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Noise in Images: Noise Sources
ment Model

Noise in Images: Noise Sources

Noise: a random, undesirable, and often unavoidable perturbation.

Two main sources:
m Random nature of photon emission and detection;
m Imperfection of the electronic devices (photosensors, A/D
converter,...).

Tremendous impact on image visualization and
analysis (segmentation, tracking, recognition,...).
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Noise in Images: Noise Sources
Measurement Model

Noise in Images: Measurement Model

Image Denoising Methods
An Abundant Literature

An Abundant Literature

m Usual acquisition devices provide signals?

that are corrupted with noise.

m Frequent modeling using an additive white Gaussian noise
(AWGN) hypothesis

y = X + b
noisy signal original signal noise

where & {b} = 0 and & {bb"} = ¢°Id.
m Signal denoising consists in finding a “good” candidate X of x
using the noisy signal y only; i.e., find the algorithm F such that

x=F(y)

Llmages are represented as vectors, using lexicographic ordering.
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Many approaches available, based on:
Explicit hypotheses on the signal:
m Statistics-based: wavelet-domain (Bayesian) inference Donoho et al.
1994, Simoncelli etal. 1996, Abramovich etal. 1998, Vidakovic etal. 1998;
m Regularization: Total Variation (TV) Osher etal. 1992;
m PDE: anisotropic diffusion Perona etal. 1990;
Heuristics:
m Filtering: Bilateral Filter Tommasi etal. 1998;
m Patch-based: Non-Local Means Buades etal. 2005;
m Any combination of approaches |l when the hypotheses are not
satisfied /checked.
NoTE:

m Some approaches can be either applied in the signal-domain or in a
transform-domain.

m Most approaches involve several nonlinear parameters which are
often set empirically.
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Image Denoising Methods
An Abundant Literature
Statistical Approaches
Regularization Approaches

Prior-Based Statistical Approaches

Image Denoising Methods
An Abundant Literature
Statistical Approaches
Regularization Approaches

Maximum a Posteriori

In the prior-based statistical approaches the signal to restore is considered
as the realization of a random variable.

Various possible objectives to optimize:
m Maximum a posteriori (MAP)
m Minimum mean-squared error (MMSE)
All these methods assume that the following are explicitly given:

m The statistical relation (likelihood) between the measurements and
the signal to restore:

/ o ly —x?
2{ylx} = (@ro2)N2 P <_T
m The probability density function (pdf) of the original signal 2 {x}.

Highly sensitive to the modeling of
the pdf of the signal to restore.
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The MAP consists in choosing the estimate X that maximizes the
posterior probability density

X = argmax & {x|y} = argmax 2 {y|x} - 2 {x}
X X
Optimal detector: Given noisy measurements of a signal x having a

finite number of values z1, x2, ..., xx occurring with probabilities py,
P2,. .., Pk, the MAP minimizes the error probability

P {x#x}

NoTe: Description of the prior &2 {x} may require many nonlinear
parameters.

For signals with large or infinite number of levels, the probabilistic
optimality of the MAP becomes irrelevant ~» MMSE instead.
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Image Denoising Methods
An Abundant Literature
Statistical Approaches
R ization Approaches

Image Denoising Methods
An Abundant Literature
Statistical Approaches
R zation Approaches

Linear MMSE: Wiener

The Wiener “filter" consists in finding the linear? estimate, X = Ay, that
minimizes the Mean-Squared Error (MSE)

1,4 . 1
@ o o 2 — . Qﬁ/ o
é {\ Ay —x|| } nxnr‘ {\

MSE between X and x

Ay—XHQ}

Solution: Requires only the knowledge of the covariance matrix
T'yx = & {xx"} of the original signal

x =Ty (Tx +0°1d) 'y

NoTe: Although very popular, linear processing is not well-adapted to
the processing of transient signals.

2if & {x} = 0 — an affine estimate is used, otherwise.
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Nonlinear MMSE: Bayesian Least Squares

Problem: Find the optimal processing F(-) that yields the estimate
% = F(y) such that

1 .,
/{T F(y)foZ} is minimized.

Solution: The posterior expectation (conditional mean):
. 3 ' B n Bayes 1 " ) ) N
x =& {xly} = /xy) {x|ly} d"x = 707 /x’,///‘ {y|lx} 2 {x} d"x

where 2 {y} = [ 2 {y|x} - 22 {x} dVx is the marginal pdf of y.
NoTe: The above integrals often need to be computed numerically.

The Bayesian MMSE algorithm requires the knowledge of the pdf of the
unknown signal ~> Choice of prior ?
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Image Denoising Methods
An Abundant Literature
Statistical Approaches
Regularization Approaches

Nonlinear MMSE: One Step Further

Image Denoising Methods
An Abundant Literature
Statistical Approaches
Regularization Approaches

Examples

Problem: Find the optimal processing F(-) that yields the estimate
% = F(y) such that

1 .
& {T F(y) — XH‘)} is minimized.

Solution: In the case of AWGN, the posterior expectation x = & {x|y}
can be simplified to (Stein 1981, Raphan & Simoncelli 2007):

x=y+0’Vlog 2 {y}
convolution with a Gaussian

Note: Because 22 {y} = [ 2 {y|x} - & {x} d"x, the optimal MSE
processing is infinitely differentiable.

The optimal algorithm only requires the knowledge of the pdf of the
observed noisy signal ~» No prior information is needed !
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Assuming a Laplace prior, 27 {x} = H::l %e** ¥nl these statistical

approaches yield a pointwise thresholding involving T = \o?:

MAP 1;777 — S()ft’[‘(]/n)

. N Y
Wiener 1, = #
1+ 5= .,
20 07/\1/,, erfc ( _l/,\,%T) o C)\]/,, erfe <!//1\7}ZT>
MMSE &, =y, — T ‘ ?
o e~ erfe (7%1+ ) + e erfe ((ntT
o o2 ’ - V2
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Image Denoising Methods
An Abundant Liter
Statistical Approac
Regularization Approaches

Regularization Approaches

The signal estimate X is selected as the minimizer of a (convex) regularized

cost-functional
J(X' y) - ‘Q(X, y)
——

-’

+ AO(x)
——
data-fidelity term  penalty
Typical choice of data-fidelity term:
U(x,y) = ||y — x||” o negative log-likelihood (AWGN)

Typical choices of penalty:

m Tikhonov (smoothness prior): ®(x) = ||Lx||%;

m Sparsity prior: ®(x) = [[xl¢, ~ P(x) = [[x[[s,;

m TV (edge prior): ©(x) = || |[Vx]||s,.
NoTEe: Depending on the choice of data-fidelity and penalty terms, J(x,y) can

be re-interpreted as a statistical prior and its optimization equivalent to a MAP.

No explicit distance minimization between original and denoised signal.
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The SURE-LET Methodology

Minimizing & {||F(y) — x||?} yields an algorithm F : y — X that
depends on the probability of y alone: F(y) =y + o?Vlog 22 {y}.
Problem: we have only one realization of the noisy image y.
Solution: estimate & {||F(y) — x||*} from y, instead of 2 {y}.

Consider the random variable?

SURE(y) = - IIF(y) — ¥ + 22~ div {F(y)} — o

Under the additive white Gaussian noise hypothesis, this random variable
is an unbiased estimate of the MSE Stein etal. 1981

& {SURE(y)} = € {|F(y) — x|*/N}

def

?Divergence operator: div{F(y)} = >, OBk (y)

Oy
The original signal x may, or may not be random.
‘ No assumptions on x are needed.
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The SURE-LET Methodology

Computational Issues

A simple proof

The SURE-LET Methodology

On the one hand (remember that y = x + b)

SHIFy) =} = {IF@I’t -2 £ xX'F(y)} +  |=x[?
———— ~—~—
E{y-p)"F(y)}  E{lyl*}-No?

=&{|F(y) —ylI’} +26 {b"F(y)} —No*

and on the other hand (Stein's Lemma)

E{b'F(y)} = / 2 {b} b'F(x +b)d"b (Gaussian pdf)
—02v{b}"
= [ o> 2 {b}div{F(x+b)}d"b
=& {(f2di\r {F(y)}}

(by parts)
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Equivalence SURE-MSE

SURE(y) has a small variance (law of large numbers: o< 1/N), which
implies SURE(y) ~ & {SURE(y)}. Hence

1 .
IIF(¥) = x||* ~ SURE(y)

NoTe: The SURE-MSE match worsens when F(y) is less regular; some
boundedness of div {F(y)} is needed ~ hard-threshold excluded.

Example Donoho 1995: SURE soft-threshold

IF)-vI? w
SURESOft:i( § y2 + E T2 + 207 §j 1)702
N n
lyn|<T lyn|>T lyn|>T
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The SURE-LET Methodology

Stein's Unbiased Risk Estimate (SURE)
L f Th ((H=p]

The SURE-LET Optim
Computational Issues

Closeness between SURE and MSE

Processing a noisy signal (left) with several lengths, using several
different pointwise thresholding functions

Original signal (65536 samples)

n
n 9
oo

N
[N
X o

N
©
o

Noisy signal (PSNR = 20 dB)

MSE/SURE in dB (larger is better)
N n

[ SR

o N u 8

. . . . . . 205
0 1 2 3 4 5 6 0 1 2 3 4
x 10 threshold value T (relative to o)

NoTe: The use of the SURE (instead of the MSE) is particularly justified
for large data sizes (e.g., images).
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Stein's Unbiased Risk Estimate (SURE)

The SURE-LET Methodology Linear Expansion of Thresholds (LET)
The SURE-LET Optimization
Computation

Approximation of processings

Functions can often be efficiently approximated onto adapted bases.

Examples of bases: wavelets (L? functions), sinc kernels (bandlimited
functions), radial basis functions (scattered points interpolation), etc.

The MMSE result F(y) =y + 0?Vlog 22 {y} indicates that the optimal
processing is slowly varying. It can thus, in principle, be represented on a
basis of few functions — e.g., the identity and spline/Gaussian functions.

— Optimal MSE
= Approximated

/
)
|

_ w2 AN
(see slide 12) axy b x sign(y) (1 —e 217 ) cXye 272
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The SURE-LET Methodology g Thresholds (LET)
tion

The SURE-LET Methodology

Choosing the LET basis

Linear Expansion of Thresholds

An approximation of the optimal denoising process as a (finite) linear
combination of elementary processes

F(y) =Y axFi(y)

k=1

The approximation is all the better as the order, K, is larger.

The linear space approximation will prove particularly useful when
combined with a quadratic objective functional (e.g., MSE or SURE), as
the optimization boils down to solving a linear system of equations.

The idea of LET is that a genuine approximation of the optimal
processing can be sufficient, while having useful linear properties.
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Based on Wiener theory, homogenous (Gaussian, zero-mean) images are
optimally denoised by linear transformations.

By segmenting/partitioning a non-homogenous image into homogenous
zones, the “optimal” denoising process can thus be expressed as a sum of
linear processes within each zone

indicator function of zone k

Fy)= > () Ary

zones

Hence, the choice of a LET basis essentially amounts to choosing a
“good” (MSE-wise) segmentation algorithm.
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The SURE-LET Methodology Unbiased Risk L;u;v e (S

5

Linear Expansion of Thr
The SURE-LET Optimi
Computational Issues

Choosing the LET basis

The SURE-LET Methodology

Computatio

Example: A simple threshold tends to segment a signal into large values,
and small values. A possible choice® for the indicator function of the
small values is

Then, a possible LET function is of the form

F(y) =~(y) x ay+ (1 —(y)) x by
\*/ \—/_/

small y large y

The coefficients a and b characterize the linear behavior of the processing
in each zone.

NoTe: A practical choice for T is V6o (noise), which can be related to a
significance level in a statistical test.

3for a tanh-based threshold, see Pesquet etal. 1997
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Recapitulation of the SURE-LET approach

Instead of finding an approximation of the signal x, find an
approximation of the processing F(y) that transforms y into X;

Instead of minimizing the MSE between X and x, minimize an
(unbiased) estimate of this MSE, based on y alone (SURE);

Express F(y) as a linear decomposition (LET) >, a,F(y) of basis
processings Fy(y) ~> linear system of equations (fast, unique).

NoTe: The number K of elementary processings is chosen very small
(usually, K < 200), compared to the number of pixels N.
~» faster algorithm, and better agreement between MSE and SURE.
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The SURE-LET Methodology

Computational

The SURE minimization

By restricting F(y) to be of the LET form )", arFy(y), the SURE
becomes a quadratic expression, in function of the a;'s. Its minimization
yields, for all k =1,2,..., K

K
Y Fiy)'Fuly) e = Fi(y)'y — odiv {Fi(y)}
I=1

Finally, by stacking the LET coefficients in a = [a1, a2, ...,ak]", we get

M = [Fi(y) Fi(y)] 1<k <K

a=M 'c where - 5
¢ = [Fﬂ<y> y—o div {Fﬁf(y)}}lg;‘.gk’

NoTe: When M is non-invertible, it means that one LET basis element
depends linearly on the other Fj, ~» decrease the LET-order to K — 1.
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The SURE-LET Methodology Stein's Unb

Computatic

The Oracle minimization

The same LET optimization, by minimizing the MSE |F(y) — x||?
instead of the SURE vyields, for all k =1,2,... K

K
> Fi(y)'Fily) a = Fi(y)'x
=1

This also boils down to solving a linear system of equations

M = [FA,(y)lF/(Y)] 1<k, I<K

!/

a=M""'c¢ where ;
¢ = [Fr(y)'x] 1<k<K

NoTe: The Oracle computation allows to choose elementary LET
processings F, that are likely to yield more efficient denoising results.
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The SURE-LET Methodology Stein's Unbiased Risk Estima

Linear Expansion of Th
The SURE-LET Optimization

Computational Issues

The SURE-LET Methodology

The SURE-LET Optim
Computational Issues

A strategy for evaluating algorithms

How to evaluate the potential of an algorithm, that usually involves a
number of non-linear parameters?

m Approximate the resulting algorithm as a LET; i.e., transfer the
non-linear degrees of freedom to linear parameters;

m Probe the efficiency of the algorithm through Oracle minimization.

Example: If the algorithm F(y; ) depends on one non-linear parameter,
A, approximate it using two (or more) LETs

F(y;\) = a1F(y; A1) + axF (y; A2)

where A1, Ay are fixed: [A1, X2] is the expected range of values for \.
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Monte-Carlo divergence estimation

The computation of the divergence term in the SURE may be impractical
when N is large: a direct application of the formula

N
div{F(y)} = Lg’;(y)
n=1 n

may prove too much CPU intensive.

An alternative is to use a consequence of Stein's Lemma
(y +¢ebo) — F(y)

, \F
div{F(y)} ~ by

(law of large numbers)

where by is a normalized (unit-variance, zero-mean) Gaussian white noise.
¢ is some small value compared to the level of noise; typ., ¢ = o/100.

NoTe: Particularly useful when F(y) is not obtained explicitely, but
through a “black-box" algorithm like TV regularization Ramani etal. 2008.
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Transform domain denoising

drthogonal Re

SURE-LET Algorithmics

Linear transformations

In order to exploit their strong local correlations, it is advantageous to re-
present the pixels in another domain: Discrete Cosine Transform (DCT),
Block DCT, Wavelet Transform, etc.

BDCT transformed image (block-size = 8) Wavelet decomposition (3 iterations)
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Transform domain

SURE-LET Algorithmics

Most generally, a linear transformation maps an image y onto another
image w through a matrix multiplication Dy. It is assumed that the
transformation can be inverted using a matrix R.

Desirable properties (not all of them can be satisfied at once):
Perfect reconstruction: RD = Id;

m D yields a sparse/decorrelated image representation;
m Shift, scale, rotation invariance;
[

Orthonormality.

Example: undecimated wavelet transforms/BDCT are shift-invariant,
but are not orthogonal.

Processing images expressed in a sparse representation considerably
increases denoising efficiency.
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Transform domain denoising
Orthogonal Representations/Transformations

SURE-LET Algorithmics tions/ Transformations

Transform domain denoising

Orthogonal Representations/Transformations
Redundant R tations/Transformations
Noise Varian: ion

SURE-LET Algorithmics

g linear ! (nonlinear) linear F(y)
ecomposition: processing tructi
‘ " Dy s W B (-)(W) YGC‘OHS ruc IOFIA
y—D |- e R [—%=RO(Dy)
image domain transform domain image domain

Graphical overview: transform-domain thresholding
SURE-LET methodology: specify a LET basis F(y) as follows

K
O(w) =Y a®(w) ~ Fi(y) = RO,(Dy)
k=1
Potential issue: efficient computation* of the SURE (essentially the
div {F\} term) for this type of processing ~» Monte-Carlo technique.

“However, exact expression in a number of practical cases (periodic extensions).
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Orthonormality

A decomposition is orthonormal iff DD = DD" = Id. Properties:

m The reconstruction is given by R = D";

m Preservation of the energies: ||[w|| = ||y| and ||x — x|| = [|[Ww — Dx

m Statistical independence of the transformed coefficients;

NoTe: an orthonormal decomposition is automatically non-redundant.

If w; =D,y for j =1,2,...,J where D = [Dy; Dy;...;Dj], then the
unbiased estimate of ||X — x]||? can be written in the transformed domain
1o 2 o 23 2
SURE(Y) = 1 (3 18;(w) = w; |2 + 20%div {©;(w)} ) —
N\

where ® = [©1;05;...;0].

Optimizing the denoising process F(y) is equivalent to denoising
separately the denoising processes ©; in the transformed domain.
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/Transformations
s/ Transformations

SURE-LET Algorithmics

Simple wavelet thresholding

SURE-LET Algorithmics MRS AT

Choice of an orthonormal wavelet transform® (e.g., symlet 8). Then, the
processing in subband j is a simple thresholding w; ,, = 0;(w;,,) for each
of the coordinates n = 1,2,..., N; of w;, and
N
1 ! : . .
SURE,(w,) = — <Z‘9_,(w_,_”) — u,'j_,,,‘z + 2(729.;- (ur_,-.,,,)> — 2

J n=1

SURE-LET simple threshold

A two-parameter zone-selection function

2
0;(w) = ajw + bjwe 1202

where a; and b; are obtained by minimizing SURE;(w;).

NoTe: SureShrink Donoho 1995 makes the choice 6;(w) = softr, (w) and
minimizes SURE;(w;) for T}.

5However, any (non-wavelet) orthonormal transform can be used.
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In details, a;,b; solve the following linear system of equations

N; Py N,
OSURE, B, N ,
— =0~ E AW p + bjwj,ne 120 = _‘Nja + E Wj n
Gaj
n=1 n=1
N; ) . N, ,
9SURE; i, e, s e 7\ e
— 2 =0~ a;w; e 1262 4 bjwj,ne 602 = —wi, —o" e 1202
at, 2 2
n=1 n=1
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Transform domain denois

Orthogonal Representations/Transformations

Redundant R ns/ Transformations
2 )

SURE-LET Algorithmics

sfor
Orthogot /Transformations

SURE-LET Algorithmics ind Transformations

wavelet
decomposition
.

| simple thresholding

§

wavelet
reconstruction
reconstruction

Denoised: PSNR = 29.06dB  (SureShrink: PSNR = 28.73dB)
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The relative locality of the DWT implies that there may be a spatial
correlation between different wavelet scales: three potential
tree-structures — LH, HH and HL

LLg|HLg
HLy
LH3z|HHg3
| HL,
LHy HHy
“parent” P
LH; HH;
““child™ w

Interscale thresholding consists in expressing the denoised estimate as

'12’\7}77, = 07 (“/‘jﬂepjm)
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Transform domain denoising
SURE-LET Algorithmics Orthogonal Representations/Transformations

Estimation

InterScale wavelet thresholding

Principle: separate the parent into /arge and small coefficients, and
within each zone so defined, apply a pointwise thresholding function:

’sz o 7% / ;o w?
0j(w,p) = e 1207 (ajw + bjwe” 1207 ) +(1 — e 1207 ) (ajjw + bjwe™ 127

small parents large parents

NoTe: DWT is orthogonal, hence w and p are statistically independent
~» same SURE formula as for the simple threshold case.

ProBLEM: the wavelet coefficients are not exactly aligned from band to
band (filtering and downsampling effect). How to obtain a parent aligned
exactly with its child?
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Transform domain ¢ Sing
Orthogonal Representations/Transformations
R

SURE-LET Algorithmics - I

mation

hild alignment: Group-Delay Compensation

:\ Adequate high-pass filtering of the
I LL; WWyp*LL; lowpass LL; — which contains the
: whole parent tree: W compensates
the group-delay difference between

Wys LL, | Wigp # LL, the low-pass and the high-pass band.

GDC filter formula
W(z?) = (1+2")G(z"HG (-2
where G(z) = wavelet filter.
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Tr dc 1 d
SURE-LET Algorithmics QrthogonalFepresentat\ons ransformations

t Transformations

Orthonormal WT IS SURE-LET Processing Inverse Orthonormal WT

0,(w1,p1)

+ Output PSNR = 33.25 dB
|
|
|
|
|

GDC Transform
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Transform d

SURE-LET Algorithmics 9rthogona\ / Transformations
indan Transformations

Example of result

Noisy

PSNR=18dB PSNR=28.73dB PSNR=30.18dB

Best non-redundant transform-domain algorithm.
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Trans domain de
SURE-LET Algorithmics (Ol R Cadii ransformations

Extension to multichannel denoising

Direct generalization by replacing:

m scalar-valued by vector-valued wavelet coefficients;
m scalar-valued by matrix-valued LET parameters.

Assuming Q = covariance matrix of the noise, and v(x) = exp(—z/12)
0;(w.p) = 7(p"Q 'p)y(W'Q 'w)af;w
small parents and small coefficients
+ (1=7@'Q 'P)(w'Q 'w)ay ;w

large parents and small coefficients

+yP'Q p)(L—y(w'Q W) ag;w
small parents and large coefficients
+ (1=7P'Q 'p) (1 —1(w'Q 'w)) aj ;W

large parents and large coefficients

NoTe: Automatically selects the best color space (color images).
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Transform domain de g
SURE-LET Algorithmics Ortho%onat\ rRepresentatlons,T’ransformatlons

Orthonormal WT IS-IC SURE-LET Processing Inverse Orthonormal WT
: L2
EE T 1
1 s 0r(Wa, Pr)
L 0(wn,pn) =
Wy = H 05(Wn, Pn)
B EH- 17+ 1
EH T

o Or (Wﬂ s pn)

Output PSNR = 31.87 dB

Input PSNR = 18.59 dB

GDC Transform  $ | |
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Orthog Transformations
Redundant Representations/Transformations

SURE-LET Algorithmics

Nois anc

Undecimated wavelet denoising

Limitations of non-redundant transformations

m High sensitivity to shifts ~» inconsistent reconstruction of edges

m Low design flexibility ~ poor directional sensitivity

Solution: increase the redundancy

Shifts: Cycle-Spinning Coifman 1995, Undecimated DWT Guo 1995;
Rotations: Steerable Pyramid Simoncelli 1995, Complex DWT Kingsbury 1998;
Edges: Curvelets Candes 2002; etc. ..

Redundancy vs orthonormality
Although it is still possible to have R = D" (tight frame)
m RD =1d but DR # Id
m Energies: ||w|| = |ly|| (if tight frame) but |[%x — x|| # ||Ww — Dx

m Statistical dependence of the transformed coefficients;

In addition, redundancy brings about a higher computational cost.
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Orthogonal Re Transformations
Redundant Representations/Transformations
Noise Variance Estimation

SURE-LET Algorithmics

Perfect reconstruction condition: RD = Id

NoTEe: same lowpass and highpass filters, H(z) and G(z), as in the
non-redundant WT case.
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Transformations
Redundant Representations/Transformations
Noise Variance Estimation

SURE-LET Algorithmics

Undecimated simple wavelet thresholding

Hard-like® thresholding rule

In each wavelet subband j, the noisy coefficients are thresholded using

/ 0;(w) = ajw + byw(1 — e~ (E)")

where (a;, b;) change from subband to subband — i.e., two parameters
per subband.

The optimal set of parameters {a;,b;} is then found by minimizing the
global image-domain SURE.

NoTe: Contrary to the nonredundant case, it is not possible to optimize
the SURE separately in each subband.

5Hard threshold cannot be optimized using SURE, for not being differentiable.
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a ‘Transformations
Redundant Representations/Transformations
Noise Variance Estimation

SURE-LET Algorithmics

Undecimated pointwise wavelet thresholding

Undecimated discrete symlet 8 transform

Noisy SureShrink SURE-LET

PSNR=18dB PSNR=28.73dB PSNR=31.15dB

NoTE: Surprisingly, it is the simplest wavelet type (Haar) that works best.
Smallest support?
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ns/Transfor
Redundant Representations/Transformations
Noise Var i n

SURE-LET Algorithmics

Undecimated pointwise wavelet thresholding

SURE-LET Algorithmics

Extensions

Undecimated discrete Haar wavelet transform

Noisy SureShrink SURE-LET

PSNR=18dB PSNR=28.73dB PSNR=31.91dB

NoTe: Surprisingly, it is the simplest wavelet type (Haar) that works best.
Shortest support?

Thierry Blu and Florian Luisier Image Denoising and the SURE-LET Methodology

m Multivariate wavelet thresholding: taking into account both
interscale and local wavelet dependencies;

m Thresholding (possibly multivariate) in a dictionary of transforms.
m Multiframe video denoising: involving motion compensation;
Orthonormal discrete symlet 8 transform

Noisy SURE-LET interscale SURE-LET multivariate

PSNR=18dB
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! tho ) a a Transformatic
SURE-LET Algorithmics Transformatio

Extensions

m Multivariate wavelet thresholding: taking into account both
interscale and local wavelet dependencies;

m Thresholding (possibly multivariate) in a dictionary of transforms.
m Multiframe video denoising: involving motion compensation;
Undecimated discrete Haar wavelet transform

Noisy SURE-LET SURE-LET multivariate

PSNR=18dB PSNR=31.91dB PSNR=32.22dB
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dology 0 a senta Transformations
SURE-LET Algorithmics Tramsformations

Extensions

m Multivariate wavelet thresholding: taking into account both
interscale and local wavelet dependencies;

m Thresholding (possibly multivariate) in a dictionary of transforms.
m Multiframe video denoising: involving motion compensation;
Dictionary of two transforms (UWT Haar & 12 x 12-BDCT)

Multivariate
Dictionar

i H 7
-
&

Noisy SURE-LET UWT Haar SURE-LET
£ i 1 74

£

PSNR=18dB PSNR=25.90dB PSNR=28.80dB
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SURE-LET Algorithmics

Extensions

SURE-LET Algorithmics

Noise Variance Estimation

Noise Variance Estimation

m Multivariate wavelet thresholding: taking into account both
interscale and local wavelet dependencies;

m Thresholding (possibly multivariate) in a dictionary of transforms.

m Multiframe video denoising: involving motion compensation;

Orthonormal discrete symlet 8 transform
Noisy Multiframe SURE-LET

PSNR=22.11dB
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The most popular approach for estimating the variance o2 of the AWGN
for wavelet-based denoising algorithms: MAD estimator Donoho 1995

6 = 1.4826 med {|y — med{y}|}, y» € HH

+ Simple and accurate for relatively high levels of noise;

— Inaccurate for moderate to low levels of noise.

Proposed approach: Eigenfilter-based design Vaidyanathan etal. 1987

Find h,,, = arg min ||h * y||? subject to ||h[|* = 1
” heRM
~» Eigenvector corresponding to the smallest eigenvalue of the
. . N

autocorrelation matrix Ty, = [ o Yn—iYn_ }
y > ne1 Yn—iYyn—j L<i <M
Noise variance robustly estimated from the filtered residual

(hopt *y), as the mode of the smoothed histogram of the local noise

variances computed inside blocks of given size (typically, 25 x 25).
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SURE-LET Algorithmics
Noise Variance Estimation

Noise Variance Estimation

SURE-LET Algorithmics
Noise Variance Estimation

Noise Variance Estimation

Overview of the Proposed Approach

Distribution of the Local

Noisy Input: 0 =1 Residual
oISy Input: o 0 esidua Standard Deviations

| n
* Dopt o0

600

Number of Counts

Estimated o: 6 = 10.09
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Performance of the Proposed Approach

Cameraman Mandrill

20 40 60 80 100

Proposed Approach MAD Estimator
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Grayscale Image Denoising
Ce mage Der ing
Algorithm Comparisons Vid

Protocol for Fair Comparisons

m Denoising of a representative set of standard grayscale/color images
and video sequences, corrupted by simulated AWGN at 8 different
powers ¢ € [5, 10, 15, 20, 25, 30, 50, 100] (assumed to be known).

m PSNR results averaged over 10 different noise realizations for each
noise standard deviation.

m Parameters of each method set according to the values given in the
corresponding referred papers or optimized in the MMSE sense (if
not explicitly provided).
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Grayscale Image Denoising
c

or Image Denoising

Algorithm Comparisons

The Non-Redundant Case: PSNR Comparisons

%
Peppers 256 x 256 House 256 x 256
1 1
o o
i i
£ 05 £ 05
© ©
1] 1]
=} >
g g
£-04 2 £ -0
[5) [
o o
90 15 20 25 30 "0 15 20 25 30
Input PSNR [dB] Input PSNR [dB]
Interscale SURE-LET BiShrink Sendur & Selesnick 2002
(baseline) ProbShrink Pizurica etal. 2006

BLS-GSM Portilla etal. 2003
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Grayscale Image Denoising
G

ing
Algorithm Comparisons

The Non-Redundant Case: PSNR Comparisons

7
Lena 512 x 512 ! 5/ Barbara 512 x 512
1 1.5

0.5

0.5

|/ RN

Relative Output Gain [dB]
o
Relative Output Gain [dB]

741'@/6:2
10 15 20 25 30 059015 20 25 30
Input PSNR [dB] Input PSNR [dB]
Interscale SURE-LET BiShrink Sendur & Selesnick 2002
(baseline) ProbShrink Pizurica etal. 2006

BLS-GSM Portilla etal. 2003
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Grayscale Image Denoising
@ ois

10ising
Algorithm Comparisons Vic g

The Non-Redundant Case: Visual Comparisons

Original

Average SSIM!: 1.000 Average SSIM: 0.284

1Structura| Similarity Index Map Wang, Bovik, Sheikh & Simoncelli 2004
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y noising
Color Im ing
Algorithm Comparisons Videc

The Non-Redundant Case: Visual Comparisons

ge Denoising
mage Denoising
Algorithm Comparisons

The Non-Redundant Case: Visual Comparisons

Original Multivariate SURE-LET

Average SSIM: 1.000 Average SSIM: 0.894

LStructural Similarity Index Map Wang, Bovik, Sheikh & Simoncelli 2004
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BiShrink Multivariate SURE-LET

Average SSIM: 0.877 Average SSIM: 0.894

LStructural Similarity Index Map Wang, Bovik, Sheikh & Simoncelli 2004
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Grayscale Image Denoising

Algorithm Comparisons

Grayscale Image Denoising
ising
Algorithm Comparisons deo Denoising

The Non-Redundant Case: Visual Comparisons

ProbShrink Multivariate SURE-LET

The Non-Redundant Case: Visual Comparisons

BLS-GSM Multivariate SURE-LET

Average SSIM: 0.882 Average SSIM: 0.894

1Structura| Similarity Index Map Wang, Bovik, Sheikh & Simoncelli 2004

Thierry Blu and Florian Luisier Image Denoising and the SURE-LET Methodology

Average SSIM: 0.888 Average SSIM: 0.894

1Structura| Similarity Index Map Wang, Bovik, Sheikh & Simoncelli 2004
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Algorithm Comparisons

Grayscale Image Denoising

The Redundant Case: PSNR Comparisons

Peppers 256 x 256 %

0.5

Relative Output Gain [dB]

10 15 20 25 30
Input PSNR [dB]

Coco 256 x 256 m

B

A

Relative Output Gain [dB]

10 15 20 25
Input PSNR [dB]

Multivariate SURE-LET (baseline) BM3D Dabov etal. 2007

NLmeans Buades etal. 2005
BLS-GSM Portilla etal. 2003

Thierry Blu and Florian Luisier

Fast TV Chambolle 2004
K-SVD Elad & Aharon 2006

Image Denoising and the SURE-LET Methodology

30

Grayscale Image Denoising
Color Image [ ising
Algorithm Comparisons Video

The Redundant Case: PSNR Comparisons

05
T T
e e
= £
© ©
(O] (O]
5 5
o o
5 5
3 3
[0 [0
= =
= =
[5) [
o o
150 15 20 25 30 1550 15 20 25 @0

Input PSNR [dB] Input PSNR [dB]
Multivariate SURE-LET (baseline)  BM3D Dabov etal. 2007
NLmeans Buades etal. 2005 Fast TV Chambolle 2004
BLS-GSM Portilla etal. 2003 K-SVD Elad & Aharon 2006
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Algorithm Comparisons

Grayscale Image Denoising
enoising

The Redundant Case: Visual Comparisons

Thierry Blu and Florian Luisier
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Grayscale Image Denoising
ng
Algorithm Comparisons

The Redundant Case: Visual Comparisons

—

Average M: 1.000

Thierry Blu and Florian Luisier
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Grayscale Image Denoising

Algorithm Comparisons

The Redundant Case: Visual Comparisons

Grayscale Image Denoising

Algorithm Comparisons

The Redundant Case: Visual Comparisons

NLmeans Multivariate SURE-LET

Average SSIM: 0.662 Average SSIM: 0.739
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Fast TV Multivariate SURE-LET

Average SSIM: 0.704
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Grayscale Image Denoising

Algo

The Redundant Case: Visual Comparisons

BLS-GSM Multivariate SURE-LET

Average SSIM: 0.732 Average SSIM: 0.739
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Grayscale Image Denoising

Algoritl

The Redundant Case: Visual Comparisons

Multivariate SURE-LET

Average SSIM: 0.711
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Grayscale Image Denoising
ising

Algorithm Comparisons

The Redundant Case: Visual Comparisons

Gr
Color Image Denoising
Vi !

Algorithm Comparisons enoising

BM3D Multivariate SURE-LET

i

ge SSIM: 0.754

Average SSIM: 0.739

Avera
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Color Images: PSNR Comparisons

Girl 256 x 256 E Lena 512 x 512 Il%

2276 2530 2719 28712986 31.69 3575

o or & £27.86 1 o'

S = S

c c

£ £

© 05+« ¢

=] =]

= I=3

= =l
(o] (]
2 1 2
k] kS

[0} [}
a8 [an
—_1.5 . . . . . . _g . . . . . .
10 15 20 25 30 35 10 15 20 25 30 35

Input PSNR [dB] Input PSNR [dB]

Multichannel SURE-LET (baseline)  ProbShrink-YUV Pizurica etal. 2005
Non-redundant multichannel ProbShrink-MB Pizurica etal. 2006

SURE-LET CBM3D Dabov etal. 2007
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Grayscale Image Den

Color Image Denoisin
Algorithm Comparisons Video Denoising

Color Images: PSNR Comparisons

Peppers 512 x 512 %

Mandrill 512 x 512 (&

—_ —_— 020 75 2%210 25.27 27.2028.68 30.94 SSA{

8 3 ~T

f = c

T T oL g—

Q O ogr T o

3 > - N

o o

5 5

o) o)

(o) (]

= =

= ©

[0) (o]

o o —%
“ 10 15 20 25 30 35 150 15 20 25 30 35

Input PSNR [dB] Input PSNR [dB]

Multichannel SURE-LET (baseline) ~ ProbShrink-YUV Pizurica etal. 2005

Non-redundant multichannel ProbShrink-MB Pizurica etal. 2006
SURE-LET CBM3D Dabov etal. 2007
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Graysc Denoising
Color Imag
Algorithm Comparisons Video Denoising

Color Images: Visual Comparisons

Original Noisy

— e

USARFORCE v

L

S AR FORCE

A

Average SSIM: 1..000
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Algorithm Comparisons

Color Images: Visual Comparisons

Algorithm Comparisons

Color Images: Visual Comparisons

Original

—
USAMRFORCE »

Average SSIM: 1.000

Thierry Blu and Florian Luisier

Multichannel SURE-LET

U S kR FORCE v

2 &

Average SSIM: 0.872
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ProbShrink-MB

% kiR TORCE g

2h

Average SSIM: 0.825

Thierry Blu and Florian Luisier

Multichannel SURE-LET

U S AR FORCE v

2 &

Average SSIM: 0.872
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Algorithm Comparisons

Algorithm Comparisons

Color Images: Visual Comparisons

ProbShrink-YUV

U S kiR FORCE v

2 &

Average SSIM: 0.841

Thierry Blu and Florian Luisier

Multichannel SURE-LET

U S kR FORCE v

2 &

Average SSIM: 0.872

Image Denoising and the SURE-LET Methodology

Color Images: Visual Comparisons

CBM3D

U S AR TORCE v

25

Average SSIM: 0.882

Thierry Blu and Florian Luisier

Multichannel SURE-LET

U S AR FORCE v

2 &

Average SSIM: 0.872
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Algorithm Comparisons Video Denoising

Frame-by-Frame PSNR Comparisons

Flowers at PSNR = 24.61dB Bus at PSNR = 20.17dB

@

o
W
o

Output PSNR in [dB]
n
@ —
Output PSNR in [dB]
]
©
4

N
©

N
~

N
[}

20 40 60 80 20 40 60 80 100
Frame no Frame no
Multiframe SURE-LET (OWT) WRSTF Zlokolica etal. 2006
Real-time WRSTF Jovanov etal. 2009

SEQV\/T PiZzurica etal. 2004 VBM3D Dabov etal. 2007
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Algorithm Comparisons Video Denoising

Visual Comparison

Noisy Input Multlframe SURE-LET (CS =5)
_;?‘S"‘WW » N

PSNR = 20.17dB
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Poisson-Gaus: SE Estimate
et Algorithm

Extension to Poisson-Gaussian Denoising V y Results

More Realistic Measurement Model

Poisson-Gaussian MSE Estimate
Algorithm

Extension to Poisson-Gaussian Denoising ults

Two Main Approaches for Poisson Inten5|ty Estimation

Most light intensity measurements y = [y ...yxy|" are more accurately
modeled as a vector z of independent Poisson random variables
degraded by independent AWGN b:

y =z + b, where z ~ P(x) and b ~ N(0,c*Id)
This model accounts for:

m Random nature of photon emission/detection
~» signal-dependent degradation;

m Thermal instabilities of the electronic devices
~+ signal-independent noise.

Only few denoising algorithms consider this hybrid measurement model. |

Thierry Blu and Florian Luisier Image Denoising and the SURE-LET Methodology

m Variance-stabilizing transform (VST):
Design a transform T such that T(y) — T(z) %» N(0,1)

m Anscombe and its extension to Poisson-Gaussian noise
Murtagh etal. 1995;

m Haar-Fisz Fryzlewicz & Nason 2004;

m Multiscale VST Jansen 2006, Fadili etal. 2008.

m Direct handling of Poisson statistics:
Almost exclusively in a Bayesian framework

m Multiscale Bayesian model Nowak etal. 1999;
m Hypothesis testing Kolaczyk 1999, Fadili etal. 2007;
m Penalized likelihood Sardy etal. 2004, Willett & Nowak 2007.

Potential of purely data-driven, prior-free
MMSE techniques remains under-exploited.

Thierry Blu and Florian Luisier Image Denoising and the SURE-LET Methodology




Poisson-! Gausslan MSE Estimate
t Algorithm

Poisson- Gausslan MSE Estimate
let Algorithm

Results

Extension to Poisson-Gaussian Denoising

py Results

Extension to Poisson-Gaussian Denoising

PURE: Poisson-Gaussian Unbiased Risk Estimate

Let y = z + b with z ~ P(x) independent of b ~ A/(0,02%Id). Let
f(y) = [fn(y)]1<n<n such that & {|0f,(y)/Oyn|} < +00. Then,
PURE = — (Hf(y)u2 —2y"f (y) + 20°div {f (y)}) +
= (HyH 1'y) —o?
is an unbiased estimate of the expected MSE; i.e
& {PURE} = —o {Hf —XHQ}

Notation: £~ (y) = [fu(y — en)]i<n<n, Where (e,)1<n<n is the
canonical basis of RV,
Image Denoising and the SURE-LET Methodology

Thierry Blu and Florian Luisier

PURE: Poisson-Gaussian Unbiased RISk Estimate

Sketch of proof: Need to estimate
E{|f(y) —x|]*} = &1 f2 —2&{xnfn + 22
{llEy) — )7} ;( {2} 28 fanfa)} + 23 )

Tsui & Press 1982:

& {xnfn(z + b)}
& {Z'nfn(z + b — e'n)}

Poisson’s Lemma Hudson 1978,

E{nfaly)} =

Stein's Lemma Stein 1981:
g{ynfn( - en)} - & {bnfn(z +b— eﬂ)}

E{znfn(z+b—e,)} =
=& {ynfn(y en)} - UZéa {afn(y - e’n)/ay’n}

Notice that: 22 = & {xnyn} E{yn(yn — 1)} — o2
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MSE Estimate

r- W let Algorithm
lhm

Extension to Poisson-Gaussian Denoising

VISE Estimate
Wavelet Algorithm

Extension to Poisson-Gaussian Denoising

The Unnormalized Haar Wavelet Transform

Denoising by interscale thresholding of the unnormalized Haar-wavelet
y, then for j =1,2,...,J

dJ 67 (d’,s7) ’76J

j Same scheme ~j
S applied recursively S

Haar conservation properties:

J i
92— . Y9 . L
—<I+ 3 I -8

coefficients: set sg =

m Error energy: MSE =

m Statistics: s’ ~ P(¢/) + N (0,071d), where 0} =20?

Interscale Haar-Wavelet-Domain PU RE

Let 8(d,s) = 67(d?,s?) be an estimate of the noise-free wavelet coefficients

& = &67. Define 87 (d,s) and 8~ (d,s) by
H,J{(d,s) =60,(d+en,s—ey,)
eg(dv S) = en(d —€en,S — en)

Then the random variable
1 2 2
v (6@ o)+l

7aT(0 (d,s) +67(d,s
+0? (diva {07 (d,s) + 07 (d,s)} + divs {07 (d,s) — 0 (d,s>}))

T N
1°s — Njoj

PURE; =
) —s (67 (d,s) — 67 (d,s))

is an unbiased estimate of the expected MSE for the jth subband; i.e
& {PURE;} = & {MSE,}

LA similar result for pure Poisson noise can be found in Hirakawa etal. 2009
Image Denoising and the SURE-LET Methodology

Thierry Blu and Florian Luisier

Allows independent processing of each wavelet subband
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Poisson-Gaussian MSE Estimate
erscale Haar-Wavelet Algorithm

Extension to Poisson-Gaussian Denoising

Interscale Haar-Wavelet-Domain LET

Lowpass: s Smoothed interscale predictor: p Magnitude of the highpass
; L "

en(dnf Sn) - Tn (Pf,)”; n <(],Z,) (Il(]n + 77; (p’zy>,\) 77,((]%) (12(177, +
small predictor and small coefficient large predictor and small coefficient
Tn <p721>ﬂ7n(d?:) (13(['1 + T)'n (}1,27 )T/n(di) (14(1,,, +
small predictor and large coefficient  large predictor and large coefficient
Tn (l’%,)flS(er + 77;, (])i )a()‘fju

sign consistency enhancement

=l
where v, (z) = e 20179 and 7, (z) = 1 — y,(z).
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Extension to Poisson-Gaussian Denoising

PURE for Arbitrary Nonlinear Processing

Problem: PURE is time-consuming to compute for an arbitrary nonlinear
processing due to the term: £~ (y) = [/.(y — en)]1<n<n.

Solution: First-order Taylor series approximation of £~ (y) given by
£ (y) = fly) — 0f(y), where 9f(y) = [“5: )1 <nen.

Consequently, provided that each f;, varies slowly, PURE is
well-approximated by

PURE = %(Hf(Y)HZ*2y'[<f(Y>*i)f(Y))+202<1i\'{f(y)*(’)f(yﬂ)+

| ‘ .
;(Hyl\2 —1'y) —o?
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Extension to Poisson-Gaussian Denoising

PURE for Arbitrary Transform-Domain Processmg

Extension to Poisson-Gaussian Denoising

Example: Undecimated Haar Thresholdlng

Linear Nonlinear Linear
decomposition processing reconstruction
w=D w=0(w,w ~
y D Yo (w, ) R Fx =f(y)

variance estimation

Yy

W

| D |

Transform Domain

i
:
:
:
‘
:
:
‘
1
Linear noise ;
:
‘
'
:
:
:
:
:
'

Image Domain Image Domain

For pointwise processing @(w,w) = [0;(w;, w1)]1<i<r, P/Uﬁ becomes:

PURE = %Hf(y) —ylI?+ % (@l(w.W)T(D eRT)y + @2(WAW)T(BORT)y) +

2
(diag {DR}TO;(w,W) + diag {ﬁR}TG')Q(wT W)) —

>

)2

—T (diag {(DeD)R}TO (W, W) — diag {(ﬁ ° ﬁ)R}T@gz(w‘ w) —

2 diag {(D e B)R}T@lg(w,w)) — %1Ty —o?
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Subband-adaptive thresholding function:

8
0;(w, W) = aj1 - w+ ajz - wexp ( <%> >

with signal-dependent threshold: ¢;(w) =

Thierry Blu and Florian Luisier Image Denoising and the SURE-LET Methodology




Some Comparisons
Extension to Poisson-Gaussian Denoising Fluorescence Microscopy Res

Some PSNR Comparisons

Cameraman 256 x 256 %

15
N

@ T, @
= S
c 1 1 =
© ©
[} [}
%os ’ z
s - p s
o e}
2 2
5 0 o k5
[5) — [
i - T i

5 10 15 10 15 20 25
Input PSNR [dB] Input PSNR [dB]

Haar PURE-LET (baseline)  Haar-Fisz Fryzlewicz & Nason 2004
Anscombe+BLS-GSM Portilla etal. 2003
Platelet Willett & Nowak 2007

Redundant PURE-LET PH-HMT Lefkimmiatis etal. 2009
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Extension to Poisson-Gaussian Denoising

Some Visual Comparisons

Average SSIM: 1.000
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1-Gaussian M

orithm
Some Comparisons
Fluorescence Microscop:
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Some Comparisons
Extension to Poisson-Gaussian Denoising Fluof ce NV

Some Visual Comparisons

Redundant PURE-LET

& .

Average SSIM: 1.000 Average SSIM: 0.543
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Extension to Poisson-Gaussian Denoising

Some Visual Comparisons

Haar-Fisz

Average SSIM: 0.445
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R Algorithm
Some Comparisons
Fluol nce Micr

Redundant PURE-LET

& .
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Extension to Poisson-Gaussian Denoising

Some Visual Comparisons

Anscombe-+BLS-GSM

Average SSIM: 0.432
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Rec N thr
Some Comparisons

Extension to Poisson-Gaussian Denoising Fluorescence Microscop;

Some Visual Comparisons

Platelet
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)

timate
nte /av Algorithm
edundant

Extension to Poisson-Gaussian Denoising

Some Visual Comparisons

Some Comparisons
Fluo e V

Extension to Poisson-Gaussian Denoising

Fluorescence Microscopy

Haar PURE-LET

Average SSIM: 0.520
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A fluorescence microscope is an imaging system that performs:
m Excitation of fluorescent constituents of a specimen;
m Focusing/filtering of the fluorescent light emitted from the specimen;

m Amplification /quantification of the light received at the ocular.

Combined with protein tagging (e.g., with GFP), fluorescence microscopy
allows to image selected fine structures of living cells.
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dichroie mirror Focusing Anode
] (e\eclmde ’7
light source

n
excitation flter
)\

Specimen

Optical description
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Noise in Fluorescence Microscopy

Three main sources:

m Photon-counting noise: major source of noise due to the random
nature of photon emission/detection (signal-dependent);

m Measurement noise: thermal instabilities of the various electronic
devices (signal-independent);

m Other: autofluorescence and bleaching (reduced by short exposure
and low fluorophore concentration).

~» Measurement model: scaled Poisson rdv degraded by AWGN

y ~ aP(x) + N(u,0?)

a: detector gain i detector offset ¢2: AWGN variance
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Noise Parameters Estimation

Affine relationship between sample-mean and sample-variance:

def -
by = E{y} = ax+tp 5 )
o def . ) ) — 0, =0y + 07 —ap
o, = Var{y} = a’z+o ~——

B

Simple estimation procedure: (similar to Lee 1989, Boulanger etal. 2007)

Compute p,, and 05 in many small regions of the noisy image.

Perform a robust linear regression on the set of points (uy,oz).

Identify « as the slope of the fitted line and 3 as the ordinate at
Hy =U.

o2 and ju can be estimated independently in signal-free regions and
cross-checked with f3.
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Experiments: 2D Sample

Specifications:

m 512 x 512 image acquired on a confocal microscope at the Imaging
Center of the IGBMC, France;

m C. elegans embryo labeled with 3 fluorescent dyes;

m Each channel has been processed independently.
Raw Data UWT PURE-LET

timate
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Experiments: 3D Sample

Specifications:
m 1024 x 1024 x 64 volume of confocal microscopy images;
m Fibroblast cells labeled with DiO and 100nm fluorescent beads;
m Voxel resolution: 0.09 x 0.09 x 0.37um?.

Raw Data Multislice Haar PURE-LET
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Experiments: 3D Sample

Extension to Poisson-Gaussian Denoising

Experiments: 2D Timelapse Sequence

Specifications:
m 1024 x 1024 x 64 volume of confocal microscopy images;
m Fibroblast cells labeled with DiO and 100nm fluorescent beads;
m Voxel resolution: 0.09 x 0.09 x 0.37um?.

3D Median Filter Multislice Haar PURE-LET
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Specifications:
m 448 x 512 x 100 image sequence of confocal microscopy images;
m C. elegans embryos labeled with GFP;

Raw Data Multiframe Haar PURE-LET
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Conclusion

Presentation of a generic methodology for building signal/image denoising
algorithms.

Advantages:

m Does not require hypotheses on the signal, only on the noise (SURE/PURE);
m No parameters to tune;
m Fast, non-iterative (SURE/PURE + LET);

m Natural construction of multivariate/redundant thresholding rules.

Although they involve only simple thresholding operations in a transformed
domain (single step, no training, no block-matching, no direction/edge
detection), the proposed algorithms reach the state of the art in image/video
denoising.
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Internet links

m Authors: thierry.blu@mé4x.org and florian.luisier@a3.epfl.ch
m Papers: www.ee.cuhk.edu.hk/~tblu/ and bigwww.epfl.ch/

m Demos: bigwww.epfl.ch/
Orthonormal grayscale and color image denoising

m Software: bigwww.epfl.ch/
Matlab implementations of SURE-LET algorithms
PURE-LET denoising plugin for ImagelJ
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