wavelet thresholding

Undecimated discrete Haar wavelet transform

Noisy SureShrink SURE-LET

50

100

150

200

250

50

100

150

200

250

PSNR=15 dB PSNR=28.08 dB PSNR=30.28 dB

NOTE: Surprisingly, it is the simplest wavelet type (Haar) that works best.
Smallest support?
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Linear modifications

It is possible to adapt the SURE so as to take into account

1 An arbitrary noise covariance: E {BBT} = R;

2 A distortion: Y = AX + B;

3 A non-Euclidian, but quadratic quality measure: E

{

‖Q(X̂ − X)‖2
}

.

Given all these linear modifications, the SURE formula has to be modified

SURE(Y) =
1

N
‖Q(F(Y) − A−1Y)‖2 +

2

N
div

(

RA−TQTQF(Y)
)

−
Tr(QA−1RA−TQT)

N

NOTE: Prior information on X may be needed when matrices involved are
singular. Application to deconvolution (Vonesch,Pesquet/Benazza/Chaux).
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Other noise statistics

It is possible to obtain unbiased estimate of the MSE for non Gaussian
statistics. Typically (Raphan/Simoncelli, Eldar) for

Additive arbitrary pdf

Exponential families of pdf

Example of the Poisson Unbiased Risk Estimate (PURE)

Estimate x from noisy Poisson measurements y

P {y = n} = xne−x/n!

Processing on y to obtain an estimate x̂ of x: x̂ = f(y)

PURE = f(y)2 − 2yf(y − 1) + y(y − 1) is such that

E {PURE} = E
{

|x̂ − x|2
}

NOTE: All these estimates are quadratic in F(·) ! LET parametrization.
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Haar and Poisson

The Haar wavelet transform has two important properties

Orthogonality, i.e., preservation of the MSE in the wavelet transform

“Propagation” of the Poisson statistics at coarser scales.

! PURE involving neighboring scales.
! thresholding function involving interscale dependencies.
! application to fluorescence microscopy images.

Natural extension (with Florian Luisier and Cédric Vonesch) of the
interscale SURE-LET approach to Haar PURE-LET.
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Overview of the multi-frame algorithm
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original image 3D median filter (8.4s)

Platelets (42min) PURELET (3.5s)
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Conclusion

Presentation of a generic framework for signal/image denoising.

Advantages:

Does not require hypotheses on the signal, only on the noise (SURE)

Linear approximation of the denoising process on a basis of
“thresholds” (LET)

Fast, non-iterative (SURE + LET)

Natural construction of multivariate thresholding rules.

Extensions to non-Gaussian noise corruptions.

Papers available at http://www.ee.cuhk.edu.hk/~tblu/
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