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ABSTRACT

We present a zero-order and twin image elimination algoritbr digital Fresnel holograms that were acquired in an
off-axis geometry. These interference terms arise whemwlitfital hologram is reconstructed and corrupt the resulir O
algorithm is based on the Fresnelet transform, a wavedetttansform that uses basis functions tailor-made fortaligi
holography. We show that in the Fresnelet domain, the cosffie associated to the interference terms are separatted bo
spatially and with respect to the frequency bands. We pmpasethod to suppress them by selectively thresholding the
Fresnelet coefficients. Unlike other methods that operateé Fourier domain and affect the whole spacial domain, our
method operates locally in both space and frequency, allpidr a more targeted processing.
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1. INTRODUCTION

When an object is illuminated with a coherent light source, tdansmitted or reflected wave carries information on the
sample’s properties. In the close vicinity of the objecg light intensity is related to its reflectance or attenuatidile the
phase is related to its thickness. Light sensors, such assC@Basure the intensity of the incoming light but are unable
to capture its phase. This crucial information is therefost. From a mathematical point of view, the measurement of
the wave is equivalent to evaluating the squared modulussoédmplex scalar field in the acquisition plane, an opeamnatio
which clearly discards the phase.

Holography overcomes this limitation and makes it posdibleecord thevholeinformation of the wavefront (ampli-
tude and phase) for later restitution. The hologram meaghesintensity of the object wave’s interference with anerfiee
wave. In the so-called off-axis geometry, the referenceanand object wave travel in slightly different directionsigg
rise to interference fringes. To reproduce the object wnechemically processed hologram is illuminated with @nec
struction beam which is diffracted. Three diffraction alenay be distinguished: thel order which is an exact replica
of the object wave, the undiffracted zero-order, and-tieorder.

In digital holographyt=2 the photographic plate is replaced by a CCD camera. The tatfoig stored in the computer
as a digital image and the reconstruction process is cawstietly simulating the physical diffraction phenomenon.c8in
wave propagation can be modeled with good accuracy in thenEreégime by the Fresnel transform, it can be easily
implemented. Digital holography’s advantages are that fast (digital holograms may be acquired at video rate) and
that it does not involve any chemical processing of the halplgic plate or tedious alignment of the reconstructiombea
But most important, quantitative measurements may be pee since the object wave’s amplitude and phase are recon-
structed digitally. However, since digital recording nmeetliave a lower resolution than those used in classical heybbgy
the fringes spacing must be larger in order to be resolved Mikans that the reference beam’s angle cannot be as high.
As a consequence, the three diffracted waves do, at leagillyaoverlap during reconstruction.

So far, only algorithms have been proposed that either fitterrelevant information in the Frequency domify,
or, that take advantage of the spatial separation of therdift orders after propagation. However, neither appraach
completely satisfactory, since either the reconstructade’® bandwidth or its field of view are drastically limiteldere,
we derive a non-linear signal approximation algorithm tla&es advantage of the interference terms’ separationttm bo
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frequency and space. To this end, we make use of a recenthpged family of shift invariant, multiresolution basis
functions: Fresnelets.

The paper is organized as follows: In Section 2, we reviewRtesnel transform and holography. In Section 3, we
briefly describe Fresnelets. In Section 4 we propose our p@roaimation algorithm which we finally illustrate and test
on simulation examples in Section 5.

2. FRESNEL TRANSFORM AND HOLOGRAPHY
2.1. Fresnd Transform
The Fresnel transforrfy of a functionf e Lo(R) with parameter € R, is defined as the convolution product

- , Lexp(im(%)®) 1>0
fr(X) = ke x T(X) with ke(X) = {;“/46(X) T —o. (1)
In 2-D, the Fresnel transformy with parameter € R, of a functionf € LZ(RZ) is defined as

fe(xy) = fxKe(x,y) with Ke(x,y) = ke (X)ke (y) 2)

Up to a complex multiplicative constant, this definition guevalent to the free-space propagation formula in thertales
approximation, which relates the complex values of a prapfjag wave, measured in two planes perpendicular to the
direction of propagation and separated by a distah@pecifically, we have

kd o p -
Balxy) = g [ UEme( g (€% + (0 -y?) ) dean @
= —ie"0(xy), Tt=VAd 4)

whereA is the wavelength of the light an= 21t/A its wavenumber.

Three fundamental properties of the Fresnel transform fapamicular interest to us, since they give a direct insight
on how well the diffraction terms are separated in eithecspa frequency. First, a modulated signal undergoes a shift
after the transform. Let € Lp(R) andg(x) = exp(2itvox) f (x+vo12/2) be a modulated version of the function. Then its
Fresnel transform with parametetris

VoT2

G (X) = exp(—iTv3T?) exp(2iTvox) fr <x— T) . (5)

Second, the Fresnel transform is a unitary convolutionatpeand, as such, the spectrum of the transformed signaimem
unchanged. This property may be recognized immediateiy free Fresnel operator’s frequency response

ke(v) = V4 exp(—im(1v)?) (6)
where|k; (v)| = 1 implies the spectrum invariance
F 2 4 2
1f(V)[" = | f(v)) VI ER;. 7)

Last, localized features spread out during the propagatiocess and obey a Heisenberg-like uncertainty principlde
latter gives a lower bound to the product of a function’samace and that of its transform

2 2 ™
of0%, > o (8)

For real functions there is also a lower bounda}pz 12/211, that is independent df.
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Figure 1. Information repartition in the diffracted wave. Each depth has an aseddift invariant, multiresolution Fresnelet basis.
For the in-focus distance, the associated wavelet basis is a standaieimasis.

2.2. Hologr aphy

Information in the hologram plane The hologram measured by the CCD caméf®g) € R results from the interfer-
ence, at every location= (x,y), of the object wave¥(x) € C with a plane reference waw{x) = A(x) exp(i (ke + kyy))
(wherek = (k«, ky, k) is the wave vector)

1(x) = [W(x) +R(x)[%. ©)
This equation may be expanded to identify the three interfes terms
1(x) = |[ROOZ + [W(X) 2 + R (x)W(x) +RO) W (x). (10)
N———— ——— N— —
zero-order +1 order —1 order

In the hologram plane, they do completely overlap.

Plane wave diffraction by a hologram To reconstruct the object wavefront, we apply a Fresnekfoam to the holo-
gram (which is equivalent to physically illuminating thelbgram with a plane wave that travels perpendicularly to the
hologram). As the propagation distance grows, the unmoellizero-order stays located in the central part of the image
while the+1 orders move away from the center according to propertysgs Fig. 1). The higher the modulation frequency
(or equivalently, the angle between the reference and tfezblvave), the larger the separation. Because the adquisit
device's sampling step remains large, the modulation #aqu is limited, as well as the angle between the object and
the reference wave. Therefore, the spatial separationgleetthe different orders is limited and they do, at leastadbst
overlap.

Moreover, the uncertainty relation on the Fresnel tramsfonplies a broadening of the zero ard. orders as the
distance increases (see Fig. 2). In contrast;itherder’s support first shrinks until the original image-dgrlam distance
is reached and starts broadening again for larger distances
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Figure 2. Support broadening of the wave diffracted by an off-axis Fresoleignam.

Frequency content The three terms have their energy clearly separated in dgpéncy domain and located around
their respective modulation frequency. This property watyaecognized to be of use in digital holography, sinceesav
algorithms that keep only the relevant frequency inforovati+-1 order) and discard the rest via a bandpass filtering
procedure have been proposed. Their implementation caarded out in either the spatfaf or frequency domair. All
these filtering procedures are linear. However, since tinaly the spectral content of the image to reconstruct, tetae
lost. Moreover, since such filtering procedures are noatjdbhe whole field of view is affected.

Interestingly, property (7) implies that the spectrum & tliffracted wave at any distance from the hologram remains
unchanged (see Fig. 1). This means, that the filtering maybeaently performed at any distance.

3. FRESNELETS

Fresnelet bases are wavelet bases that have undergonenal Brassform. We focus on Fresnelets associated with B-
spline wavelets, since their expression may be derivedtimfbequency and spacde They have many desirable properties
required for the digital processing of holograms: for exlemphey tend to be optimal with respect to the spatial energy
spreading as they can be shown to converge to Gabor funEtic'l’rilﬂe construction is based on the definition of the Fresnel
spline, or F-spline of degreec N and parameter € R, denoted3}(x), that is the Fresnel transform with parameterf

a B-splinep"(x) of degreen .
Br(x) = (B"xke)(X).
The generating functions are then constructed as lineabit@ations of F-splines
X ~
D2(5) =D g x-K
k
and are entirely specified from the sequegidg. They correspond to the general family of semi-orthogoplihe wavelets
of the form X
W(3) = D g8 (x—K. (11)
K

The transformed basis functions are shift-invariant onvallby-level basis but their multiresolution properties gov-
erned by the special form that the dilation operator takekeérnFresnel domain. In our case, given that the wavelength is
fixed, the parameter= v/Ad only depends on the depthof the propagation. For each depth there is an associatési bas
From now on, we only consider orthonormal Fresnelet basks(&?), denoted

1 X
{lIJ'rr],j,k}jQZkesz Orj(x) = NG v/2) <E - k) : (12)
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Figure 3. Schematical representation of the hierarchical thresholding algorithm.

For a given setup, a single set of coefficients may be usediergte the diffracted wave at any depth, simply by replacing

the basis functions in the expansion
fr(x) = Z Z CjkPF  k(X) (13)
JEZ keZ?2

with those associated to a different depth. In our case, iffracting wave in the hologram plane is given bi), the
coefficients are obtained by computing the inner products

Cik = (1, P70 (14)

4. ALGORITHM

We now propose an algorithm that selectively suppresseSrésmelet coefficients in order to keep only coefficient vehos
energy is mainly related to thel order. It is a fully automatic two-step process. First, wpmess the zero-order and
second, the-1 order.

Zero-order suppression The first step consists in the computation of the hologramésifelets coefficients (14), where
the parameter = v/Ad must be adjusted properly. This not only yields a decomjpsitf the information in several
frequency bands, but also in terms of their spatial distidlouwithin the frequency bands. The energy that is assediat
to the (unmodulated) zero-order is mainly concentratedvatftequencies. The algorithm proceeds from coarse to fine: a
threshold valug; is associated to every frequency bandrhe parent coefficient ofi is denotedwp, (Fig. 3). The new
coefficientsw are computed at the coarsest scateJ as

- Wi |-f |Wi| <t3 (15)
0 if ‘Wk| >t
and for the finer scalep< J
W = Wi |.f Wi <t (16)
0 if wy >tj and|wp, | >tj;1.

Unlike denoising algorithms that set low energy coefficsaiotzero, our method eliminates high energy coefficient& Th
test on the parent coefficient ensures that high frequengfficients are only removed in regions that are corruptedby t
zero-order. The signal is reconstructed with Fresnelgpgrdmeter = 0 which yield a reconstruction with the real image
(+1 order) at proper focus and the zero-order suppressed.



Figure 4. (a) Amplitude of test target. (256256 pixels,T = 10um, d = 0.25m,A = 6328nm) (b) simulated hologram

Minus 1 order suppression Since in the Fresnelet domain, information located aroupdrécular frequency cannot
be distinguished from that lying around the opposite sigqiency, and since thel and—1 order are indeed located
at opposite frequencies, a second step is required to sgpfire—1 order. We start by a pointwise multiplication of the
wave obtained in the first step, with a digital wave of the fdrnix) = exp(—i(kx-+kyy)), the complex conjugate of the
reference wave. This modulation shifts the frequencieb st the—1 order is located around the frequency origin. We
then apply a Fresnelet transform with parameter0 before going through the same thresholding scheme as iirshe
step, but with new thresholding values. After inverse tfamsing the coefficients and (de)modulating the result gigin
digital wave of the formR'(x) = exp(2i (kx+ kyy)), we obtain a reconstruction that is free of interferencenger

5. RESULTS

A hologram was obtained by simulating the propagation ofvthge reflected by a test target by a procedure described
elsewherd. We have chosen the following values for the various paramsefe = 10um (camera’s sampling step),

d = 0.25m (object-camera distanca)= 6328nm (light wavelength). The angle between the referencesvetor and

the normal to the CCD plane was set td®. The reference wave’s intensity profile is Gaussian. Thetéeget and the
simulated hologram are shown in Fig. 4.

In Fig. 5(a), we show the wave diffracted by the hologram aithage plane without any interference term suppression
scheme applied. The field of view is limited because of the-peder overlap. A filtering scheme that keeps only a cincula
frequency band around thel order term was used to obtain Fig. 5(b). Finally, in Fig.)5¢ee show the reconstruction
with the proposed algorithm. High frequency features arépreserved in regions where the zero-order does not querla
such as the bars in the upper right. By contrast, the samemcempletely blurred in the bandpass filtering approable. T
two approaches behave similarly in regions were the zederaverlaps. The wavelet-based approach thus only removes
high frequency information in regions already corruptedh®yzero-order but keeps it intact in other regions.

6. CONCLUSION

We have proposed a zero and order term suppression algorithm for digital hologranorestruction. It takes advantage

of the information distribution of the different diffracth terms in both frequency and space. This is made possible by
the use of the Fresnelet transform which has the ability pausge the information in the hologram accordingly. Unlike
algorithms that are based on a bandpass filtering of the haloghigh frequency features that would normally get lost
over the whole field of view are only suppressed where nepgssa



(d)

Figure 5. Reconstructed amplitude: (a) without filter, (b) with frequency filterw(ith wavelet threshold. (d), (e), (f) detail images.
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