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ABSTRACT

In this paper, we present di�erent solutions for improving spline-based snakes. First, we demonstrate their minimum
curvature interpolation property, and use it as an argument to get rid of the explicit smoothness constraint. We
also propose a new external energy obtained by integrating a non-linearly pre-processed image in the closed region
bounded by the curve. We show that this energy, besides being eÆciently computable, is suÆciently general to include
the widely used gradient-based schemes, Bayesian schemes, their combinations and discriminant-based approaches.
We also introduce two initialization modes and the appropriate constraint energies. We use these ideas to develop a
general snake algorithm to track boundaries of closed objects, with a user-friendly interface.
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1. INTRODUCTION

The estimation of boundaries of objects in images is a key problem in medical imaging applications. After the
introduction of the snake algorithm by Kass et al,1 a lot of research was focussed on solving the boundary detection
problem using this approach. Snakes or active contour models, as conceived in1 are ordered collections of points
(represented in a piecewise constant spline basis) that have an explicit internal energy | a term that forces the
curve to be continuos and smooth. However, the curve can be represented more eÆciently in other bases (like �nite
elements, Fourier basis,2,3 B-splines,4,5 etc.) Such a representation, besides being more compact, brings in an
implicit smoothness to the curve.

In this paper, we focus on spline snakes. We will provide new arguments that support the choice of cubic B-splines
as a natural basis. We will also propose enhancements to make the snake algorithm more eÆcient. As the B-spline
curve is the minimum curvature curve interpolating the knot points, we eliminate the explicit internal energy. Hence
the dynamical problem is converted into a simpler parameter estimation problem.

In the past few years, many researchers have proposed di�erent image energies that bring the snake close to the
desired contour. We will draw on many of these ideas and propose a unifying framework for the image energy. As a
reasonable compromise, we choose a combination of gradient and region terms to yield a snake that is precise and
less sensitive to noise and to starting conditions.

We choose two di�erent external constraint energies, depending of two di�erent user input schemes. The �rst
one is a shape input mode where the external constraint energy restricts the permissible shapes. It will force the
snake to be close to some reference template. In the second mode the user may place some points. Here the external
constraint energy acts like a spring that pulls the snake towards the points that are speci�ed.

The paper is organized as follows. In the next section, we give the preliminaries such as parametric curve
representation and Green's theorem. In section 3, we explain how we get rid of the internal energy by representing
the curve in a B-spline basis. In section 4, we concentrate on the external energy. Here we introduce a simple cost
function, which accommodates a wide class of external energies used in practice. We also give two external constraint
energies adapted to the corresponding initialization modes. In section 5, we deal with the optimization algorithm.
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2. PRELIMINARIES

2.1. Parametric curve representation

A curve in the x | y plane can be represented in terms of an arbitrary parameter t as r(t) = (x(t); y(t)). If the
curve is closed, the function vector r(t) is periodic.

When the curve C is represented as above, the function r(t) can be approximated eÆciently as linear combinations
of some basis functions, which makes the representation compact and easy to handle. Among such approximations,
the scaling function representation is the most widely used; it ranges from Fourier curves to description as a polygon.
The scaling function representation of a curve is given by

r(t) =
1X

k=�1

ck'(t� k) (1)

Here ck denotes the coeÆcient vector. If the period, M , is an integer, we have ck = ck+M . This reduces the in�nite
summations to

r(t) =
M�1X
k=0

ck'p(t� k); (2)

where

'p(t) =
1X

k=�1

'(t� k �M ) (3)

Here, we consider the parametric curve representation where ' is a B-spline as in Brigger et al.4

2.2. Green's theorem

Green's theorem relates the volume integral of the divergence of a vector �eld in a closed region to the surface integral
of the �eld; its restriction to two dimensions can be written asZ

S

(
@Fx

@x
+

@Fy

@y
)dxdy =

I
C

(Fydx�Fxdy) (4)

The �rst integral is evaluated over the area S enclosed by the curve and the second one along the curve C. Using
this theorem, surface integrals can be computed eÆciently as curve integrals. For example, the integralZ

S

f(x; y)dxdy = �

I
C

g(x; y)dy; (5)

where g(x; y) =
R x
�1

f(�; y)d� .

3. INTERNAL ENERGY

The internal energy enforces the smoothness and continuity of the conventional snakes, where the curve is an ordered
collection of points.1 However, if the curve is represented in a cubic B-spline basis, this term is no more required.
This is due to the minimum curvature interpolation property of the cubic B-spline curves, which we discuss in the
next subsection. In addition to this property, the B-splines have compact support which enables the local control of
the contour. Moreover, the cubic B-spline is known to have good approximation properties and there exist eÆcient
algorithms for their processing.6

3.1. Minimum curvature interpolation

The minimumcurvature curve satisfying the interpolation constraints (enforced by the user input points) is the cubic
B-spline interpolant, provided it is described in the curvilinear abscissa. For the proof, see Appendix A.

The smoothness of the snake is dependent on the number of knot points used in its representation. This property
enables us to get rid of the explicit smoothness constraint (internal energy term), which makes the optimization
simpler. Here we make the assumption that the snake does not deviate a lot from the curvilinear abscissa during the
optimization process.
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Figure 1. Example of gradient based snake getting misguided by a nearby object.

4. EXTERNAL ENERGY

As we got rid of the internal energy, �tting the snake is simpli�ed; it can be reformulated as a parameter estimation
problem. We may also use the well known statistical formulation3 and estimate the snake parameters by maximizing
the corresponding likelihood function. Under the assumption that all images are equally probable, we rewrite the
expression for the likelihood function using the Bayes rule as

M (Cjf) = log (P (Cjf)) = log (P (f jC))| {z }
Eimage

+ log (P (C))| {z }
Econstraint

; (6)

where C denotes the snake curve and f denotes the image. The �rst term on the right hand side corresponds to the
image energy and is responsible for guiding the snake to the desired image features. It is dependent only on the
image data and is denoted by Eimage. The second term is the external constraint energy and represent the prior
knowledge of the shape. It will be denoted as Econstraint. We will discuss each of them in detail.

4.1. Image energy.

We introduce the generic form of the energy function

Ec
image =

Z
S

g(x; y) dxdy; (7)

where g = Tf is a transformed version of the image f and S is the closed region bounded by the curve. We will
see that this simple cost function can accommodate a large class of widely used image energies including gradient
schemes,1,7 Bayesian schemes8,9 and their combinations.3 We now show how the conventional schemes fall into this
generalized framework with an appropriate choice of the operator T .

4.1.1. Gradient-based image energy

The most widely used image energy is gradient based and is given by1

E
g
image =

I
C

jrf(r)j2dr (8)

Here f is the intensity of the image and r denotes the gradient operator. But as this energy takes advantage of the
magnitude of the gradient only, it can misguide the snake to nearby object as shown in Fig.1.

This problem can be eliminated by using the fact that we are trying to track a closed region. When the bounding
curve is scanned clockwise, the desired region is always on the right. Hence we expect the gradient to be oriented
towards the right of the curve (assuming that we are tracking a brighter region). An image energy that makes use
of this property is

E
g
image =

I
C

k � (rf(r)� dr) ; (9)
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Figure 2. How the use of the directed gradient energy (9) instead of (8) avoids the pitfall in Fig. 1.

where k denotes the unit vector perpendicular to the x { y plane. It is seen from Fig.2 that this energy guides the
snake close to the desired object. A scheme similar to this one, where the snake is also penalized for having an
orientation inconsistent with the gradient, was proposed by Fok et. al.7

Eg
image can be also rewritten as a surface integral (cf. Appendix B) as

E
g
image =

I
C

k � (rf(r)� dr) = �

Z
S

r2f(s)| {z }
Tg(f)

dS; (10)

where r2 denotes the laplacian operator and S denotes the area bounded by the curve C. Using this result, this
gradient energy is written in the form of (7) with g = �r2f .

As this term has sharp maxima at the gradient boundaries, the contour estimated using this energy will be precise.
The main drawback of gradient-based schemes is their inability to lock on contours that are too far from the snake's
initial position. This is simply because the gradients vanish as we get farther from the contour. Moreover, the snake
has diÆculty moving into concavities and is sensitive to noise.

4.1.2. Region-based image energy

Using region-based image energies can eliminate this problem of lack of convergence away from the contour. Such
cost functions are less sensitive to noise and can track concavities better. These properties are due to the fact that
a region based criterion considers the whole image f , as compared to the gradient energy which uses only the values
of f close to the snake.

Assuming the image pixels to be independent random variables, we use the statistical formulation of Staib and
Duncan3 to specify the region likelihood function:

Er
region =

Z
S

log (P (f(s) j s 2 S)) ds +

Z
S0

log (P (f(s) j s 2 S0)) ds; (11)

where S and S0 are the regions inside and outside the snake respectively. We transform this equation to the form of
(7) by rewriting it as

Er
region =

Z
S

log (P (f(s) j s 2 S)) ds +

�
C �

Z
S

log (P (f(s) j s 2 S0)) ds

�
; (12)

where the constant C =
R
S[S0

log (P (f(s) j s 2 S0)) ds. As C does not depend on the position of the snake, we take
it out of the cost function.

Er
image =

Z
S

log

�
P (f(r)js 2 S)

P (f(s)js 2 S0)

�
| {z }

Tr(f)

ds (13)
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The region based term has the ability to bring the snake close to the actual contour when it is initially far from
it. Hence the �nal snake is less dependent on the initialization. Moreover, it also guides the snake into boundary
concavities and hence is an alternative to the gradient vector 
ow approach.10 As we are using the whole function
f rather than its values close to the boundaries, this term is more robust to noise. However, it is less precise than
the gradient based scheme, because the peak of the cost function near the actual contour is not as sharp (due to the
averaging e�ect).

4.1.3. Combined image energy

Combining what we have seen so far, we consider the generalized energy function (7), with g = (�Tg + �Tr )| {z }
Tc

(f). As

we combine the two types of cost functions, we get a powerful class of image energies, which inherits the advantages
of both schemes. The addition of the laplacian enhances the edges and hence improves the precision of the estimated
contour. This also justi�es the use of edge enhancement as a preprocessing step for segmentation.

4.2. External constraint energy.

As mentioned above, the external constraint energy is dependent on the apriori knowledge of the shape (parameters).
This information may be obtained from the user input or from the previous knowledge of the shape. We choose two
di�erent external constraint energies depending on the initialization mode.

4.2.1. Initialization

The user has the choice between two initialization modes, whichever is most appropriate for his application.

1. Shape Input

This procedure is valid as long as the shape of an object is relatively well preserved from one instance to the
other. In this case, we keep a reference template of the shape which is parametrized as well. The user adjusts
the template by translating and resizing the initial shape so that it �ts approximately the object of interest.

In such applications, the common shape transformation is aÆne in nature. Hence, we can penalize the snake
for not being an aÆne transformation of the reference template. This external constraint energy term can be
written as

Econstraint = min
A;b

1

�2

N�1X
k=0

jck �Acref;k � bj
2
; (14)

where A is a 2� 2 aÆne matrix and b is the translation vector. Here c is the sequence of B-spline coeÆcient
vectors of the snake and cref is the coeÆcient vector of the template. Our criterion (14) is essentially equivalent
to measuring the L2 distance between the snake and the reference curve because the B-spline representation is
aÆne invariant and also because the B-splines form a Riesz basis. This shape constraint is a cheaper alternative
to Cootes and Taylor method of eigen-shapes,11 which demands intensive training.

In the iteration loop, the aÆne parameters are also to be optimized. We resort to a two step scheme; the aÆne
parameters are assumed to be a constant and the coeÆcients are optimized in the initial stage. In the second
step, we solve for the optimal aÆne parameters that map c to cref .

2. Point Input

The user inputs some points on the boundaries of the object. We �t a spline with the user speci�ed number
of knot points to the sampled data. The curve is then reparametrized to be closer to the curvilinear abscissa
and the �t is performed again. This procedure is iterated until we get a �t reasonably close to the curvilinear
abscissa. By specifying the number of knot points, the user can control the smoothness of the curve. The
number of knot points can also be chosen using the minimum description length criterion.12

After the reparametrization, the ith input point correspond to some value of the parameter ti. We assume that
the curve samples ri = r(ti) are randomly distributed with the mean as the ith input point. If the distribution
is Gaussian with a uniform variance of �, the external constraint energy is written as

Econstraint =
1

�2

N�1X
k=0

jrk � rinit;kj
2
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1) Shape input mode. 2) Point Input mode

Figure 3. In the shape input mode, the user adjusts the bounding box of the reference shape to �t the object
approximately. In the point input mode, a curve with a speci�ed number of points are �t to the user placed points.

Here, rinit and r are the input point vectors and the corresponding curve sample vectors respectively. In this
case the curve is penalized for not passing through the input points. The force acts like a spring that pulls the
snake towards the desired points.

5. OPTIMIZATION ALGORITHM

The external energy (7) and its derivatives are computed eÆciently as a line integral using Green's theorem as (4).
We use a conjugate-gradient algorithm for optimization. To speed up the method and to make it more robust, we
perform the iteration in a multiresolution framework. The algorithm gives an approximate �t to a low resolution
image. This �t is then used as the initialization for the next �ner resolution image. The process is repeated until
one reaches the �nest level. The number of levels are chosen depending on the relative size of the initialized region.
This scheme makes the algorithm less sensitive to noise and starting conditions.

Our general version of the spline-based snake algorithmhas been implemented in C with both types of initialization
modes. It is currently being applied to di�erent types of biomedical images and the results are quite encouraging.

6. CONCLUSION

We have presented the minimum curvature interpolation property of the cubic splines as a strong argument in favor
of the B-spline snakes. The main point is that the spline curves are smooth by construction and there is no need to
include the traditional elasticity terms as the snake's internal energy. Hence, we obtain a natural family of parametric
snakes which are unambiguously de�ned in terms of their B-spline coeÆcients.

Thanks to this representation, we can formulate the snake algorithm as a parameter estimation problem. We
have introduced a general, yet simple form of external energy function and have shown that it can accommodate
a large class of cost functions. As a good compromise, we have proposed a cost function that is a combination of
region and gradient based energies. We have also shown how to compute and optimize it eÆciently | the key idea
is to use Green's theorem to convert a surface integral into a curve integral. Finally, we have introduced a simple
way of constraining the snake to be close to some reference shape.

By combining these various techniques, we are able to improve the traditional snake algorithms. The method
that we propose is quite robust and relatively insensitive to starting conditions.

Acknowledgements

This work was supported by the Swiss National Science Foundation under grant 2100-053540.

Proc. SPIE Vol. 4322 345



Appendix - A: Minimum curvature interpolation

Consider the curvature of the curve at a point (x(t); y(t)) which is given as.

C(x; y) =
x0y00 � x00y0�
x02 + y02

� 3
2

If the parameter t is the curvilinear abscissa, x02 + y0
2 is a constant for all t. Hence the square of the curvature can

be written as

jC(x; y)j2 = K1jx
0y00 � x00y0j2

= K1(r
0 � r00) � (r0 � r00);

where r = (x; y). Making use of the vector identity a:(b� c) = c:(a� b), this can be rewritten as

(r0 � r00) � (r0 � r00) = r00 � (r0 � r00 � r00)

= r00 � (r00(r0 � r0) � r0(r0 � r00))

= jr00j2jr0j2 � j r00 � r0| {z }
d(r02)=0

j2

For the second step, we make use of the identity a� b� c = (a � c)b� (b � c)a. The second term in the last expression

is zero as it is the derivative of r0
2, which is a constant when the curve is described in the curvilinear abscissa. So

the expression for the curvature can be written as

jC(r)j2 = Kjr00j2

= K
h
x00

2
+ y00

2
i
;

where K is some constant. Minimization of this condition along with the interpolation constraints is a well known
problem and the solution is the cubic B-spline interpolation.

Appendix - B: Expressing the gradient-based energy as a surface integral

We consider the energy term

E
g
image =

I
C

k � (rf(r)� dr) = �

I
C

dr � (k �rf(r)) (15)

Using Green's theorem (4), we transform this line integral into a surface integral as

E
g
image = �

Z
S

r� (k �rf(r)) � ds; (16)

where S is the region bounded by the curve C and ds is the elemental area vector oriented in the direction of k.
Using the standard vector identities, the above equation is reduced to

E
g
image = �

Z
S

(r2f)k � ds = �

Z
S

(r2f) dS; (17)

where dS denotes the magnitude of ds
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