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MOMS: Maximal-Order Interpolation
of Minimal Support

Thierry Blu, Member, IEEEPhilippe Thévenaz, and Michael UnsEellow, IEEE

‘Abstract—\We consider the problem of interpolating a signal fint(KT) = fi. The parameteT that appears in this formula-
using a linear combination of shifted versions of a compactly-sup- tion is a sampling step—or the inverse of a sampling frequency.
ported basis functione(x). We first give the expression of thep's  ag this step-size gets smaller, it is usually required that the

that have minimal support for a given accuracy (also known as “ap- . . .
proximation order”). This class of functions, which we call max- interpolated functiorin. () gets closer to some functiof()

imal-order-minimal-support functions (MOMS) is made of linear  that shoulddeally represent the sampléfs.
combinations of the B-spline of same order and of its derivatives. The Shannon-Whittaker theory tells us that the chegige =

We provide the explicit form of the MOMS that maximize the ginc and?” < 1/F yields the exact reconstructigiy,, = f, pro-
approximation accuracy when the step-size is small enough. We y;ijeq that the bandwidth of this ideal functigifz) is limited
compute the sampling gain obtained by using these optimal basis . .
functions over the splines of same order. We show that it is already FO someflnlte_ m}erval [_F/2’ F/2). Unf_ort_unately, I|f§ IS not
substantial for small orders and that it further increases with the ideal. Band-limited functions do not exist in practice, if only be-
approximation order L. When L is large, this sampling gain be- cause no real signal is of infinite length. Moreover, the cardinal
comes linear; more specifically, its exact asymptotic expression is sinc function is not amenable to practical applications, because
2/(me) L. Since the optimal functions are continuous, but not dif- ¢ its infinite support, the slow convergence of a sum of shifted

ferentiable, for even orders, and even only piecewise continuous for . | d lativel ¢ instability in th f
odd orders, our result implies that regularity has little to do with S¢S, @nd correlatively, a strong instability in the presence o

approximating performance. noise.
These theoretical findings are corroborated by experimental ev-  Practitioners have long considerédite-supportinterpola-
idence that involves compounded rotations of images. torsyin:. They have designed them to be close tosihe, with
the hope that this would bring good approximation characteris-
. INTRODUCTION tics [12]-[14]. Others observed that what we will call “approxi-

HIS paper deals with the problem of finding a goodhation or(_jer”improvgs quality [15]-{17]. An exa_mple i;that pf
T interpolation model for fitting the uniform samples (not<€yS’ cubic kernel which has afr'ee parameter; its optimization
necessarily perfect) of a signal. The prevalence of interpolati8#fns out to be the one that provides the highest approximation
in digital image processing stems from a basic inconsisten@{der [18]. In order to provide computationally efficient algo-
between the world of natural phenomena, modeled by contfifims, these kernels were chosen to be piecewise-polynomial
uously-defined variables, and the world of computers, whe®@d of short support. Indeed, the size of the support is the most
discrete—and in practice, finite—data reign. This is especiaffjucial single element that rules the computational complexity
true of imaging where such models may include gener@i an mterpolauqn algorlthm. This is becau;e the evaluat.lon of
transformations such as rotations or translations [1], data: & SOme point: requires the computation & terms in
reduction and magnification [2], Cartesian-to-polar coordinafd), if 5 denotes the length of the supportaf,;. Furthermore,
conversions [3]-[5], data reslicing or resampling [6]—[8], imaggpls number increases exponentially with the dimension of the

warping [9], [10], gradient estimations [11], and many othergroblem.

Common to all these operations is the need to access the valub® weaknesses of this approach are twofold. Regarding the
of a signal in between samples. computational cost, the “small suppertinterpolation” prop-

The Classical Approach to InterpolatioriThe usual tech- erty appears much too restrictive, given that infinite support
nique for mapping a discrete signgl onto a continuously-de- ¢an be implemented at almost no additional computational cost
fined signalfi..:(z) is to express it on a basis made of shifts diL9]. Regarding the approximation quality, it is not ensured that

a functiony;y (), according to “closeness” to theinc is truly beneficial. To be more specific,
T the problem lies imowto measure this closeness. We have been
fine(z) = an%m (T - ﬂ) 1) investigating these issues in some depth [20], [21] and have

. . . i . proposed satisfactory solutions that are summarized in the fol-
vt 1S chosen so as to satisfy thieterpolation condition lowing paragraphs.

pine(k) = 61, wheredy, is Kronecker-delta; this ensures that o, Approach to Interpolation [22], [23]: A fast implemen-
tation of (1) can be devised, provided that; (z) itself can be
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wheree,, # f., In general. Yet, we still require consistencyduce the Fourier approximation kernel as the fundamental quan-
between the samples of the interpolated funciige(+7"), and tity for studying theL? approximation error (see Section Il).

the measureg;,. This implies that) ", c,o(k —n) = f; for In wavelet theory, the order of approximation is identi-
every integerk. Thus, the interpolation method consists of ied—and often, hidden—as theegularity order, i.e., the
two-step algorithm. number of regularity factorl + ~~!) that divide the scaling

« The first step involves prefiltering the discrete dgtaby filter [26]. Since noncentered splines of degiee 1 are known
the low-order all-pole filterh(z) = (3, (p(n)z—n)—l to be the smallest scaling functions that hasgularity order
which providesc,, = k., * f,,. This apparently unstable L, one may wonder whether these splines are also the smallest
filter can be implemented very efficiently by factorizatiorfunctions that havapproximationorder L. The answer is yes,
into a causal paitt, and anticausal pakt,; the f,, are first but it turns out that the splines are not the only functions that
filtered by h. in the forward direction, and then filtered reach this minimum. The full class of such functions, which
backwardby h,. This results in a fast and stable algorithmwe call maximal-order-minimal-support functions (MOMS), is
« The second step is similar to (1), with the difference th&haracterized in this paper (see Section [ll).
we use (2) instead. Obviously, the cost of this step is di- A finer estimation of the approximation error takes into ac-
rectly given by the size of the supportgfz). The smaller count the proportionality constant betwelgh — Pr f||r> and
the support, the more efficient the interpolation algorithn¥’“|| f~||L= as7" — 0. Unser [27] found a simple expression
Numerous experiments [19], [23], [24] have shown that the afpr this asymptotic approximation constant. Here, we minimize
ditional cost of prefiltering is almost negligible compared to this expression within the MOMS class, yielding new func-
second step. We thus claim that it is unnecessary—and defigns which we call O-MOMS (see Section IV). In other words,
mental to quality—to require that the support of the interpgmong all they's that are compactly supported [0, L], the
lating functionyy,, be of finite size, or, equivalently, that theO-MOMS of orderL is the one that yields the smallest asymp-
auxiliary functiony in (2) satisfy the interpolation condition. totic approximation erroff f — Py f||.>, whatever the function
This means that the choice of the functiptiz) is essentially - We also show how to design other kinds of MOMS kernels:
free except that, for computational efficiency purposes, we réuboptimal MOMS (SO-MOMS) and Lagrange-type interpola-
quire that its support be as small as possible. Of course, RS “I-MOMS” (see Section V).
matching between the interpolated data and the measures is stiffur theoretical claims (influence of the approximation order,
taken into account—in the definition of the prefilter. optimality of the O-MOMS,) are consistently confirmed by prac-
Approximation IssuesThe interp0|ation pr0b|em can a|sotica| eXperimentS (See Section Vl) There, we rate the interp0|a'
be reformulated in the following way: find the functigiy,, in ~ tion behavior of several MOMS kernels.
x These results point out that, belying a widespread opinion, it
Vr = span {<P (T - ﬂ)} (3) s definitely not necessary for the approximating function to be
nes regular to achieve a good approximation scheme; on the con-
such thatfin.(kT) = fi. At this stage, one must realize thatrary, we show that thé@estL? approximation of a function
interpolation is not the only method for approximating s not more than continuous. Depending on the evenness of
an arbitrary functiorf(x); and depending on how we measurgne approximation order, it may in fact have points of discon-
the closeness between two functions, it might not be the oghuity. Even used in a suboptimal method—interpolation—the
timal method. For example, if we choose thé norm, then O-MOMS perform significantly better than any other kernel of
the optimal approximation of € L within Vr is Prf, the the same size [23]. A nontrivial by-product of our findings is
orthogonal projection off onto Vr, which is in general dis- that the best kernels (used in interpolation or in orthogonal pro-

tinct from the solution prOVidEd by the intel’polation methoqection) are piecewise_po|ynomia| and can be expressed using
Itis Only when the function is Nyquist'band'”mited and Wherﬂ]erivatives of a Sp”ne of the same degree_

¢ = sinc that interpolation and orthogonal projection agree. A
fair evaluation of thd. approximation quality of, i.e., of Vr,
must thus consider the distance pto Vr, that is to say, the
orthogonal projection errdtf — Pr f]|Lz- When not otherwise stated, we often omit the range of in-
A rough evaluation of the approximation quality is given byeger values for infinite summations, as well as the range of real
the rate of decrease of the approximation errof’as: 0, also values for integrals. Thug,, should be understood 3s;,. ,
known as “approximation order” in approximation theory [25]and | f(z)dx should be understood g(s_oooo f(z)dz.
In mathematical terms, the propetty — Pz f||2 o« T" con- The conventional inner produgts; (x)sz(x)dx between two
stitutes a definition ofl. as the approximation order @f. As L2 functionss;, s», is denoted sy, s.), and the associated Eu-
can be expected, the approximation order of both the interpotgidean norm iq|.||..
tion and the least-squares approximation methods coincide. AThe Fourier transform of(x) is §(w) = fs(a:)e_j“"’”da:.
useful example is that of splines of degreevhich have order Let » be a positive real number; the Sobolev space

B. Notation

L=n+1 Wi} is defined as the collection of functions satisfying
o J(1 + w?)"|3(w)Pdw < co. By analogy to this definition of
A. Results and Organization of the Paper regularity, we extend|s||.- to noninteger values of by

We first give a short account of approximation theory and @fquating it to( [ |w|*"|5(w)|?(dw/27)) Y2 The smoothness of
our previous contributions to this matter. In particular, we intra functions(z) can thus be characterized by the maximuzm
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such thats € W7, this regularity exponent,,,.,. indicates that This condition implies that any polynomial up to degiee- 1
s(z) has|r] derivatives inL? for all » < 7,.x. There is also belongs toVr. Yet another equivalent form of (4) is

a direct connection witlpoint-wisesmoothness: it € W} ¥ P polynomial of degree< L — 1
with r> 1/2, thens(z) has at leas{r — 1/2| continuous $(0) =1and{ 3C, € R such that - (6)
derivatives [28]. > Pl —k)p(z —k)=Cp ae.

The Riemann zeta function is defined@s) = >, ., n~7,
which is convergent foR(s) > 1.

Most of the asymptotic expansions are presented with™
and “O(-)" terms: writing f () = o(z™) is equivalent to writing
limsup,_,q |f(z)/2™| = 0. In the same spirit, writing (x) = ) _ _
O(z™) is equivalent to writinglimsup, ., |£(z)/z"| < oo When the sampling steff’ is not small, or, equivalently,
(i.e., not necessarily 0). when the spectrum of the functiofi(z) has a significant

Noncentered B-splines of degreedenoteds™ (), are piece- content at high frequencies, the approximation error has to

wise-polynomial functions that are compactly supported withf#¢ characterized not only by a (integer) number, but by a

[0, 7 + 1]. Their exact expression is given by the formula  function: the Fourier approximation kernél(w). When the
approximation method is the orthogonal projection obtg

In the rest of this paper, we will use the latter condition as an
equivalent formulation of the approximation order.

B. Approximation Kernel and Asymptotic Constant

n+1 . . .
n : (z —k)Y§ the expression of this kernel is
0 =31 (1) o A
= K)o ) E(w)=1- (@) ¢(w). U]

where, by definition,z% is the one-sided power function\ye have recently shown [20], [21] that
max (0, z)™. Their Fourier transform takes the simpler form

A dw
. _e—dwy\"H — frllye = W)2E(wT)=— T 8
= () 17— rrl Wv( JPEWD) S +ps(T)  (®)

Jw

wherep;(T) = o(T™) if f € W5. More remarkable, this term
cancels on the average over all possible shifts of the function;
II. APPROXIMATION USING FUNCTIONS SHIFTED BY INTEGERS i.e., if we denotef!"] (z) = f(z — 1), then

A. Approximation Order and Strang-Fix Theory . 1 N ) PO dw
i oo [ W=l = [1iPED)

The notion of approximation order is crucial in approximax = oo or

Fion _theory since it governs thg rate of decreas_e of.the apPr@fally, we also know that the correcting teprp(T) in (8) van-
imation error asl” — 0. Specifically, the approximation orderighes'\whery () satifies Nyquist's band-limitation constraint.

is defined as the exponeiit such that the difference between 1 approximation efficiency of a function spade gener-
the functionf () and its orthogonal projectiofy-(«) ontoVr - ateq by shifts ofp(x) is thus directly given by the closeness
tends to O with'"; i.e., || — frllL> < const x T'". For this E(wT) to 0 in the frequency region where the functions to
property to hold, itis necessary to assume iffaf) and itsLth approximate are prominent; e.g.,[ian /T, = /T’| for functions
derivative belong td‘Q', L that comply with Nyquist sampling hypothesis.

In the case wher®’ is the space of /7-band-limited func-  \yhen y(x) satisfies Strang-Fix conditions of ordér it is

tions, thenp(z) = sinc(x) and it tums out thal f — frllr= <  easy, using (8), to find the asymptotic equivalent of the approx-
const x T, wherer is any positive number smaller than the ation error as — 0. The result takes the form
Sobolev regularity order of the functiof{x) [29]. Moreover,

if f(z) is indefinitely differentiable—this is the case of any If = frlle = Co I F P T + o(T") ©)
band-limited function—then the convergencefe{x) to f(z) whereC; is given by [27]
is faster than any monomidt”.

Here instead, we assume that:) is compactly supported. 1 Ve
Thus, the decrease rate of the approximation error cannot be Co =1 > 16 (2nm)? : (10)
infinite and is necessarily integer. More specifically, we will see T \n#0
(in Section I1I) that the support @ must be at least of length  In image-processing applications, it is more frequent for the
L, for ||f — fr|lr- to decrease wit’L. sampling stefd” to be fixed than to be tunable, perhaps made

To check the approximation order ¥f-, Strang and Fix es- to decrease toward zero. However, it can easily be checked
tablished in 1974 [25] the equivalence betwdeh order of ap- that the behavior of the approximation of smooth functions

proximation and the following conditions: whenZ" — 0 is also that of low-pass functions of decreasing
$(0) = 1 bandwidth when the step-size is kept constant. Thus, for very
{V neZ, ¢2nt+w)=O0Wh). (4)  low-pass signals—typically, images—the asymptotic constant

) . . provides quite a reliable quality measure. This justifies the
The Strang-_F_lx conditions (4) can also take the following fo”&pproach chosen in Section IV where we shall minimize
[30, Proposition 4.4]: this constant. Our choice will be further strengthened by the
Yn=0...L-1, 3C,eR empirical finding that the functiorp(x) that minimizes the
#(0) = 1 and < such that (5) asymptotic constant also tends to minimize the approximation
YPoulz—E)yo(z — k) =C, ae. Fourier kernelF(w) over the full Nyquist spectral range.
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I1l. M INIMAL -SUPPORTKERNELS MOMS IV. OPTIMAL SMALLEST-SUPPORTFUNCTIONS. O-MOMS

We now answer a question of consequence: Which are théVe now design\ in (13) in such a way as to minimizg; .
smallest-support functions that have a given approximationThis is equivalent to minimize
order L? Minimizing the support is indeed essential, as it en-
sures better localization, and hence fewer large-scale artefacts o( A)2 _ Z
for a given approximation accuracy. In addition, as pointed out
in Section I, itis computationally more efficient to have a small
support, especially in higher dimensions. under the constraink(0) = 1. Rewriting this expression in
Theorem 1: (MOMS) For a given approximation ordés the terms of\,, withn = 0...L — 1, we have
smallest-support kernel(x) is piecewise-polynomial of degree
L — 1 and its support is of sizé. Moreover, the full class of C(A)? = Z (_1)(;&‘71)/2 202L—-k-1) NN (14)
these minimum-support functions is contained within/adi- (2m)2L—k=t

A(2jmn)|?
(2jmn)*

n#0

0<k,l<L—1

mensional vector space parametrized as ket cven
L—1 . which involves the Riemann Zeta function defined in the nota-
o(x) = Z A5z — a) (11) tion part of this paper.
= dx™

_ ) ) A. Solving the Minimization Problem
where)y = 1, and wherez: is an arbitrary shift parameter cor-

responding to the lower extremity of the supportygf:). We
can also write (11) using Fourier variables

Numerical Method: This problem is obviously quadratic and
can be rewritten in matrix form as: MinimiZ€ UX under the
constrainteytX = 1, where

; L

. — e ¥

Plw) = e A(jw) (L) (12) (—1)EDRIEE D for0< k1< L—1
e [Ulkt = § andk + 1 even

def 0, otherwise

whereA(z)= 25;3 Anz™ is a polynomial of degreé — 1. .
Some remarks on this resulire as follows. X = (Ao, AL-1)

. : - t

« The solutions to our problem are neither trivial, nor have €0 = (1,0,...,0)".

an infinite number of degrees of freedom. This will prove o ; o o 9
extremely convenient in the sequel, where we addreS8€ matrix involved)U, is positive definite sinc€(A) = 0

some design problems implies A(2n7) = 0 for all n # 0; that is to sayA = 0
« The most obvious ana also smoothest member of tchauseA is a finite-degree polynomial. The solution is thus

L -1 tp7—1 _
family is the B-spline of degre& — 1. This proves that UNique and takes the for&.in = (U™ eo)/(eo"U™"ep). Un-
B-splines have the smallest support for a given order. fortunately, the numerical matrix method tends to be ill-condi-

« The minimal-support functions are piecewise polynomia&one‘j for values of_ that are large but still of interest.

with uniform knots. Moreover, due to the multiresolution Analytical Method: We show now that an analytical ap-

property of B-splines, the MOMS can be seen to enjoy'%foaCh based on polynomials and continued fractions will
related, though less simple, multiresolution property. enable us to find the explicit solution of our problem. Let

L—1 L
« The computational cost dfth-order MOMS interpolation YO () be the MOMS of ordet that minimizes the asymp-
is exactlythe same as that dfth-order spline interpola- totic approximation constan€(A). Let us also denote by

. . 1
tion. This is because these functions all have the same stig<(*) @nd Cz the polynomial associated tp;™"(x) ac-
port and the same degree. cording to (12), and the corresponding approximation constant,

; PR S | il
The simple Fourier expression (12) makes it possible spectively. The functions;,  are called optimal-MOMS or

. L . -MOMS. The result is as follows.
express the asymptotic approximation constapt Using the _ o
first-order equivalent of in the neighborhood a2nr, that is Theorem 2:(0-MOMS) The O-MOMS are specified

S(w) ~ (A(2jnr)/(2nm)E)(w — 2nm)E, we find entirely by the induction relation
2
X
(13) o) =Ml + gopa
which is initialized byA;(z) = Ax(x) = 1. Moreover, the
From this equation, we can easily obtain the asymptotic const&ffimal constanC’,, is given by the explicit expression
for the spline of degreé — 1, C5 = /2¢(2L)/(2=)%, which

A1 (z) (15)

L
first appeared in [27]. CL=——7——=. 16
PP [27] 2LV + 1 (16)
IFor our experiments i > 1 dimensions, the kernet , that we consider ) ) ] )
is obtained through a tensor product of the one-dimensional ke, i.e., (See the proofin Appendix B.) Some remarks concerning this

%Z(Il:wz- -wp) = @(@)p(e2) .. e(@n). result are as follows.
After this paper was written, we became aware that Theorem 1 had already . . -
been published by Ron [31] in a more mathematically abstract and general con- * The induction (15) shows that the coefficients/of (37)

text—the theory of exponential B-splines. are positive and that this polynomial is even. We can thus
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TABLE |
SAMPLING GAIN OF O-MOMS OVER B-SPLINE OF SAME DEGREE

orderL“l 2 3 4 5 6 7 8 9 10
YL ||1 1 1.223 1.463 1.707 1.951 2.195 2.437 2.680 2.922

deduce that its coefficients of even power (ud.te 1) are TABLE I
all strictly positive; i.e., they do not vanish. ©-MOMS oF OrbERS1T0 6
* WhenL is evendeg A;, = L — 2, which implies that the Co
optimal basis functiongy,(x), is continuous and that its O-MOMS Cs
first derivative is discontinuous. Whéehis odd,deg A, = 0( ) 1
L — 1, which implies thatp(z) is discontinuous. This wolz) = Al
has an instructive and somewhat counterintuitive conse- 2 polz) = B (x) 1
guence: As far as approximation is concerned, there is 203 _ 32 1 42 52 1
no link betweerregularity andquality! In particular, this Pol®) = (@) + i (7) 18
tends to invalidate interpolator design based on regularity; 4 03 (z) = B(2) + 5 =P () 5
such an approach has moreover proved unsuccessful in a 408N gl 1 & e 4 1
recent publication [32]. This does not mean that regularity 5 | ¢b(r) = Bw) + g5 () + i 0(7) | s
is a useless parameter. For some applications it is indeed 6 | ©5(z) = 8°(x) + 558 (@) + e B°(2) | 51
necessary to have a differentiable model, but this require-
ment should not be misinterpreted as a condition related
to the accuracy of the approximation. This theorem shows that the gain is quite substantial, and
that it even tends to infinity a& — oo, which we did not
B. Asymptotical Approximation Gain expecta priori. This linear behavior is to be compared with

the constant—asymptotic—gain, namety of spline versus

By construction, the optimal kern ) minimize the X . .
y b ed&é Daubechies approximation [21].

asymptotic constar®'; among all MOMS. It is interesting to

compare the minimal constantwith that of splines in such a wa

that it reflects the gain in sampling density brought by using: Examples

O-MOMS instead of splines. The first six O-MOMS are shown in Table Il with their
Assume that we wish to reconstruct a functiffx) using asymptotic constant relative to that of the spline of same

either B-splines of ordeL (i.e., of degreel. — 1) with sam- order. The asymptotic gain of O-MOMS over splines of same

pling step-siz€;, or O-MOMS of the same order with samplingorder is given in Table | for orders. .. 10; the figures clearly

step-sizel’,, such that thd.? approximation error is the sameconfirm the asymptotic linear behavior that we have predicted

in both cases. We want to find the relation betw&erand7,,. in Theorem 3.

Assuming that in both cases the oversampling @f) is large The optimal fourth-order function is plotted in Fig. 1 where

enough, we get the approximation error from (9) which provideisis compared to the cubic B-spline. Note the cuspat 0

CoTEH| f Pz = CTTE| £P||r.2 with obvious notations for which indicates thap?2,(z) is not continuously differentiable.

the spline and O-MOMS asymptotic constafits andC_ . We Moreover, the plot of the ratio of the approximation kernels of

finally obtain the sampling gainy, the cubic O-MOMS and the cubic spline in Fig. 2 shows that
the approximation using,(z) is always better than that using

detT}, O —L 33(z). The gain in apprroximation error even exceeds 6 dB

TL= T <C:> over half of the sampling bandwidth. According to (8), using

/L the optimal function instead of a cubic spline for reconstruction
= <(2L)'> / (2(2L + 1)C(2L))1/2L, (17) (herel = 1), we expect at least a 6 dB SNR gain for signals

L 2m whose frequency content lays essentially in the first half of the
frequency domain. Obviously, this gain increases dramatically
when the signal is more low-pass.

Theorem 3: (Asymptotic gain) When the ordet is large,
the sampling gain of O-MOMS over splines that have the sam

approximation ordetincreases linearlyith L. Specifically V. O b
. OTHER DESIGNS

vo = 2L+ 0(log L). (18) A. Suboptimal MOMS (SO-MOMS)
e

Because the O-MOMS are discontinuous for even degrees
Proof: A basic application of Stirling’s formula, (i.e., odd orders), it might be useful to design suboptimal in-
logn! = log(v2mne™"n™) + O(n~!), provides terpolators that have a continuous derivative, while minimizing
1/Llog ((2L)!/LY) = log(4L/e) + O(L™1'). Taking the the asymptotic approximation constantamong their class. Those
logarithm of 4 in (17), we readily obtain (18) after somesuboptimal-MOMS or SO-MOMS, thus satisfy the same min-
manipulations which involvelog ((2L) = o(logL) and imization problem as the O-MOMS in Section IV, with the re-
log(2L 4+ 1) = O(log L). striction thatA(z) is of degree at most — 3 in (14).
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4 885
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oe2l
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Fig. 1. Optimal functiony, (solid) and B-spline function (dashed) fér= 4

Lo (4p) which is minimal fora = 0 andb = (¢(8))/(472¢(6)) = 1/40.
14 ; Eepine : We thus have
12| | Fhola) =Aw) + = p(a)
@ o 40 dx?
= 10F : - L
E Cro =15 (19)
S s8f 1
o The IossC /Oj4 1.45 over the discontinuous O-MOMS
S 6t ] apprOX|mat|on constant is the price to pay for having a contin-
E uously differentiable interpolator.
S, | CaseL = 6: Ifwelet A(x) = 1 + az + bx? + c2® in (12),
§ then the asymptotic constafi{ A)? takes the form
2_
2 _22C10) | 52C(8) | 2 2¢(6)
0 . , L | COF = +Y s T Gy
0 0.1 02 0.3 0.4 0.5 2((8) ,,2¢(10) | 2¢(12)
Normalized frequency —ac (2m)8 - (2m)10 T (202

Fig.2. Ratio between the optimal approximation kernel and the correspondmlch is minimal fora = ¢ = 0 andb = C(lO)/(47r2C(8)) —
B-spline kernel forL = 4. -
5/198. We thus have

While a systematic analysis of those SO-MOMS is possible, rog2

< < 5 df -
we prefer to restrict ourselves to the cdse= 5,6 which are Pro(@) =F7(@) + Joc =5 0°(@)
of most interest to us. The corresponding interpolators are still c-.
short and their degree is not too large, so that the interpolation al- C, = 5 (20)
gorithm is reasonably fast. Note that fbr< 4, the SO-MOMS P 207

are the B-splines of same order.

CaseL = 5. If we let A(x) = 1 + az + bz? in (12), then The IossC /C =2 2.66 over the continuous O-MOMS ap-

the asymptotic constadt(A)? takes the form prOX|mat|on constant is the price to pay for having a twice-con-
tinuously-differentiable interpolator. As a consequence, we rec-
ommend SO-MOMS only in operations that require some depth
C(A)? = a2 2¢(8) e 2¢(6) 90 2¢(8)  2¢(10) of differentiation. Moreover, notice that, for orders smaller than
T (2n)8 (2m)6 (2m)8 1 (2n)10 five, SO-MOMS coincide with B-splines of same order.
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TABLE Il TABLE IV
SO-MOMSOF ORDERS1 TO 6 I-MOMS oF ORDERS1 TO 6
I SO-MOMS Cso L L-MOMS G
Cs Cs
! #olz) = F°(2) ! ! () = (a) :
1/ — Al
2 Plof@) = B'(2) ! ’ D= :
) D2 () — 33(z) — L2 320y .
3 \Pgo(x) — ,82(.1') 1 3 1 (l?) ‘j (‘L) 8?127'5 (l) 7.1
) 4 4,93(1*) = ,33(:1:) - 1d—,/33(1') 7.8
4 Plo(@) = F(x) L 4 VI4 5 d? 46[1362 3 4t gt
n " T E o 1 51 9i(@) =0(z) - 51520 () + g aaf(z) | 54.8
51 wsol@) =8 @)+ 5420 | 1 5 5 TE TR
S B 6| o) = Be) - 1 B) + e Pla) | 64T
6 | wsol@) =3(2) + 195 428°(®) | 37

We have summarized the values of the SO-MOMS i
Table 1I, with their asymptotic constant, expressed in functio ers-
of that of the spline of same order.

Qrder. Note that these functions are discontinuous for odd or-

VI. EXPERIMENTS

B. I-nterpolatmg- MOMS (I_MO_MS) ) The theoretical results that we have obtained in the previous
Itis also possible to constrain the MOM%x) to be interpo- sections are of special relevance to image processing. As
lating. Note however that the interpolation condition is unnecegpserved in [34] and [35], the state-of-the-art interpolation
sarily restrictive and that it leads to marquedly suboptimal intefsethod that performs best uses splines as basis functions. We
polation. This is confirmed by our experiments (see Section V)| show that we can obtain visible improvement by using
Accordingly, we are generally not in favor of this condition, eXz,pic O-MOMS instead of cubic splines in an interpolation
cept for applications where memory is tight and the image arrgyperiment; the results for O-MOMS of other degrees also
needs to be stored in byte format. _ , ~ show the same trend [23], [24]. This is a very practical issue
~ Due to the size of the support gf the interpolation condi- gjnce, as indicated in introduction, there is no penalty from the
tions ¢(n + ) = 6, add up toL — 1 constraints ifa is in-  h4int of view of computational cost [19]. The algorithms are
teger, and td. constraints otherwise; these equations match tE%sentially equivalent: The functions are cubic polynomials,
L degrees of freedom of the MOMS. In fact, these interpolatogge the same support, and the recursive prefilters have the
derive from Lagrange’s interpolation formula [17], [33], [34]'sgme degree.

If we denotel(z) = z(x +1)...(z + L — 1), then Description of the ExperimentsTo demonstrate experimen-
Pe]—a) ) tally the superiority of the new interpolators, we rotated im-
olz) = { Pl OS2I ages using the most direct method, i.e., we implemented the
0 otherwise, following steps: interpolation of the discrete imabé:;, [) into

, I(x,y); rotation by the anglé, giving Iy(z,y) = I(xcosd —
which can be shown to belong to the class of MOMS of odder ysing, z sin 6 +y cos A): and finally, resampling at the integers

We can obtain the polynomiadl(z) defining these I-MOMS get the discrete imagk (. {).

directly, by expressing the interpolation condition in the Fourier We have used four sets 612 x 512 images: 1) a circular

Domain as symmetric testimage that exhibits increasingly high frequencies
near the center, which provides a direct insight of the behavior
Vel on+a)=é, of the interpolation method with respect to spatial frequencies;
¥ 2) “Lena,” which is significantly more low-pass than the other
YweR, Z @(w + 2nar )l M@t — 1 images, and thus is more robust to interpolation; 3) “Barbara,”

which has a strong texture content; and 4) a boat image “La
Cornouaille,” particularly interesting for its thin straight lines.
Sincey(x) is of orderL, we have that(w + 2n7) = O(w’) To amplify the differences, we applied 15 successive rota-
whenn # 0. This precisely means that tions by an angle drx /15, and the final result was finally com-
pared to the original. This was repeated for each interpolators.
Jw ~ I The final cumulative results are shown in Figs. 3 and 4, and the
m> +0w"). (21) obtained SNR are computed. By increasing the order, we can
saturate the SNR at a limit value that depends on the high-fre-
Our polynomial is thus given by the firdt coefficients of the quency content of the image. For reference, the measured satura-
development ob~**(z/(1 — e~*))* in Taylor series around tion levels are 6 dB for the concentric circles, 37 dB for “Lena,”
the origin. For example, ik = L/2, the -MOMS are centered: 34 dB for “Barbara,” and 40 dB for “La Cornouaille.”
The first six I-MOMS are given in Table IV with their asymp- Influence of the Approximation OrderThe rotated images in
totic constant, expressed in function of that of the spline of sarkég. 3 confirm earlier practical findings [34]-[36] that a higher

n

i =5
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hilinear SMNRE = 1B.64B Keys SNR = 28.24B cubic spline SNRE = 32d4B

Fig. 3. Comparison between three interpolation methods of increasing order: 15 rotations of the top images by ad@ante ®he higher the approximation
order, the better the quality.

order is beneficial to quality. Note that cubic splifesder= 4) Influence of the Approximation ConstariVe then set the ap-

win over the lineaforder= 2) and keysorder= 3) methods, proximation order to fourand compared the interpolation results

not only because they are of higher order but also because thsing kernels that have the smallest size, i.e., the cubic MOMS.

are not constrained to satisfy the interpolation condition. Once again, the theoretical prediction is confirmed by the exper-
We made our experiments on a Power Macintosh G4/45@ent: among interpolators that have the same order, the smaller

MHz. The computation time for the rotation experiment corrdhe asymptotic constant (see Tables Il and Ill), the better the

sponding to a nonoptimized implementation of the linear, Keyguality.

and cubic spline kernels was 5 s, 12 s, and 14 s, respeciively. As expected, the cubic I-MOMS suffers from the interpo-

lation condition, which makes it as fast as Keys’ kernel (12 s

3A specialized implementation developed in our group at EPFL is actuauH . but hind . . This i
faster than Keys' interpolation [24] In our experiment) but hinders approximation accuracy. This is
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cenbic FMOMS SNR = 26.1dB  cubic spline SNR = 30.44dB

cubic - MOMS SNR = 176dB  cubic spline SNR = 22.2dB = cubic O-MOMS SNR = 26dB

Fig. 4. Comparison between three interpolation methods of same (dtder 4), same support, and of decreasing asymptotic constant: 15 rotations of the top
images by an angle afr/15. The smaller the asymptotic constant, the better the quality. Remarks: The interpolation condition of the cubic I-MOMS is detrimental
to accuracy; the cubic spline is the smoothest cubic MOMS, but does not provide the highest quality; the cubic O-MOMS minimizes the asymptbamomgstan
cubic MOMS and gives the best results, even though it is not smooth.

a constraint from which cubic B-splines and cubic O-MOM#aithful to the thin lines of the boat image, and to the striped pat-
are free. As it appears, the higher regularity of the spline doesn of Barbara’s trousers.

not seem to be at play since the cubic O-MOMS has a better
performance, despite being barely continuous. Moreover, it re-
quires the same computation time. Note that the gain in SNR is
quite large, which shows that a careful design can really bringWe have shown in this paper how to design basis functions so
a dramatic improvement. A visual inspection reveals that, coritat they have the largest approximation order for a given sup-
pared to cubic spline, the cubic O-MOMS interpolation is mongort. This defines the class of MOMS which are optimal in this

VII. CONCLUSION
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respect and also have the same fixed computational cost. The degree< L — 2. This also means that for all polynomial
MOMS are intimately related to the B-splines of same order. Q(x) of degree< L — 2, there exists a consta@t, such
We were able to further minimize the asymptotic approximation  that)", Q(z — k)i(z — k) = Cg. In addition, we see
constant [27] among this class of functions, which provided us  that if P(z) = z, thenQ(z) = —1, thus,— ", ¥(z —
with the O-MOMS. A practical image rotation experimenthas k) = — >, ¢r(z — k). Integrating ovei0, 1] yields to
shown that, used as interpolators, these new basis functions are [ = [ = 1. Thus,(x) satisfies the Strang-Fix
superior to the B-splines of same order which, until now, were  conditions of ordet. — 1.
considered the state-of-the-art in interpolation. The only disad-Thanks to these properties, we can reason by induction on the
vantage of the O-MOMS is that, unlike B-splines, they are ngpproximation order, settingz_1(z) = ¥(z). This induction
very regular. This is why we also designed SO-MOMS to a@focess yields a set df + 1 distributions{y;_,.(x)}n=o. L
dress this regularity issue. that enjoy the following properties:

The set of new basis functions that we have presented in this i) 7_n(z) is compactly supported withifa, b — n].

paper should be especially attractive for biomedical image pro- ii) o7 _n(z) satisfies Strang-Fix conditions of ordBr— 7.

cessing, where quality is a key concern. i) @7, (z)islinked tog, () through the Fourier relation-
ship
APPENDIX A .
PROOF OFTHEOREM 1 (“MOMS”) or(w) = A" HW)Pr n(w).

Letyr(x) be anLth-order kernel thatis compactly supported

This expression is obtained directly by taking the Fourier
within [a, b]. That is, it satisfies (6). Let us define the function . yoy g

b transform of (23). Note that it can also be written as the
() by convolutionyr,(x) = A" txer_.(z).
_ ' 29 Conversely, if we take a distributiop(z) = ¢o(z) that has
P(x) =z —n) (22) zeroth-order approximation and that is supported wifhii'],
thenyr,(x) defined byp, (x) = AL~ (z) is compactly sup-
where the differentiation is taken in the sense of distributiongerted within[a, & + L] and has approximation ordér

n>0

Thus, we have Now, minimizing the support ofz(z) means finding the
smallest such that)(x) exists. Of course, this is possible only
o (x) = p(x) —ap(z - 1). (23) if ¥ =b—L > a, whichyieldsy(x) as a single-point distribu-
tion. This shows that the minimum size of the supporpgfz)
Then, we have the fo”owing properties: isb — a = L as claimed in the first part of the theorem.

Finally, we know from distribution theory [37, Th. XXXV]
that the only distributions that have a support of zero-measure
(Strang-Fix condition of order 1) which is equivalent e finite linear combinations of the Dirac distribution and
S ¢ (x —n) = 0 in the distributional sense. Becausé)f its derivatives at this point. Thus, for the minimal-sup-

of this identity, we also have the following alternativé®©rt function ¢y (z), there exist constants\, such that

i) t(z) is compactly supported withifa, b — 1].
This is a consequence of, ¢r(z — n) =

definition of 1(x): P@) = 350 0™ (x — a), where the sum is finite
and where), = 1 becausef+ = 1. This means that
_ , er(x) = Y50 An(d™)/(de™)B" (z — a). Since we must

P(o) == > #le—n). restrict ourselves td.? functions, the summation has to run

n=ol from O to L — 1. This provides the final result (11) of our

According to this expression, the support/df:) is con- theorem.

tained within] — co,b — 1]. But, according to the ini- APPENDIX B
tial definition (22), we also have suppdit) C [a, +oo. . .
Hence, we conclude suppat) C [a, b — 1]. PROOF OFTHEOREM 2 (“OPTIMAL-MOMS")

ii) #(x) satisfies the Strang-Fix conditions of order 1. Fourier Version of the Minimization Probleminstead of the

To prove this, we differentiate (6). This yieldsMatrix U, we use thé/ function defined by the entire series

S P —B)pr(n— )+ 3, Ple— k) (x — k) = 0.
We replace the first term of this equation B (since _ nt12€(2n) o,
P’ is a polynomial of degree. L — 1) and¢/, (x) in the Uz) = Z(_l) 2 2 (24)
second term by its expression (23). Sinces compactly
supported, we easily obtain

n>1

This series converges in the complex plane fer < =:
within the convergence disc, a classical relation provides
ZEP(JC —k) = Pla—k+1))¢(@—-k)=-Cp. U(z) = zcothZ — 1 [38]. A straightforward consequence of

k Q(;;:k) (24) is that

T

Now, if P(x) spans the entire set of polynomials of degree/Q’T U(e)ei? de
0 otherwise.

_ : _J(=nERECM evens 0 (25)
< L—1,thenQ(z) spans the entire set of polynomials of /, 2
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Replacingn by 2L — k — [ in (25) allows to rewrite (14) as

[

L+l+1

Z )‘k)‘l 22L k—1

k,1=0

u(ej(-))ef(QLfkfl)de_e
27

which becomes

C(A)2 — (—1)L+1 /277u(eJG)A(ere))\(_2ej0)e—2j[,ed9

2L+1
2 +7r 0

after some rearrangements.

Finding the polynomial\ ,(») of degreel.— 1 that minimizes
the quadratic functional’(A)? under the constraimt(0) = 1
yields the following equivalent conditions:

27
/ U )AL (269)e =50 4 =0, Vn=1..L—1
0

and Ar(0) = 1, which are valid forL > 1. The L —

conditions above are clearly equivalent to requiring that tIJiB

polynomial seriesAy(22)U(z) is lacunary in the powers
7L+1 7L+2 72L71
ey

gree< L,Pr(z) = Y o< PLn?", and an entire series,

Qr(z) = 3,50 4r,n2", such that

U(3) M) = Pue) +22Qu(z) - (26)

andA 7, (0) = 1. Note that if another polynomiadl/ (») of degree
< L—1 satisfies (26), then, because of tivécity of the solution
of our minimization problem, we hav&/(») = M(0)AL(z).
We will see next that the continued-fractiondf ) involves
precisely such a polynomial/(z).

Also note that, as a consequence of the minimiz
tion of the quadratic form, we find a simplified ex-

pression for C? = C(Ap)?. Specifically, we have
O = (1)/@n) [T U AL(—je? e~ 14dg, that is
to say,C% = (—-1)LQ.(0).

The Continued Fraction oftf(z) and its Link with
Ar(z): Decomposing the entire functidi(z) in a continued
fraction consists of iterating the following procegs:)
UO) + 22 /U, ), Ui (2) = Ui (0) + 2° /(Ua(2)) and so forth.
In the end,f(z) is given by the continued fraction

U(z) =ag+
() = ao p—

= (27)

22
0,2+$

the continued fraction ofanh(z) is known in [38], so is that
of zcoth 2 — 1. Thus, the coefficients,, in (27) are given by
a, = 2n +1forn > 1 andag = 0.

If we keep the firstn terms only we get thesith conver-

. We can thus express our solution
under the following form: There exist a polynomial of de-
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* Induction equations [38]

An(2) =apnAn_1(2) + 22 A, _o(2)

Bo(2) =a,B, 1(2) + 22 B, _2(2) (28)

initialized by Ao(2) = 0 andBy(z) = 1.

e deg A, = 2|n+ 1/2| anddeg B, = 2|n/2], which can
easily be shown using the induction relations (28) satisfied
by A, andB,,.

By construction, the difference betwe#fi~) and itsnth
convergentd,,(»)/B,(») is O(2*"*2), that is to say,

— 22n+2Rn(z)

(29)

whereR,,(z) is entire.

If we replacez by »/2in (29) and leth, = L — 1, we observe
that we obtain two polynomiald j,_; (»/2) of degree< L, and
Br_1(z/2) of degree< L — 1 such that{(z/2)Br_1(z/2) =
Ap-1(2/2) + 22"S1(z), whereS(z) is entire. This is exactly
e form of (26) which we know to have a unique solution such
thatAr,(0) = 1. Consequently, we have

Br_1(3)

Arl) = BL—1(§)

Moreover, using the induction relation (28) and the known value

for a,, we getB,,(0) = (2n + 1) B,,_1(0). Thus, replacing3,,
by the corresponding value of,; forn = L —2, L — 1, L,
we easily get the induction (15) fa;,.

Asymptotic  ConstantFinally, in order to eval-

uate the asymptotic constan€;, we need to com-
pute @Q.(0), where Qr(z) is the entire series de-
fined by (26). Because of the induction (15), we have
22Qr41(2) = Qr(z) +1/(4(4L? — 1))Qr_1(2). This means
that Qr(0) = —1/(4(4L? —1))Qr.—1(0). Due to the link
2 = (-1)LQL(0), we thus have
02
2 _ L—1
“L= 4(4L2 — 1)
By induction onZ, and by using”? = 1/12, we now easily get
[16].
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