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Abstract—Shannon’s sampling theory and its variants provide
effective solutions to the problem of reconstructing a signal from its
samples in some “shift-invariant” space, which may or may not be
bandlimited. In this paper, we present some further justification for
this type of representation, while addressing the issue of the spec-
ification of the best reconstruction space. We consider a realistic
setting where a multidimensional signal is prefiltered prior to sam-
pling, and the samples are corrupted by additive noise. We adopt
a variational approach to the reconstruction problem and mini-
mize a data fidelity term subject to a Tikhonov-like (continuous do-
main) 2-regularization to obtain the continuous-space solution.
We present theoretical justification for the minimization of this cost
functional and show that the globally minimal continuous-space
solution belongs to a shift-invariant space generated by a function
(generalized B-spline) that is generally not bandlimited. When the
sampling is ideal, we recover some of the classical smoothing spline
estimators. The optimal reconstruction space is characterized by a
condition that links the generating function to the regularization
operator and implies the existence of a B-spline-like basis. To make
the scheme practical, we specify the generating functions corre-
sponding to the most popular families of regularization operators
(derivatives, iterated Laplacian), as well as a new, generalized one
that leads to a new brand of Matérn splines. We conclude the paper
by proposing a stochastic interpretation of the reconstruction algo-
rithm and establishing an equivalence with the minimax and min-
imum mean square error (MMSE/Wiener) solutions of the gener-
alized sampling problem.

Index Terms—Matérn class, minimax and minimum mean
square error (MMSE) reconstruction, nonideal sampling, reg-
ularization, shift-invariant spaces, smoothing splines, Tikhonov
criterion, Wiener solution.

I. INTRODUCTION

SHANNON’s sampling theory provides an elegant method
to perfectly reconstruct bandlimited signals from their

equidistant samples [1]–[5]. Mathematically, Shannon’s sam-
pling/reconstruction process for 1-D bandlimited functions
is equivalent to projecting the input signal onto the
shift-invariant space , spanned
by the integer-shifts1 of the sinc-function [6]–[9].
There are extensions of the classical sampling theorem for
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1Throughout the paper, we are using a normalized sampling step T = 1 to
simplify the notation.

multidimensional signals [10]–[14] and for nonideal, bandlim-
ited measurements [15], [16]. In a more general framework,
the problem has been generalized to sampling in arbitrary
shift-invariant spaces [17]–[20], Hilbert [21]–[24] and mul-
tiresolution subspaces [25]–[28]. Since real-world signals are
rarely bandlimited, the recommended procedure is to apply
a low-pass filter prior to sampling to avoid aliasing. In prac-
tice, this prefilter corresponds to the impulse response of the
acquisition device and is generally nonideal. Moreover, the
measured samples are often corrupted by noise, an aspect that
is not addressed in traditional sampling theory.

Many methods have been proposed to partially compensate
for these nonideal conditions by means of digital filtering
techniques (inverse filtering or deconvolution) [29]–[32]. In
a recent paper, Eldar et al. present an extended formulation
for the “optimal” reconstruction of a 1-D signal from
noisy measurements in some general “shift invariant” space

where is an arbitrary generating
function [33]. Given some a priori choice of reconstruction
space, the optimal approximation is then obtained by suitable
digital processing of the nonideal samples. As in the classical
case, this corresponds to a special kind of (regularized-inverse,
Wiener) filtering, except that the determination of the digital
correction filter is slightly more involved because of its explicit
dependence on [33]. The bottom line is that the user is free
to select the reconstruction space he wishes, provided of course
that he optimizes the digital correction filter accordingly.
Having this added flexibility is desirable, but it also raises the
important issue of the selection of the “best” reconstruction
space for a particular sampling setup and/or class of input
signals. This is precisely the question that we will address here
while also extending some of the previous formulations to the
multidimensional setting. Table I summarizes the characteris-
tics of some well-known methods in literature in comparison to
what is developed in this paper.

Is it justifiable or not in practice to depart from the tradi-
tional bandlimited formulation? Our answer here is qualified
and depends both on the sampling setup and the type of a priori
information available on the signal. In contrast with previous
works where the solution subspace is fixed a priori, we want
to infer the “optimal” reconstruction space together with the re-
construction algorithm in a deductive fashion through a global
mathematical optimization process. Specifically, we formulate
the problem as an interpolation task wherein the continuous-
space solution is obtained by the minimization of a data fi-
delity term subject to a continuous-space regularization con-
straint (Tikhonov-like functional). The data fidelity term (which
is possibly nonquadratic) ensures that the continuous-space so-
lution is consistent. For the regularization, we choose a convex-
increasing function of the norm of a generalized derivative
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TABLE I
COMPARISON OF CHARACTERISTICS OF VARIOUS METHODS

Fig. 1. Block diagram of the generalized sampling problem. The acquisition device specifies the prefilter h(x) which acts in the continuous domain. The choice
of the generator '(x) specifies the reconstruction formula. The optimal coefficients c[k] are determined from the noisy samples g[k] as the result of a numerical
linear/nonlinear optimization process.

of the reconstruction (Tikhonov regularization). This gives rise
to a general setting which is mathematically tractable and also
leads to the specification of an “optimal” reconstruction space.
We will show that the optimal space is shift-invariant in nature
and that the continuous-space global minimum solution has an
exact analytical form. For a nonquadratic data term, the solution
can be computed by nonlinear optimization of the coefficients
of its shift-invariant representation. For the quadratic case, we
will show that the optimal solution can be obtained by a simple
one-step hybrid-linear filtering (discrete in—continuous out) of
the measurements. This leads to the reconstruction setup illus-
trated in Fig. 1.

An important point that is put forth in this work is that the
optimal reconstruction space is tied to the choice of regulariza-
tion operator L via an optimality condition that will be made ex-
plicit. Also, we will argue that the optimal reconstruction space
is generally nonbandlimited, unless the impulse response of the
acquisition device is itself bandlimited, which is rarely the case
in practice. In fact, we will see that the proposed reconstruc-
tion framework is closer to spline theory than it is to the tradi-
tional view of sampling/deconvolution. The key difference here
is that the basis functions are problem-dependent. While this
may sound like a complication, the good news for practitioners
is that the corresponding computational approach (numerical
optimization) is not too different from what they used to be,
once the problem has been discretized in the optimal basis. A
conceptual advantage is that there are no numerical approxi-
mations involved (e.g., finite differences to estimate derivatives,
etc.): all calculations are exact and performed analytically in the
continuous domain (similar to what is done in the context of the
wavelet transform).

We will show that our formulation is general enough to re-
cover most of the smoothing splines estimators that have been
proposed in [34]–[37]. We will also present statistical arguments

that suggest the same type of estimators and point towards the
existence of optimal shift-invariant reconstruction spaces for
certain classes of stochastic processes. In fact, we will uncover
a functional equivalence between the variational and Wiener so-
lutions to the generalized sampling problem, which in turn helps
us to select the most appropriate regularization functional.

The paper is organized as follows. We present our nota-
tions and some preliminaries about shift-invariant spaces in
Section II. The generalized sampling problem is investigated
in Section III. We first give a precise statement of the problem
and discuss the mathematical hypotheses that are essential
to the analysis. We then derive the general continuous-space
solution to our variational reconstruction problem and prove
that it is included in some optimal shift-invariant space. An
important aspect of the formulation is the characterization of
the optimal generator of the solution space which is tightly
linked to the regularization operator. Section IV is dedicated to
the analysis of the stability of the reconstruction; the end result
is a set of relatively mild constraints on the frequency response
of the regularization operator that simultaneously ensure that:
1) there is a stable representation (Riesz basis) of the solution
space ( condition), and 2) the reconstruction problem is
well posed ( Condition). We illustrate our results with some
concrete examples in Section V. In particular, we consider ex-
plicit classes of separable and isotropic regularization operators
and characterize the corresponding reconstruction spaces. This
also leads to the definition of a new brand of multidimensional
“Matérn” splines, which extend Rabut’s polyharmonic family.
Finally, in Section VI, we revisit our sampling problem from an
estimation theoretic point of view and derive the corresponding
minimax and MMSE solutions. This allows us to draw an in-
teresting link with the variational formulation leading to some
equivalences of solutions for the deterministic and stochastic
cases.
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II. PRELIMINARIES

A. Notations

Throughout this paper, we consider real-valued -dimen-
sional signals. Continuous-space signals are denoted with
parentheses, e.g., ,
and discrete-space signals with brackets, e.g., . We
write flipped functions or sequences with a bar; for example,

and .
The continuous-space Fourier transform of a signal

is

(1)

and the discrete-space Fourier transform of a sequence
is defined as

(2)

We denote the -inner product between and by

(3)

and the -inner product between two complex sequences
and by

(4)

Continuous-space convolution of and is denoted by
using the symbol, while its discrete counterpart is

denoted by using the symbol, respectively.
We will frequently rely on Parseval’s identity that states that

for ,

(5)

and for two complex sequences , ,

(6)

where
.

We will also use the well known inclusion-property of the
spaces:

(7)

Using Young’s inequality [38], we have for any
and , . The
same holds true for sequences, with being replaced by

.

B. Shift-Invariant Spaces

We briefly review some general results on integer-shift-in-
variant (or spline-like) spaces and the conditions that must be
satisfied by the generating function . The reconstruction
space generated by is defined as

(8)

For the expansion in (8) to be well defined, must satisfy
some stability conditions.

Definition 1: A function is a stable generator
of if and only if it satisfies the two “stable representation”

conditions:

(9)

In particular, (9) ensures that the set of functions
forms an -stable Riesz basis for all [19], that is,

(10)

where and are appropriate constants.
The quantity in (9) [or in (10) with ] is called the
lower Riesz bound and is complementary to the upper Riesz
bound , which is given by

(11)

The basis is orthonormal iff . The norm equiv-
alence (10) implies that is a closed subspace of for
all . The key point is that any function
has a stable and unambiguous representation in terms of its co-
efficients .

It is important to note that the generator of is by no
means unique, as expressed by the following proposition (cf.
[32]).

Proposition 1: Let be a stable generator of . Then, any
function of the form , gener-
ates an equivalent Riesz basis of , if and only if

, a.e., where is the Fourier trans-
form of .

We will also take advantage of the following Young-type in-
equality which asserts that the second condition is preserved
through convolution.

Proposition 2: Let satisfy the second condition
and let for some . Then
we have

(12)
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Proof: Consider the series

where this inequality holds , including the value
for which the left–hand side (LHS) achieves its maximum.

Remark 1: It should be noted that ,
which is obvious when we set in (12).

III. SAMPLING PROBLEM AND REGULARIZATION THEORY

A. Problem Specification

The problem we consider is the recovery of a continuous-
space real-valued signal given some equally spaced, noisy
measurements . The deterministic signal is convolved
with a prefilter prior to sampling and the generalized sam-
ples are corrupted by additive noise. Specifically, the measure-
ment model associated with Fig. 1 is

(13)

where are the measurements, are the
generalized samples (samples of the prefiltered signal) and
is a discrete additive, zero-mean noise component.

Throughout this paper, we assume that the analog prefilter
, which represents the point spread function (PSF) of the

nonideal acquisition device, is of either forms as follows:
(i) PSF defined over a continuum: ;

(ii) Sampled PSF (or discrete filter):
, where .

A necessary condition for the sampling problem to be well de-
fined is that the prefilter be BIBO stable, as implied by (i) or
(ii). The PSF in (ii) is not rigorously in ; however, it can
be shown that it satisfies all corresponding Young-type inequal-
ities. Note that (ii) also includes the identity filter
(ideal sampling) as a special case.

We adopt a variational approach and formulate the recon-
struction problem as a minimization problem. The solution is
obtained by minimizing an error criterion denoted by
which depends on the input measurements and the contin-
uous-space reconstruction . The specification of the cost-
functional is based on the following two key points:
(a) the reconstruction should be sufficiently constrained (e.g.,
smooth or slowly varying) to make up for the fact that we are
missing information in between pixels and to countermand the
effect of noise, and (b) the generalized samples corresponding
to the reconstruction should be close to the given measurements

to ensure some level of consistency. Specifically, among all con-
tinuously defined functions , we are seeking the
optimal signal reconstruction

(14)

where the cost functional is given by

(15)
L is a suitable shift-invariant differential (or regularization) op-
erator, a positive real number, and is a convex increasing
function. The -norm in the regularization term is a measure of
the “roughness” of the reconstruction. Minimization of
therefore ensures sufficient smoothness in the reconstruction
while the data term constrains the generalized samples of the re-
construction to be “close” to the measurements in the -sense.
The parameter controls the amount of regularization im-
posed on the reconstruction.

The above cost functional reduces to the well-known
Tikhonov criterion when and . Moreover,
we will show in Section VI that the solution corresponding to
the Tikhonov criterion is functionally equivalent to the ones
obtained for the minimax estimation and the stochastic (or
Wiener) formulation of the generalized sampling problem.

At this point, it is important to note that is a hybrid
criterion that has a discrete part—the data term—and an analog
one—the regularization functional—that imposes smoothness
constraints on the continuous-domain solution. It is this latter
term together with the extent of the search space2 that differen-
tiates our problem from a more traditional deconvolution task
which is usually entirely formulated in the discrete domain.
Here, we are attempting to solve the deconvolution and inter-
polation problems simultaneously and hoping that the criterion
will dictate an “optimal” discretization procedure.

We believe that the present cost-functional is the most general
one that can be solved analytically in the continuous-space do-
main. It allows for a nonquadratic data fidelity term in the spirit
of Fu et al. [39] and Nikolova [40], but it excludes some popular
nonquadratic regularization such as TV [41], [42], which are not
mathematically tractable in the present continuous-space frame-
work. We must admit that this restriction constitutes a limitation
of our formulation, but it is also clear that the generalized sam-
pling problem is more difficult than the classical deconvolution
problem: we are not only trying to get the optimal solution at
the sample locations, but also in-between pixels, which adds an-
other level of ill-posedness.

As we shall see, it is the presence of the norm of
in the regularization term that makes the derivation of the con-
tinuous-space solution feasible. Indeed, we will show that the
continuous-space solution is well defined and that it belongs to

2We are optimizing the criterion over L ( ), which is considerably larger
than the subspace of bandlimited functions. To make an analogy, L ( ) is to
V —or, equivalently, ` ( )—what the real numbers are to the integers.
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an “optimal” subspace, , that is shift-invariant and inde-
pendent upon the input signal. Moreover, for , there is a
direct solution that can be computed elegantly by simple digital
filtering of the discrete input measurements. This is illustrated in
Fig. 1 in the reconstruction setup where the measurements
are first compensated for their nonidealness using linear/non-
linear optimization techniques (that can be implemented effi-
ciently via digital filtering); the reconstruction then is performed
in the shift-invariant space generated by .

B. Consistent Sampling in

In the noise-free case, it is reasonable to decrease the weight
of the regularization and to seek a signal reconstruction
that is consistent with the measurements. This corresponds to
the case where the samples of the continuous-space function
are equal to the measurements (so that the data term is zero).
This is the approach to the generalized sampling problem that
was developed initially in [32] for a signal reconstruction in
some predefined shift-invariant space . We will review this
solution here, keeping in mind that it is not necessarily optimal
because of the restriction on the search spaces (i.e., instead
of ). Under suitable conditions (cf. [32, Theorem 1]), the
consistent signal reconstruction in is unique and is given by

, where is the digital
restoration filter whose frequency response is [32]

(16)

Note that this filter corresponds to the convolution in-
verse of the sequence . We check for the con-
sistency of by sampling it at the integers:

.
This holds true because and the inter-
change of the sum and integral is justified using Lebesgue’s
dominated convergence theorem in combination with Schwarz’s
inequality. The condition for the existence (and unicity) of the
consistent sampling solution is that the denominator of
(16) is nonvanishing:

(17)
which imposes a joint constraint on and . This guar-
antees the BIBO stability of the reconstruction filter . Indeed,
the -stability of ( condition) implies that

[see Remark 1]. The results then follow from Wiener’s
lemma [43], which ensures that the inverse filter .
The argument also holds in the case where is a sampled PSF.

C. Space of Admissible Solutions

We now go back to our initial minimization problem (14) with
. While searching for a global solution in , we must

exclude all potential candidates for which the cost is infinite.
We therefore say that the function is admissible

with respect to the criterion (14) if and only if is finite.
In particular, this implies that

(18)

This together with the fact that we are looking for a solution
with finite norm gets translated into , where

is the
generalized Sobolev space associated with the operator L. Thus,
the problem can be restated as

(19)

Additionally, for the data term in to be finite (in the
case), the samples of the solution should

be well-defined in the -sense (we examine the cases where
when we actually present the solution to the minimiza-

tion problem). This is ensured provided that L acts as a differ-
ential operator and enforces sufficient smoothness on the so-
lution. In multiple dimensions, a classical choice for L is the

-iterated multidimensional Laplacian operator ,
whose transfer function is [35], [44], [45]. This
leads to the Sobolev space of order that contains finite
energy functions whose derivatives up to order have finite

-norm [34], [45]. Among other properties of , the one
that is of interest to us is: for real ,

(see [46, Appendix C] for the proof when
).

In this paper, we propose to extend this result to a larger class
of multidimensional differential operator L. To that end, we im-
pose the following admissibility condition on L which guaran-
tees the minimum required degree of smoothness.

Definition 2: L is an admissible multidimensional differential
operator if and only if

(20)

This condition implicitly controls the minimal “growth” rate
of , because the above series converges only when
grows faster than which is the limit case. If the gener-
alized differential operator L is admissible, then the following
theorem ensures that the associated generalized Sobolev space

has the properties that we demand.
Theorem 1: Let be the generalized Sobolev space associ-

ated with the admissible regularization operator L. Then
, and the Poisson summation

formula holds: a.e.
The proof is given in Appendix A.
For the present context, we extend the scope of the above

theorem to functions of type using the following
proposition.

Corollary 1: If and , then
and .
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Proof: Since , ,
and the result is obvious from the definition of and the ap-
plication of Theorem 1. The same holds for the sampled PSF
case too.

It is also clear that the search for a suboptimal solution in
some subspace only makes sense if . This is equiv-
alent to requiring that the upper Riesz bound , as defined
by (11), be finite.

D. Solution to the Variational Problem

To minimize the cost functional , we first observe
that the data term depends on the generalized samples of the
solution exclusively, which suggests a two-stage optimiza-
tion strategy. We first deal with the regularization part of the
problem. Let us denote by the optimal solution to our
problem. The main part of the argument will be the construc-
tion of a function which belongs to some “optimal”
shift-invariant space , that is consistent with (in the
sense that ) and which
has the least among all consistent functions in

(Section III-D-1). This leads us to conclude that there is
a solution of our global optimization problem that belongs to
the space (Sections III-D-2 and D-3). Once the optimal
space is known, we only need to determine the coefficients

of the shift-invariant representation which yields the dis-
cretized version of the problem presented in Section III-D-4.
The quadratic case, which can be solved explicitly, is dealt with
in Section III-D-5.

1) Consistent, Shift-Invariant Solution: The optimal gener-
ating function for our problem will be denoted by . We
also introduce a sufficient condition for optimality which will
be justified by Theorem 2.

Definition 3: Let be a generating function that sat-
isfies the and conditions for a given . Then,
is said to be optimal with respect to the problem (14) if there
exists a sequence such that

(21)

where and is the self-adjoint operator whose
transfer function is .

We now construct a function that is con-
sistent with the optimal solution and therefore yields the
same data term. This can always be done, as stated here.

Proposition 3: Let be optimal as in Definition 3.
Then, if the samples , there exists
a unique consistent function such that

. It is given by

(22)

where the digital reconstruction filter is specified by (16) with
. Moreover, we have the equivalence

.
Proof: The first part of the proposition is a direct ap-

plication of the consistent sampling solution presented in

Section III-B. Since ( Condition) and
, we have

by Young’s inequality. This implies that ,
because generates a Riesz basis. To further prove that

, we need to show that has an upper
Riesz bound: By Proposition 2, we have .
This together with the fact that is bounded from above
yields

which ensures that is finite. We have, thus, established
the forward implication:

. The converse is a consequence of Theorem 1.
An interesting property that will be used later on is that the

frequency response of the corresponding optimal re-
construction filter is always strictly positive. This can be seen
by writing (21) in the Fourier domain as

(23)

which implies ,
. In fact, the latter is a strict inequality because of the

condition.
2) Global Optimality of the Shift-Invariant Solution: Now

that we have constructed the consistent function , it only
remains to show that it is the one with the least
value. To do this, we establish a norm identity that decomposes

into two orthogonal components.
Theorem 2: Let be the function space generated

by as in Definition 3. Then, the following orthogonality
property holds:

(24)

where is the unique consistent function in such
that , as specified in
Proposition 3.

The proof is given in Appendix B.
Setting in (24) minimizes the function norm

. Thus, minimizes among
all functions in having consistent samples.

3) General Solution: Putting the pieces together, we get our
main theorem, which states that the solution to our optimiza-
tion problem has a unique representation in the integer-shift-in-
variant space .

Theorem 3: Given the measurements and the
“optimal” subspace of ,
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with as in Definition 3, one has the following problem
equivalence

(25)

for any general cost function of the form (15).
This implies that the optimal signal reconstruction can be

written as and the opti-
mization performed over the discrete set of coefficients

, which narrows down the search considerably.
Proof: We first concentrate on the case . Since we are

looking for a reconstruction , the generalized sam-
ples are in and the cost functional

is always well defined. The cost (15) is convex over
because it is the sum of two (strictly) convex sub-functionals.
We are therefore guaranteed that the LHS of the problem in (25)
has a global minimum associated with the solution . The
corresponding consistent reconstruction in is denoted by

and is such that
. Applying Theorem 2 to the regularization part of the crite-

rion, we have

(26)

where the data term and the consistent function
are fixed and uniquely tied to . The optimality of implies
that . On the other hand, the com-
parison of (26) for and indicates that

because the data term is the same in
both cases and the function is convex increasing. Thus, the
conclusion is that , which proves our
assertion.

For , the situation is more restricted because the cost
explodes if the samples .

The minimization of therefore automatically confines
the samples to lie in . Since
for , the shift-invariant solution is
still valid by Proposition 3 and Theorem 2.

The above result is conceptually pleasing because the con-
tinuous-space optimization problem (19) does not make any a
priori assumption on the form of the reconstruction. The shift-
invariant structure of the solution comes out as a result of the
mathematical optimization. The generator of the optimal recon-
struction space is specified by the optimality condition , that
is, the operator L determines the generator . This simply
means that the reconstruction space should be “matched” to the
regularization operator.

Note that the fundamental solution of (21)—i.e.,
—is , where is a Green’s

function of the self-adjoint operator , and this generator is
generally not bandlimited.

4) Optimal Discretization of the Problem: Once the recon-
struction space is specified, we only need to search for
the expansion coefficients of the solution. To
do this, we write , where

. Using (21) for the second term, the cost can be
rewritten in terms of the signal coefficients

(27)

where we have used the fact that
. We are, therefore,

faced with a nonlinear optimization problem. Even though
the problem does generally not have an explicit analytical
solution, the good news is that is a convex function
of the coefficients , which ensures that any local minimum
automatically yields a global solution. The minimization
can therefore be done by using any standard gradient-based
nonlinear optimization technique [47].

5) Solution of the Quadratic/Tikhonov Problem: When
and , the cost functional (27) is quadratic in

(Tikhonov Criterion) and the derivation of the optimal solution
can be carried out analytically. This yields an efficient digital
filtering reconstruction algorithm.

Corollary 2: When , and , the
global minimum of the cost functional is achieved by

(28)

where the frequency response of the optimal restoration (digital
correction) filter is given by

(29)
Proof: Setting and in (27) and equating

the partial derivative of with respect to to zero
yields

Rewriting this equality in the Fourier domain, we obtain the
desired result

where is the Fourier transform of the given samples
.

Since is strictly positive and because is
bounded, the filter is strictly positive and bounded
as well. Therefore, by writing the solution (28) in the Fourier
domain, we obtain

(30)

where is the equivalent basis func-
tion that needs to be applied to the measurements to pro-
duce the continuous-space signal reconstruction, as illustrated in
Fig. 2. Indeed, we are ensured that generates a -stable
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Fig. 2. Reconstruction for the case of p = 2: Linear filtering of measurements g[k].

Riesz basis because of the boundedness of (see Propo-
sition 1).

IV. STABILITY OF THE RECONSTRUCTION

In this section, we examine from a spline-theo-
retic point of view and provide guidelines for selecting L
so that the problem is well posed. To this end, we rewrite
the optimality condition (23) in the Fourier domain as

where

(31)

is interpreted as the Fourier transform of the generalized
B-spline associated with the operator L [34], [37]. The con-
struction of a B-spline is typically achieved by selecting a filter

that cancels the zeros of in order to produce a
frequency response that is bounded. In the sequel, we
will only consider “spline admissible” operators for which the
corresponding generalized B-spline generates an -stable
Riesz basis.

Definition 4: The operator L is said to be spline-admissible
with B-spline iff

(32)

where , and satisfies the condition.
Note that the above equation is just a restatement of (31) in

the signal domain. The nontrivial aspect here is the existence of
the lower Riesz bound , which needs to be checked on a
case-by-case basis.

The optimal generating function can therefore be regarded a
compound generalized B-spline given by

(33)

We will now see that this interpretation of greatly simpli-
fies our task of making sure that the conditions and for
the well-posedness of our reconstruction problem are met. Inter-
estingly, both conditions are tightly linked when we are working
with the optimal basis.

Proposition 4: Let be the optimal generator. If
and L is spline-admissible, then we have the following

equivalence: satisfies the conditions satis-
fies the condition.

Proof: Let us start from the left. Since satisfies the
first condition, we have a strictly positive lower bound for
the series

. Since all individual factors are positive, contin-
uous functions of , this means that for each , there
is at least one such that .
Thus, , the sum

(34)

is strictly positive so that satisfies the condition. For
the converse implication, we see right away that the second
condition is satisfied by because of (33) and Proposition
2. Then, from Remark 1, we have .
Therefore, the LHS of (34) is continuous and since it is also
strictly positive, there exists , such that

, which proves that the first
condition is met as well.

The key to this equivalence is the optimality of which
leads to series of positive terms in both the and the
conditions. However, the question still remains as how to en-
sure the existence of at least one nonvanishing product

for each and some
. Unfortunately, this may be quite tedious to check

directly. What we propose here is an easy alternative where the
user only has to worry about the placement of the zeros of
in relation to those of .

Theorem 4: Let the following be true:
(i) L be spline-admissible;

(ii) be nonpathological in the sense that there
exists

(35)

(iii) and have no common zeros.
Then, satisfies and conditions.



RAMANI et al.: NONIDEAL SAMPLING AND REGULARIZATION THEORY 1063

Proof: First we note that and are continuous and
bounded because and L is spline-admissible.
Suppose that for , where
is a finite index set. These zeros must necessarily be cancelled
by some corresponding zeros of which is -periodic.
This implies that

otherwise

where is a real constant. Moreover, satisfies the
condition because of the spline admissibility of L. There-

fore, the only zeros of are , ,
. Since ( and have no common

zeros), we see that
, for all the zeros of . Therefore, the

only way can vanish is when
has a -periodic zero, which cannot be the case because
of the lower Riesz bound. Thus, we are ensured that for
each , there is at least one such that

. Following the argument used
in Proposition 4, this implies that and conditions are
both satisfied by .

The placement of the zeros has some important effect on
the reconstruction. Qualitatively, the regularization will be the
least at the frequencies where is minimum. In the limit
when , the restoration filter simplifies to

(36)

because and ,
by construction. Interestingly, this is the same response as that
of a classical (nonregularized) inverse filter.

In light of this observation and Theorem 4, it makes good
sense to place the zeroes (or minimal values) of , where

takes its maximum (typically, ) and vice versa. We
will now consider some concrete examples and specify fami-
lies of regularization operators that are well suited for low-pass
systems. We will then return to the issue of the selection of the
“best” regularization operator in Section VI, where we present
an alternative stochastic formulation of the generalized sam-
pling problem.

V. CASE ILLUSTRATIONS

In this section, we examine a few special cases of the gener-
alized sampling setup. The key point is that the reconstruction
space is derived from the regularization operator via the opti-
mality condition . We illustrate this connection with con-
crete examples that are relevant to image processing.

A. Ideal Versus Nonideal Sampling

The prefilter in the generalized sampling setup in Fig. 1
models the point spread function (PSF) of the acquisition

device. The simplest, idealized case is , which
corresponds to a perfect sampling of the signal. The problem
described by (19) then reduces to the multidimensional ver-
sion of the smoothing spline problem investigated in previous
work [35]–[37]. In that case, we can simply ignore in
all formulas and invoke Theorem 4 to show that the problem
is well posed, provided that the regularization operator L is
spline-admissible.

Likewise, we can account for the physical effect of an optical
system. In the paraxial approximation of optics, the system is
shift-invariant with a general lowpass behavior; the optical PSF
is in and does not exhibit structured set of zeros ( -peri-
odic). Hence, stability is usually not a problem.

By contrast, some man-made sensors, such as CCD cam-
eras whose impulse responses are indicator functions, do
exhibit zeroes on a regular grid in the Fourier domain;
e.g., ,

. Fortunately, the gain at zero frequency is
nonzero (low-pass behavior) so that condition (35) is generally
satisfied.

B. Examples of Regularization Operators and Reconstruction
Spaces

Since most natural images are predominantly lowpass, it is
desirable to reconstruct the lower part of the spectral content
with minimum distortion which can be achieved through a judi-
cious placement of the zeros of near the origin [cf. (36)].
This strategy is also justified by the low-pass behavior of most
PSFs and our desire to minimize instabilities by having
be small where is large, and vice versa. In what follows,
we consider examples of multidimensional regularization op-
erators that are associated with the most prominent families of
spline functions: tensor-product polynomial splines [48]–[50],
and polyharmonic splines [34], [51], the latter being the non-
separable counterpart of the former. We also introduce a gen-
eralized class of isotropic operators that lead to a new brand of
“Matérn” splines, the relevance of which will be further justi-
fied in Section VI.

1) Separable Operators: We first study the separable case,
where the Fourier transform of the multidimensional operator

can be decomposed into a product of simple monomials.
The prototypical example is a succession of -th order deriva-
tives along each spatial coordinate leading to

(37)

Since has multiple zeros at , we must choose
in (31) to cancel these out. The canonical choice is

, which yields a multidimen-
sional B-spline whose Fourier transform is

(38)
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This expression is separable and can be inverted in a coordinate-
wise fashion. The end result is a tensor-product B-spline:

(39)

where is Schoenberg’s symmetric polynomial
B-spline of degree (or order ) [49]. Since the 1–D
B-splines are compactly supported and generate 1D Riesz
bases, the same holds true for in higher dimensions.

Let us now look at two concrete examples of sampling con-
figurations. The first is (ideal sampling) with a
second derivative regularization for all . In that case,

, which is a
tensor-product symmetrical cubic B-spline. Thus, we may rely
on the present variational formalism to justify the use of cubic
interpolation which is quite popular in image processing appli-
cations; this corresponds to the limiting case where the
data term vanishes (perfect fit).

The second example is (CCD camera) with
a first derivative regularization for all . In that case,

, which is
a quadratic B-spline. Note that without the prefilter, we would
have ended up with a linear spline solution which is the poor
man’s solution to the interpolation problem. As far as image
analysis is concerned, we believe that a quadratic spline model
is preferable, one of the reason being that it is better suited for
the evaluation of image differentials because of its higher-order
continuity [52]. Thanks to the present formulation and the fact
that most images are captured using a pixel-integration device,
we can invoke the present variational argument to support the
use of quadratic splines in imaging applications. We are not
aware of any previous justification in that direction.

2) Laplace Operators: The prime example of a nonsep-
arable, isotropic operator is the -iterated (or fractional)
Laplacian whose Fourier transform is given by

(40)

For , we recover the classical Laplacian which is a pop-
ular, local operator.

Similar to the 1-D separable case, the choice of an appropriate
localization filter that cancels out
the multiple zeros at yields the polyharmonic B-spline
function of order for [34], [53]; these can be written in
the Fourier domain as

(41)

where and .
The polyharmonic B-splines fulfill the condition as well as
the convolution property: .

If we now consider the case of an ideal sampling device to-
gether with a -iterated Laplacian regularizer, we end up with
the optimal generator , which
is a polyharmonic B-spline of order . The corresponding so-
lution to the quadratic problem in Section III-D-5 is then the

equivalent of the polyharmonic smoothing spline estimator in-
vestigated by Tirosh et al. [35].

3) Generalized Isotropic Operators: We now introduce a
generalization of the fractional Laplacian operator that has
the important advantage of being associated with an extended
family of stationary processes, including the so-called Matérn
class [54], [55]. This stochastic link will be made explicit in
Section VI-B in connection with the MMSE (or Wiener) esti-
mator. We note that there is also a stochastic interpretation of
the polyharmonic spline estimator, but it is much more intricate
because it involves fractional Brownian motion fields which are
nonstationary processes [35], [36]. The idea here is to keep the
isotropy property by having be a function of , but to
displace the zeros from the origin by considering an operator
whose Fourier transform is

(42)

with .
Since does not vanish, there is actually no need

for localization. So we simply set and
define the generalized Matérn B-spline with parameters

as ,
where . Interestingly, we are
able to compute the inverse Fourier transform of
which is given by (see Appendix C)

(43)

with ; is the modified Bessel function of
the second kind which rapidly decays (faster than polynomial
decay) for increasing and is positive for and
[57]. This result constitutes the multidimensional extension of
the 2–D formula given in [55].

Therefore, is positive for , and conse-
quently , which is a -fold convolution product

(44)

is positive as well. Moreover, since ,
is uniformly continuous. The following proposition then ensures
that is spline-admissible.

Proposition 5: For , the oper-
ator is spline-admissible, that is, the function
given by (44) satisfies the conditions.

Proof: Consider the periodic function defined as

which involves strictly positive terms only. Thus, we have the
lower Riesz bound inequality satisfied:
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. To prove the second condition, we observe
that . Therefore, the task boils down to
showing that . We first
prove that this condition is satisfied by each . Con-
sider the series which can be bounded
from above

where the right-hand side (RHS) series is known to converge
whenever . We then use Poisson’s formula to obtain

The result then follows from the repeated application of
Proposition 2.

VI. STOCHASTIC FORMULATIONS AND THE LINK

WITH THE TIKHONOV SOLUTION

The subject matter of the paper until now has been the theo-
retical analysis of a variational approach to the generalized sam-
pling problem. The signal and measurements were treated as de-
terministic entities, and the solution to the problem was obtained
by finding the global minimum of a cost functional. However,
there are also alternative formulations for the situations where
the measurements are of stochastic nature and where we have
some a priori knowledge on the class of signals. The recon-
struction problem can then be posed as an estimation problem
where the continuous-space reconstruction is estimated from the
given measurement such as to minimize the mean square error
(MSE). Following [33] we consider two formulations. First the
signal to be reconstructed is treated as deterministic, while the
additive noise is considered to be of stochastic nature. In this
case, we extend the results of [33] to multiple dimensions and
perform a minimax estimation to obtain the reconstruction. In
the second case, which we call the Wiener formulation, both
the signal (continuous) and the noise (discrete) are modeled as
stationary processes. The solution is obtained by minimizing the
MSE of the reconstruction at each point in . Interestingly, this
brings out a direct connection with the variational problem for
the case (the Tikhonov criterion) and leads to identical
reconstruction algorithms for some particular choice of L and .

A. Connection With the Minimax Estimator

When the signal is deterministic and the noise is stationary,
the reconstruction problem can be posed as a minimax esti-
mation problem [33]. In this case, we assume that the signal

with where the upper bound ex-
presses our a priori knowledge on the class of input signals. The
additive noise is modeled as a discrete, zero-mean stationary
process with power spectral density (PSD) .

The criterion we minimize is the worst case projected MSE
which eliminates explicit dependence of the solution on the un-
known signal [33]. The projection is made onto some recon-
struction space generated by which is decided a priori
(and not necessarily optimal). In that framework, the minimiza-
tion of the criterion over the signal coefficients yields a
digital correction filter which, when applied on the mea-
surements together with the basis function, gives the reconstruc-
tion, as illustrated in Fig. 2. Thus, our problem can be formu-
lated as

(45)

where is the orthogonal projection of the deterministic
signal onto the shift-invariant space . The minimax recon-
struction in is then given by

(46)

By extending the argumentation of [33] to multiple dimen-
sions, we can derive the frequency response of digital correc-
tion filter that minimizes the minimax criterion (45); it
is given by

(47)

The key point for our purpose is that, in the case of additive
white noise, the minimax and Tikhonov reconstruction filters
can be made rigorously equivalent, as stated in the following
proposition.

Proposition 6: The reconstruction filters for the above
minimax estimation problem and the Tikhonov problem in
Section III-D-5 are identical provided that:

1) the discrete additive noise is white; i.e., ;
2) the generator for the minimax method satisfies the

optimality condition ; i.e., ,
3) the regularization parameter is set to its optimal value

.
Proof: By substituting and

where
and multiplying and dividing by in the RHS of (47),
we obtain the equation at the bottom of the next page. Thus,
(46) is equivalent to (28) for .

It is interesting to note that this equivalence only holds when
we are considering the optimal generator . Otherwise, the
Tikhonov and minimax solution are generally different, as dis-
cussed in [33].

B. Unification With the Wiener Formulation

We now move one step further and consider that the input
signal is a stochastic entity as well. Specifically, we assume that

is a realization of a continuous-space zero-mean stationary
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process with PSD . The measurements are the
same as in (13), except that the additive noise is now modeled as
a zero-mean discrete stationary process whose autocorrelation
and PSD are denoted by and , respectively. It is
further assumed that the signal and noise are uncorrelated.

The solution in this formulation is obtained by minimizing
the MSE of the reconstruction at any fixed location

(48)

It should be noted that we minimize the MSE of the reconstruc-
tion and not the projected MSE, as done in [33]. Hence, our
solution is the global minimum of the MSE. Keeping in line
with the previous reconstruction framework, we will show that
the optimal solution belongs once again to an integer-shift-in-
variant space that is generated by some optimal function
where the subscript stands for Wiener.

We want to emphasize the fact that the minimization of (48)
is a hybrid version (discrete input—continuous output) of the
standard Wiener problem, which is usually either stated in the
discrete or purely continuous domain [58]. This said, the method
of proof and solution are quite similar to the traditional ones
and have already been deployed in the context of generalized
sampling [59]. Therefore, in what follows, we simply present
the hybrid Wiener solution (without proof) in a form that suits
our notation.

Proposition 7: Consider the measurements
, where is a realization of a con-

tinuous-space stationary process with autocorrelation function
and is a discrete stationary noise compo-

nent with PSD . Then, the linear minimum mean square
error (LMMSE) estimator of the signal given can be
written as

(49)

where the optimal Wiener generator is ,
and where the frequency response of the optimal restoration
(digital correction) filter is given by

(50)

It is important to note that this MMSE formula is valid for
any and that the complete estimator is in-
cluded in the integer-shift-invariant subspace space . It is
also well known from estimation theory that the Wiener solu-
tion is optimal among all estimators (not just among the linear
ones) when both the signal and noise are Gaussian distributed.

We observe that the PSD of the measurements is given by
,

which coincides with the denominator of (50). Thus, a necessary
and sufficient condition for the Wiener filter to be well defined
(i.e., bounded) is that this quantity be nonvanishing (a sufficient
condition is ). Also, if we take the Fourier trans-
form of (49), we see that the solution is of the same form as (30)
where the Fourier transform of the equivalent basis function is
given by

(51)

Once again, the optimal reconstruction space is generally not
bandlimited, unless either or are bandlimited to start
with. Here too, the reconstruction filters for the deterministic
and stochastic cases can be made equivalent. This equivalence
helps us not only associate the optimal generating function to
the autocorrelation function of the signal, but also allows us to
choose the best regularization operator L and the best regular-
ization parameter for the Tikhonov solution in Corollary 2.
Comparing the solutions (28) and (49) for the deterministic and
stochastic cases respectively, we obtain the equivalence which
corresponds to the case and . That
is, the Tikhonov and Wiener reconstruction algorithms become
equivalent when the discrete additive noise is white and the
regularization operator is chosen such that it whitens the input
signal.

Proposition 8: The Tikhonov and Wiener solutions are func-
tionally equivalent provided that:

1) L is the whitening operator of the underlying continuous-
space stochastic process, i.e.,

;
2) the measurement noise is white with variance ;
3) the regularization parameter is set to its optimal value

.



RAMANI et al.: NONIDEAL SAMPLING AND REGULARIZATION THEORY 1067

The proof is obvious once conditions 1) and 2) are substituted
in (21) and (29).

We now conclude the section by illustrating this equiv-
alence for the generalized isotropic operator introduced
in Section V-B-3. Consider a stationary processes (for
instance, the Matérn process) whose PSD is given by

. It is readily seen that the
corresponding whitening operator is ,
which is a special instance of (42) with and .
Therefore, the optimal estimate for such a process lies in the
space generated by , and the
optimal regularization parameter is given by .
In the case where (ideal sampling), the optimal
generator happens to be a Matérn B-spline with parameters

whose explicit form is given by (43). Thus, the conclu-
sion is that the Matérn splines are the optimal basis functions
for the interpolation/approximation of such signals from their
(noisy) samples.

Note that the equivalence established in the above corollary is
meaningful only for operators of the type (42) and is not appli-
cable to the Laplacian because the corresponding power spectral
density is not defined in the classical sense.

VII. SUMMARY AND CONCLUSION

We have considered the generalized sampling problem in
multiple dimensions and addressed the issue of the “best”
reconstruction space in the shift-invariant framework. We ap-
proached the problem from the interpolation point of view and
formulated it as a generalized-smoothing spline problem where
the continuous-space solution is obtained by the minimization
of a data fidelity term subject to a continuous-space regulariza-
tion constraint (Tikhonov-like functional) based on generalized
differential operator L. In this formulation the signal and noise
are treated as deterministic entities. By pure mathematical
optimization, we showed that an optimal reconstruction space
exists in the sense that the global minimum of our minimization
problem belongs to this space, independently of the values
of the measurements. An important point is that the optimal
reconstruction space is shift-invariant in nature which justifies
the use of this type of representation. Once an optimal shift-in-
variant basis is specified, the expansion coefficients of the
solution can be obtained by means of a nonlinear optimization
process. In the particular case where and
(Tikhonov criterion), the solution has an explicit analytical
form and can be computed by a one-step hybrid-linear filtering
(discrete in—continuous out) of the measurements.

We have emphasized that optimality is achieved when the re-
construction space is “matched” to the chosen regularization op-
erator. This was expressed in terms of an optimality condition
that gives rise to a B-spline interpretation of and en-
sures the -stability of the representation. The proposed for-
mulation is quite general and extends most of the solutions to
the sampling/interpolation problem that have been proposed so
far; it also encompasses the various classes of smoothing spline
estimators. We further justified this fact by presenting illustra-
tions of various regularization operators and the corresponding
reconstruction spaces.

Finally, we also presented a stochastic formulation of the
generalized sampling problem, providing explicit minimax and
MMSE solutions. We showed that, for appropriate regulariza-
tion operator L and the regularization parameter , the solution
corresponding to the deterministic Tikhonov criterion is func-
tionally equivalent to one(s) obtained in the stochastic signal
processing framework. The bottomline is that the regulariza-
tion operator should be matched to the spectral behavior of the
signal (whitening operator) and the regularization strength set
inversely proportional to the signal-to-noise ratio (SNR).

APPENDIX A
PROOF OF THEOREM 1

(a) Let us use the notation and
. Consider for some

and , a bounded subset of . Using the Cauchy-Schwarz
inequality, we have

(52)

But, , as seen below: since and
using Fubini-Tonelli Theorem we write

(53)

Thus, because of (52). Moreover,
, and

(54)

Now, consider the following limit:
. Since is bounded by an integrable func-

tion [cf. (52)], we use Lebesgue’s dominated convergence the-
orem and write

Thus, and hence has a Fourier series
expansion: a.e. Again, using
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Lebesgue’s dominated convergence theorem ( is
bounded by an integrable function), the coefficient can be
written as

Thus, the coefficients are nothing but the samples
of the function at . Finally, because

, by Parseval’s identity we have
.

APPENDIX B
PROOF OF THEOREM 2

For any , we have by Proposition 1,
as well as , by Theorem 1. Correspondingly,
Proposition 3 ensures that .

Now, consider the function defined as
. Since is closed, . Consequently,

and . But,
, because of the consistency of .

Therefore, the following Poisson summation formula holds:

, a.e., and, hence

(55)

Writing,
, it only remains to show that

.
Letting

, we see that

Since , are bounded and ,
the first norm is finite and by (55), the limit of the second norm
tends to zero, thus, proving (24).

APPENDIX C
INVERSE FOURIER TRANSFORM OF

Using the fact that

we write the inverse Fourier transform of as

Substituting and manipulating, we ob-
tain

where , and
the integral in the last step is the modified Bessel function of the
second kind [57].
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