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Abstract—We present a simple, original method to improve
piecewise-linear interpolation with uniform knots: we shift the
sampling knots by a fixed amount, while enforcing the inter-
polation property. We determine the theoretical optimal shift
that maximizes the quality of our shifted linear interpolation.
Surprisingly enough, this optimal value is nonzero and close to
1 5.

We confirm our theoretical findings by performing several ex-
periments: a cumulative rotation experiment and a zoom experi-
ment. Both show a significant increase of the quality of the shifted
method with respect to the standard one. We also observe that, in
these results, we get a quality that is similar to that of the compu-
tationally more costly “high-quality” cubic convolution.

Index Terms—Approximation methods, error analysis, inter-
polation, piecewise linear approximation, recursive digital filters,
spline functions.

I. INTRODUCTION

STANDARD piecewise-linear interpolation, which dates
back to the Babylonians [1], is by far the most popular

solution for many applications such as computer vision, digital
photography, computer graphics, postscript optimization for
printers, image calibration and registration, textures, and
re-sampling. It is reasonably fast and does not suffer from the
obvious blocking artifacts of nearest-neighbor interpolation.
However, when quality is an important concern, methods based
on higher-degree interpolation kernels have been developed
[2]: Keys’ cubic convolution method [3] has become a standard
in the field, even though recent studies have shown that, for
the same computational cost, cubic-spline and cubic-OMOMS
kernels provide a substantial gain in quality [4]–[7].

It has been previously shown that the quality of the inter-
polation method is noticeably lower than that of the projection
method, especially for piecewise-linear approximation [8], [9].
This suggests that there remains some significant margin of gain
by optimizing linear interpolation. The goal of this paper is to
explore one possible approach, by shifting the standard linear
interpolation kernel. Note that, what we mean here is definitely
not adapting the shift to the contents of the signal to interpolate,
but instead using a uniform shift that is genuinely independent
of this signal. This idea seems to have been initiated by Plonka
[10] in the more general case of spline interpolation, although
the main problem addressed in [10] was the stability of the inter-
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polation operator, and not the quality of the resulting interpola-
tion. Unsurprisingly, it was concluded that the most stable con-
figuration is reached in the absence of shifting. Apart from [10],
we do not know of any other research done on shifted interpola-
tion, although there were other shift-based attempts (nonlinear
and data-dependent) to improve the quality of standard interpo-
lation methods [11].

Counterintuitively, we show here that there exists an optimal,
nontrivial shift value (close to ) for linear interpolation, for
which our new shifted interpolation improves considerably the
quality of the standard—nonshifted—method. A quality as high
as that of the orthogonal projection may even be attained in the
limit of small sampling steps—or, equivalently, of very lowpass
functions.

To predict the quality of shifted linear interpolation, we rely
on the theoretical tools developed in [12]. We verify our claims
by experiments that show that our method provides a quality that
is much better than standard piecewise-linear interpolation, for
a similar computational cost.

The paper is structured as follows: First, we review basic no-
tions about interpolation—not necessarily with shifted linear
splines—which will be needed for our analysis. In particular,
we describe a theoretical method to estimate the quality of an
interpolator using mathematical tools such as a Fourier approx-
imation kernel and an asymptotic interpolation constant. Next,
in Section III, we present shifted linear interpolation and show
that a nontrivial value of the shift results in a quality that is
optimal in an objective sense. We also evaluate the computa-
tional cost of our shifted linear method and show how to min-
imize it even further. Finally, we provide practical results that
point out the deficiencies of standard linear interpolation and
that show that its optimally-shifted version may even rival the
standard high-quality (but more costly) method, namely, Keys’
cubic convolution.

II. INTERPOLATION

A. Piecewise-Linear Interpolation

Given a sequence of samples that originate
from the uniform sampling of a function with step , the
standard method of linear interpolation builds a function
through the following process: for

, where and are chosen such that
and . This can be shown to be equivalent to

(1)

where is the “hat” function, or linear B-spline:
for and for [13]. The Fourier
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transform of this function, which will be useful in the sequel, is
given by

(2)

B. Generalized Interpolation

In a more general way, uniform interpolation is the process
of building a function through the formula

(3)

where the coefficients are chosen so as to satisfy the interpo-
lation condition [2], [4]. Here, might be any
function with . In particular, does not need
to be continuous, interpolating, or symmetric. As can readily be
seen, the interpolation condition is equivalent to the following
filtering relation:

The coefficients can be obtained by convolving the sam-
ples with a filter , the -transform of which is

.
The interpolation formula (3) can equivalently be rewritten in

a more traditional form in terms of the samples [4]:

where the equivalent interpolation function is obtained
by applying the filter weights to the basis functions. The Fourier
transform of takes the simple form

(4)

The 1D formula (3) can easily be used for image interpola-
tion by replacing by the tensor product in (3):

. This expression,
as well as the prefiltering step to obtain the , can be realized
very efficiently in a separable manner (e.g., by successive pro-
cessing of the lines and columns) [4].

C. Measuring the Interpolation Error

For to be a good approximation of , the quality
needs to improve as gets smaller. The rate of this improve-
ment is called the order of approximation. Usually, we assume
that (with ), so as to ensure that and be-
long to [12]. A natural measure for the distance between

and is then . Obviously, this approxi-
mation error is bounded from below by , where

is the orthogonal projection of onto the function space
made of linear combinations of , .

We have shown in [4], [12] that both the interpolation error
and the orthogonal projection error

can be estimated very accurately
by

(5)

where the function is what we call a Fourier kernel of
approximation. This function depends only on , in the fol-
lowing ways.

i) For the orthogonal projection with

(6)

ii) For interpolation, with (7), as shown at
the bottom of the page.

To be more precise, the identity between the approxima-
tion error and holds whenever is bandlimited in

. In the nonbandlimited case, this identity holds
on average—when one computes the average over all possible

of the error resulting from the approximation of
[12, Thm.2].

The above formulæ still hold for higher dimensional signals
[4]—images, for instance. It is just a matter of replacing the
single integral and the single summations by multiple ones,
by and by in (5), (6), and (7).

D. Asymptotic Interpolation Error

When the sampling step tends to 0, we want that
. One can easily see from the Expression (5) that this is

the case when under relatively weak con-
ditions on (for instance, see [14]); or equivalently, when

for all and , as is obvious from
(7). More generally, it is known that tends to
zero as if and only if satisfies the Strang-Fix condi-
tions [15]: for and .
This equivalence still holds for . The integer
is called the approximation order of . For instance, the ap-
proximation order of is because of (2).

More precisely, we have shown in [12] that

as , where is any integer-shift-invariant linear ap-
proximation operator, such as interpolation, or the orthogonal

(7)
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projection. The asymptotic constant
may also be expressed as follows:

i) For the orthogonal projection [16]

(8)

ii) For interpolation [4], ([17], when is interpolating)

(9)

Comparing (8) to (9), it clearly appears that it is the quantity
that tells apart interpolation from orthogonal

projection. In particular, this quantity is substantial for piece-
wise-linear interpolation. In the sequel, we will show that we
can use a shift to make it vanish.

The result can also be extended for higher dimensional sig-
nals. For instance, in two dimensions, we can apply a Taylor
analysis and prove that the interpolation error behaves asymp-
totically like

where and are given by (8) and (9). Similarly to
the 1D case, it is that makes the difference
between the interpolation and orthogonal projection constants.
This justifies that, from now on, we will only be considering the
1D case in our optimization.

III. SHIFTED LINEAR INTERPOLATION

Instead of building using line segments between
and as in Section II, we draw them between
and for some , as exemplified in

Fig. 1. More precisely, we consider the following process: for
, where

and are chosen such that , and where is
continuous at .

Theorem 1: The -shifted linear interpolation of the samples
can be expressed as

(10)

with

(11)

The coefficients satisfy the induction equation

(12)

Fig. 1. “Shifted” versus “standard” linear interpolation. For clarity purpose,
we have chosen � = 0:4, which is far from the optimum (15).

Proof: In order to show that is a -shifted linear in-
terpolation, we have to verify that it is piecewise-linear, contin-
uous, and that it satisfies the interpolation condition

. Continuity and linearity are obvious since
is itself continuous and piecewise-linear. The last assertion is
checked directly:

We observe that the expression (11) relates to through
convolution by the causal filter with z-transform

Because , this filter is stable. However, unlike stan-
dard linear interpolation , its impulse response is of infi-
nite length even if, in practice, its impulse response can be con-
sidered to be of finite support (exponential decay, see Fig. 2).

The Fourier transform of the equivalent interpolant implied
by (10) is obtained by substituting the filter’s response in (4):

(13)

Intuitively, it is expected that a small shift bring a flatter fre-
quency amplitude because the prefilter acts like a high-pass
filter that partially compensates the quadratic decreasing be-
havior of .

It is obvious that the computation of the coefficients can
be carried out very efficiently using the recursion (12): only two
multiplications and one addition are necessary per data point. In
order to be complete, we must initialize (12) at, say, . A
simple choice is to assume that for all which
in turn implies the initial condition , by applying the
nonrecursive expression (11).
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Fig. 2. Impulse response of the prefilter of the shifted linear interpolation
of Fig. 1.

A. Optimal Shift

We may now apply the theory of Section II to the specific
case where is the shifted hat function which,
according to Theorem 1, is the basis building block of -shifted
linear interpolation.

Theorem 2: The asymptotic interpolation constant of the
-shifted linear interpolation is given by

(14)

Proof: We know from Section II that
is of order since it satisfies the Strang-Fix condi-

tions of order 2. According to (8) and (9), we have to compute
and . The first quantity can be evaluated

as follows:

Then, we evaluate the asymptotic constant . Since a shift
contributes only as a phase term in the Fourier transform, we
claim that does not depend on (see the expression of
the orthogonal projection kernel (6)). Thus,

. Putting things together in (9) gives
(14).

Surprisingly, this expression is not minimized for the standard
linear interpolation . Instead, the optimal choice is

(15)

This minimizes the interpolation constant and reaches the lower
value of the optimal approximation (orthogonal projec-
tion). This is remarkable because interpolation is never optimal

in the least-squares sense—we must keep in mind here that our
result is valid only in the asymptotic regime (e.g., smooth func-
tion , or small sampling step ).

We have plotted in Fig. 3 the frequency response of the equiv-
alent interpolant (13), and we have compared it with the piece-
wise-linear interpolant. In the Nyquist band, the amplitude re-
sponse of the shifted linear interpolant is much closer to an ideal
filter than in the standard piecewise-linear case. This is obtained
at the price of a slight phase distortion, and larger ripples in the
aliasing bands.

Using the definition of the asymptotic constant, we see that
the gain of shifted over standard linear interpolation is about 8
dB asymptotically, as the sampling step tends to 0. Obviously,
this performance should degrade as the frequency content of
the function to interpolate gets richer, that is, when the energy
at higher frequencies becomes more significant. In particular,
when is the step function (a limit case that does not be-
long to , but for which we can still test our interpolation
method), the shifted linear interpolation gives rise to a Gibbs
phenomenon—unlike the standard method (see Fig. 4).

Using the Fourier kernel of approximation (7), we can be
more precise about the range of frequencies over which shifted
linear interpolation outperforms standard linear interpolation.

Proposition 3: The Fourier kernel of approximation of
-shifted linear interpolation is given by

(16)

Proof: Expanding (7), we obtain

Then, Poisson’s summation formula applied to
yields

where is the B-spline of degree 3, the Fourier transform
of which is [13]. Putting things together we find
(16).
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Fig. 3. Frequency plot of the amplitude (left) and of the in-band phase distortion (right) of the standard and optimally shifted linear interpolant.

Fig. 4. Gibbs phenomenon caused by the optimally shifted linear interpolation
of a unit-step function.

The approximation kernel evaluated at the frequency can
also be interpreted as the average power of the approxima-
tion—or here, interpolation—error of the pure unit sinusoid

([12] Thm.3). Thus, the quantity quan-
tifies the reduction or increase of the interpolation error caused
by the -shifted method compared to the standard one at the
angular frequency . We define this gain by

(17)

This function is shown in Fig. 5 for the optimal shift .
Not only does this graph confirm that this gain should reach
almost 8 dB in the neighborhood of , it also shows that
the shifted linear interpolation should perform better than its
nonshifted counterpart for signals with frequency range up to

th of the sampling bandwidth.
In principle, the same shifting trick may also be used for other

kernels than such as higher order splines; the optimal shift
has then to be determined on a case-by-case basis.

Fig. 5. Plot of the gain (17) 
 (!) as a function of !: for ! < 3�=4, the
optimally shifted method outperforms the nonshifted one, by up to 8 dB.

B. Computational Cost and Implementation Options

The computational cost of an interpolation method character-
ized by (3) can be decomposed into two parts:

The Pre-Computation of the Coefficients : This cost de-
pends on the number of input samples and the size of the
prefilter only. Typically, is of size where is the length
of the support of . If we consider image interpolation, then
the full cost amounts to multiplications and additions
(using the recursive implementation).

Note that this amount is usually a negligible overhead. In ad-
dition, for applications requiring intensive interpolation, it is
also possible to do the preprocessing in advance and to work
with the instead of the initial data. This is especially indi-
cated in the context of iterative algorithms, and for interactive
imaging and vizualization;

The Computation of : This cost depends only on the
number of output samples and on the cost of computing

for all values of such that belongs to the
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Fig. 6. Interpolation error f(x)� f (x) for the Gaussian function f(x) = e (top) using: standard linear interpolation (bottom left) and optimally shifted
linear interpolation (bottom right). The dotted lines indicate the L interpolation error: in this example, the gain of the shifted method is close to 7.5 dB. See
Section IV-A for more details.

support of . Typically, when is piecewise-polynomial of
degree , the evaluation of (3) requires

• additions and multiplications (in the 2D sepa-
rable implementation);

• -times the evaluation of the 1D basis kernel, which
amounts to additions and multiplications (using
Horner’s scheme).

The total cost is therefore of additions
and multiplications, for given .

In the case of piecewise-linear interpolation ( and
), the full cost is less than what is estimated above (which

is multiplications and additions) because the computa-
tion of the kernel at requires only one addition on the

whole. Finally, we need multiplications and addi-
tions in 2D. In the case of shifted linear interpolation, the full
cost amounts to a little less than multiplications
and additions.

For comparison purposes, a higher-order interpolation
method like Keys’ cubic interpolation ( and )
would cost , which is, in general, much more than
shifted linear interpolation, in particular when
(e.g., zoom ins, rotations).

In fact, a great advantage of our shifted method is to allow
one to take advantage of existing optimized hard- and software
solutions for standard piecewise-linear interpolation. This can
be done at the mere cost of the prefiltering step. If we consider
that a linear interpolator has two inputs (the uniform samples
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Fig. 7. Interpolation error kf(x)� f (x)k for f(x) = e using
standard linear and optimally shifted linear interpolation. The asymptotic gain
is close to 8 dB when the sampling step tends to 0.

and the resampling points ) and one output (the resampled
values ), then shifted linear interpolation
can be implemented as shown in Fig. 10.

Morever, it is possible to further reduce the computational
cost of the coefficients . To this end, we notice that the value
of the optimal shift (15) is close to the fraction . Thus the
use of should result in the same pratical performance
as . The interesting aspect brought by this value is that
the induction (12) becomes

Hence, can be obtained (and encoded) using finite-precision
arithmetics and without a multiplication, since amounts to
a genuine register shift.

IV. SIMULATIONS AND PRACTICAL RESULTS

Although shifted linear interpolation is counterintuitive (in
particular, because it dissymmetrizes a method that is naturally
symmetric), in practice it does behave better than the nonshifted
method, as we will see in this section.

A. Distribution of the Errors

One of the reasons for its better performance is, apparently,
that it tends to distribute more evenly the interpolation errors.
In fact, standard piecewise-linear interpolation is systematically
biased within intervals of same convexity. This can be illustrated
by performing the linear interpolation of a function that
would be convex in . Here, are
integers, and is assumed to be small enough so that at least two
samples lie inside this segment. Hence the convexity inequality

This implies that the interpolation error is always negative on
a convex segment. Similarly, the interpolation error is always

positive on a concave segment. In other words, the interpolation
error does not cancel on average over each of these convexity
intervals; as a consequence, it adds a—significant—bias to the
average square error. As the sampling step decreases, this
behavior gets even more pronounced if we assume that
is roughly bandlimited, because the transitions between convex
and concave segments, which have length , tend to weight less
ans less.

This is exemplified in Fig. 6 where we approximate a
Gaussian: the two methods have roughly the same dynamics
(peak-to-peak values) within each of the convex/concave part of
the graph of . However, the standard linear method exhibits
a systematic bias within each of these intervals, whereas the
shifted method does not.

We have repeated this experiment with several values of the
sampling step and we have computed the interpolation error
for each method, the result of which is plotted in Fig. 7. Clearly,
the shifted linear method outperforms the linear one, even for
large sampling steps like .

B. Rotation Experiments

In order to validate our theory on practical data, we de-
signed a compounded-rotation experiment of the ubiquitous
Lena image (512 512 pixels). Let denote this orig-
inal image. We have access to its samples
only. We first interpolate them—in a separable fashion
(see Section II.B)—to get (here, ); then,
we rotate by the angle , which provides

; finally,
we resample on the original uniform grid, which
gives the “rotated” image . Iterating this pro-
cedure 15 times provides an image that has been rotated by

, and that can be readily compared to the
original image.

The advantage of such an experiment is that it is likely to am-
plify the interpolation errors so that it is easier to rank different
interpolation methods.

As is apparent from Fig. 8, the standard linear interpolation
suffers from blurring, an effect that is avoided in the shifted
method which provides much more details. More surprisingly,
the shifted method appears to reach a quality that is comparable
to that of the higher-order, more costly Keys’ cubic interpolation
[3], which is the reference high-quality method.

On our website [18], we have put a similar java demo which
lets the reader try various rotation angles and shifts on several
images (256 256 pixels) that differ in their high-frequency
content. The results are consistent with those of Fig. 8. Note
that, in this web demo, we have chosen to perturbate the rota-
tion center by a noninteger displacement at every iteration, in
order to enforce true interpolation for every angle, including for
90 rotations.

C. Zoom Experiments

We have also tested these interpolation methods in a zoom
experiment, a test that is more realistic than the compounded-
rotation experiment. The drawback is that it is not objective



BLU et al.: LINEAR INTERPOLATION REVITALIZED 717

Fig. 8. Fifteen successive rotations by 24 of Lena using standard, shifted linear, and Keys’ interpolations; notice the sharpness of the result of our shifted method,
as compared to the two others.

Fig. 9. Magnification by
p
5 of the top image using the two piecewise-linear methods and Keys’ cubic convolution method. Once again, notice the sharpness of

the result obtained with the optimally shifted method.

anymore, because we cannot compute Signal-to-Noise ratios.
We have chosen the “House” image for its texture content

(bricks). The result of a magnification by is shown in
Fig. 9.
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Fig. 10. Proposed implementation of � -shifted linear interpolation using standard soft/hardware: the data are first preprocessed, which yields modified sample
values c and shifted sampling points x = x � �T ; then, these parameters are fed into a standard linear interpolator which outputs the same result as (10).

Clearly, the standard piecewise-linear method blurs the
zoomed image much more than the two other methods. A
closer inspection also shows that the result of the shifted linear
method is perceptually sharper than the result obtained using
Keys’ cubic kernel.

V. CONCLUSION

We have presented a simple, powerful method for improving
the performance of standard linear interpolation. We proved
its—asymptotic—optimality, and, more generally, we evalu-
ated its performance using approximation-theoretical tools that
we had developed in previous papers. Theory and practice are
in good agreement, as illustrated by using synthetic data, by
compounded-rotation experiments, and by zooming of real-life
images.

For efficient implementation, we have proposed to precom-
pute the model coefficients in a preprocessing step (simple re-
cursive filtering), which amounts to replace the initial data by
a resampled version at the shifted knot location. With such a
set-up, the method can be implemented directly via standard
linear interpolation, so that we can readily take advantage of
existing software or of specialized hardware solutions.
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