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Abstract—We introduce a family of elementary singularities
that are point-Hölder -regular. These singularities are self-sim-
ilar and are the Green functions of fractional derivative operators;
i.e., by suitable fractional differentiation, one retrieves a Dirac
function at the exact location of the singularity. We propose to use
fractional operator-like wavelets that act as a multiscale version
of the derivative in order to characterize and localize singularities
in the wavelet domain. We show that the characteristic signature
when the wavelet interacts with an elementary singularity has
an asymptotic closed-form expression, termed the analytical
footprint. Practically, this means that the dictionary of wavelet
footprints is embodied in a single analytical form. We show that
the wavelet coefficients of the (nonredundant) decomposition can
be fitted in a multiscale fashion to retrieve the parameters of
the underlying singularity. We propose an algorithm based on
stepwise parametric fitting and the feasibility of the approach to
recover singular signal representations.

Index Terms—Elementary singularities, footprints, fractional
derivatives, generalized fractional splines, wavelet bases.

I. INTRODUCTION

W AVELET bases provide an elegant decomposition of
, the space of square integrable functions [1], [2].

Various applications take advantage of the wavelet representa-
tion; e.g., data compression, denoising, and analysis of singu-
larities [3]. For a biorthogonal wavelet system, it is well known
that the order of approximation of the scaling function at the syn-
thesis side imposes the number of vanishing moments—and thus
the differentiation order—of the wavelet at the analysis side. The
differentiator behavior has direct consequences for applications.
First, transient features such as discontinuities are characterized
by wavelet coefficients in their neighborhood only, which is
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consistent with the derivative-like behavior. Second, the smooth
parts of the signal get filtered out and transfered to the lowpass
subband that is subsampled coarsely. Mallat and colleagues
[4]–[6] used wavelets to recover a characteristic representation
of the signal from its wavelet coefficients’ zero-crossings (when
the wavelet acts like a second-order derivative) or their modulus
maxima (when it acts like a first-order derivative). Due to the
lack of shift-invariance of the wavelet transform, Mallat and
Zhong [5] proposed a redundant and nonorthogonal version,
thus extending wavelet bases to wavelet frames. This transform
was later also studied by Wang [7]. While the redundant wavelet
transform makes the analysis of the coefficients easier, it brings
along an important disadvantage, next to redundancy, which is
the nonuniqueness of the synthesis step.

Description in terms of elementary singularities (e.g., spikes,
jumps, or discontinuities of the derivatives) is one way to model
signals. Mathematically, the behavior of elementary singulari-
ties can be characterized by their Lipschitz (or Hölder) exponent

, which can be infered from the rate of decay of its wavelet co-
efficients as the scale decreases:

It also is the key property behind the concept of the cone of
influence of a singularity over scale [6]. Modeling in terms of
singularities is especially relevant for the field of seismic ex-
ploration, where the detection of different layers in the under-
ground can be formulated as a “sparse spike deconvolution”
problem [3, Sec. 13.3.2]. Here, the underlying signal is assumed
to be a sum of spikes, measured through the seismic wavelet.
In that case, it is appropriate to impose the sparsity constraint
using minimization on the signal representation in the Dirac
basis [8], [9]. The spike model can also be extended; for ex-
ample, the Lipschitz exponent has been obtained using the con-
tinuous wavelet transform in order to measure local sharpness
of the reflectors [10] or by investigating the effect of the sin-
gularity on the continuous wavelet [11]. This type of approach
has also been pursued using discrete B-spline bases that are
tuned to a large class of singularities [12]. Singularities and
their multiscale properties have been used in other fields as well
such as for the detection of characteristic points in ECG signals
[13] or to perform step detection and estimation using multi-
scale products [14]. More recently, Dragotti and Vetterli pro-
posed “wavelet footprints” as atoms that explicitly characterize
signal jumps and that constitute a dictionary [15]; these foot-
prints need to be learned from wavelet decompositions and be-
come shift-variant in the case of wavelet bases. The requirement
of learning the wavelet footprint comes from the fact that the
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mother wavelet of a discrete wavelet transform is often only
known implicitly and does not have a tractable analytical ex-
pression (e.g., Daubechies’ wavelet are defined by the iterated
filter relation). Bruni and Vitulano proposed a practical scheme
for more general singularities that is also capable of resolving
overlapping footprints [16].

In this paper, we do not consider an explicit dictionary, but
we derive a closed-form analytical footprint of the elementary
singularity in a well-chosen wavelet basis—retrieving the singu-
larities from their wavelet decomposition then becomes a para-
metric fitting problem. As a starting point, we consider the frac-
tional derivative/integral operator , where the order and the
phase can both be real-valued. Elementary singularities are
then introduced as the Green functions of the derivative oper-
ator , for ; i.e., they satisfy . Equivalently,
they can be interpreted as the impulse response of the fractional
integral operator . Next, we consider the family of semi-or-
thogonal fractional B-spline wavelet bases [17], [18] associated
to , , which have also been used for layer detection
in seismic exploration [12]. We focus on a particular wavelet
within this family, termed the “operator wavelet,” for which we
derive an explicit closed-form expression together with its frac-
tional integrals that model the interaction of the wavelet with an
elementary singularity. This allows us to generate the atoms of
a dictionary without explicit learning; i.e., our analytical foot-
print contains all the information. The operator wavelet also has
the attractive property that the wavelet coefficients within a basis
decomposition of these singularities are mono- or bimodal only.

This paper is organized as follows. In Section II, we start
by revisiting fractional derivatives and the associated singular-
ities. Then, in Section III, we propose the design procedure for
the operator wavelet and we investigate its main properties. We
also characterize the wavelet and its fractional integrals, which
leads to the definition of the analytical wavelet footprint. In
Section IV, we demonstrate how to use these footprints with
a practical stepwise parametric fitting algorithm that properly
separates the singular and smooth parts of a signal.

Notations: We define the conventional inner product between
two functions and as

(1)

where denotes the complex conjugate. The associated Eu-
clidean norm is . The Fourier transform of
is defined as

(2)

For sequences in , we define the inner product

(3)

The -transform of a sequence is denoted by

(4)

while the corresponding Fourier transform is . We
define the fractional power of a complex variable as

with and .
When we omit the range for integrals and summations, they
should be understood as over and , respectively.

II. FRACTIONAL DERIVATIVES AND

BBELEMENTARY SINGULARITIES

Fractional derivative/integral operators are a long-standing
research topic in mathematics [19]–[22] with many applications
in physics, for example [23]. These operators can be introduced
in various ways [24], [25]; here, we define them in the sense of
distributions by the Fourier-domain formulation:

(5)

where is the order and is the phase parameter. We
also notice that the Fourier representation of the time-reversed
(or adjoint) operator corresponds to the . The
fractional derivative/integral operators form a complete family
of scale-invariant convolution operators [26].

Definition 1 (Elementary Singularity): The elementary sin-
gularity of order and phase shift is the Green function
of the operator :

(6)

These Green functions can be determined by inverse Fourier
transformation and are given by

is odd
is even

otherwise
(7)

where and are suitable constants [18], [22, pp. 16–17],
[27, ch. 2]–[29].

The prototypical example is the unit step function
, which is such that , where

is the ordinary derivative operator. Thanks to the scale-in-
variance of the associated operators, each Green function is
self-similar in the sense that with

. In Fig. 1, we show several subsets of our family of el-
ementary singularities. For first-order singularities, they vary
from the unit step to the spike, as shown in (a). Higher-order
singularities characterize discontinuities of a corresponding th
order fractional derivative. Notice that the signal has pre-
cisely one singularity at the origin with a Lipschitz exponent

[17].
Definition 2 (Singular Signal Model): A signal is said to be

singular if it is a finite sum of weighted elementary singularities
plus a smooth term that is .

Specifically, we express a singular signal containing sin-
gularities of orders , and with phase parameters as
a sum of the elementary singularities and the smooth part

:

(8)
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Fig. 1. Family of elementary singularities associated to the fractional derivative operator . Several subsets of singularities are shown in (a)–(d). The sweep-
through starts in blue and ends in red.

where the continuously-defined parameters are the amplitudes
, , and the positions .

III. OPERATOR WAVELETS

A. Fractional -Splines and Wavelets

Closely related to the fractional derivative operators are the
fractional B-splines of degree and phase param-
eter . These are most conveniently defined in the Fourier
domain as

(9)

This family of B-splines contains the traditional symmetric
and causal B-splines. The Fourier

domain definition of the B-spline can also be written as

(10)

where the numerator

(11)

is the -transform of the fractional finite difference operator
of order (convergence limited to the unit circle ).
We can interpret the B-spline as the application of the localiza-
tion operator to the elementary singularity; i.e.,

[30].
The -splines satisfy the (dyadic) two-scale relation

where the scaling filter relates B-splines at two consecutive
scales as

(12)

whose -transform is given by

(13)

The autocorrelation filter of these splines is written in the
Fourier domain as

(14)
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The associated approximation spaces at a (dyadic) scales
are specified as

(15)

and the wavelet spaces

(16)

can be constructed as the orthogonal complement between two
subsequent approximation spaces; i.e., . The
construction of a proper wavelet basis is summarized in the fol-
lowing proposition.

Proposition 1: For any given fractional B-spline , one can
specify a corresponding semi-orthogonal spline wavelet , pa-
rametrized by some bounded filter . The following proper-
ties apply.

i) The wavelet is characterized by the relation

(17)

where is the so-called wavelet filter. The Fourier do-
main counterpart is

(18)

where .
ii) The wavelet generates a Riesz basis whenever is

bounded by for some positive
constants .

iii) At low frequencies, the wavelet follows the behavior of
the associated derivative operator:

as (19)

For the proof see Appendix B.
Proposition 1 iii) shows that for any valid polynomial ,

the corresponding wavelet behaves as a fractional derivative
operator. Therefore, analyzing a signal with this wavelet
yields samples of the operator applied to a smoothed version
of the input signal:

(20)

where the smoothing function is formally defined in the Fourier
domain as . The key point is that is
well-defined and nonvanishing because of (19).

When is integer, and , one obtains the classical “sym-
metric B-spline wavelet” by setting , which corre-
sponds to the wavelet filter with the shortest possible sup-
port [31]:

(21)

It is also possible to select to obtain the well-known (or-
thogonal) Battle–Lemarié wavelets [32].

B. Operator Wavelets

In this paper, we are interested in one particular fractional
spline wavelet: the operator-like wavelet.

Theorem 1: The operator wavelet for the fractional
B-spline scaling function of order and phase
parameter corresponds to

(22)

where is the symmetric th order interpolating B-spline.
The operator wavelet has the following attractive properties.

i) It closely matches the derivative operator in the Fourier
domain as shown by its Taylor development

(23)

which has a much smaller residual than (19).
ii) The wavelet and its fractional integrals have an asymp-

totic analytical form

(24)
for , where . The limiting form improves as
the order increases.

For the proof, see Appendix C.
The form (22) of the operator wavelet deserves some fur-

ther analysis. As the fractional derivative operator acts on the
smoothing function that is an interpolating B-spline of twice of
the order , the th derivative of a spline of order results in a
spline of order , thus ensuring that the wavelet is contained in
the span of the scaling function at the next finer scale. In fact, the
operator wavelets coincide with the “cardinal spline wavelets”
that were proposed by Chui and Wang [33] for causal B-spline
of integer order. Here, we are proposing an extension to frac-
tional operators (fractional orders and shifts). The fact that this
construction improves the operator-like behavior of the wavelet
does seem to have been emphasized before. The limiting form
of the operator wavelet is also an original contribution of this
work.

We should also note that there are other instances in the litera-
ture that are relying on an equation similar to (22), i.e., obtaining
the wavelet by applying the operator to the interpolant of the
“augmented order” function space, especially in higher dimen-
sions. Micchelli et al. [34] proposed this construction for poly-
harmonic wavelets in any number of dimensions and for dyadic
subsampling; these wavelets are related to the (iterated) Lapla-
cian operator. This concept of wavelet design has also been gen-
eralized for almost any differential operator [35], including for
Wirtinger-type operators [36], [37] and Riesz transforms [38].

Coming back to the fractional splines, we now show some
examples where we compare the B-spline wavelets and the op-
erator ones. In these comparisons, we assume that both wavelets
are scaled in the same way. For these illustrations, we rescale the
B-spline wavelet such that the frequency response for
matches the derivative operator.

We start by noting that the B-spline wavelets and operator
wavelets coincide for . In Fig. 2(a), we show the fre-
quency response of both wavelets together with that of the cor-
responding derivative operator. For , the operator wavelet
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Fig. 2. Associated to the operator , modulus of the frequency response of the (rescaled) B-spline wavelet, the operator wavelet, and the derivative operator, for
various values of . (a) ; (b) ; (c) ; (d) .

matches the operator behavior more closely than the B-spline
wavelet does. The examples in Fig. 2(b)–(d) illustrate how the
operator wavelets coincide with the pure derivative operator in
the Fourier domain over a large range of . These plots hold
for every shift . It is also interesting to plot the wavelets in the
spatial domain. In Fig. 3(a), the symmetric wavelets for
(i.e., the “linear” wavelets) are shown. The operator wavelet has
a theoretical infinite support but stays in practice very similar
to the B-spline wavelet. For higher degrees, such as as
shown Fig. 3(b), the difference between both wavelets becomes
more significant.

C. Filter Bank Implementation

As usual, we introduce the subscript notations for the scaling
function and wavelets as and

, respectively. Each signal
of can be expanded uniquely as a sum of two parts coming
from and . Iterating the expansion times results into the
decomposition

(25)

where the coefficients and are determined as the
projection of the signal in the subspaces; i.e., we have

and , where and are the dual

scaling function and dual wavelet. The dual function is the
unique function in that satisfies .

In practice, the wavelet decomposition algorithm can be
translated into an efficient filter bank implementation using
the scaling and wavelet filters. Fig. 4 shows one iteration of
the wavelet decomposition from both the point of view of
the continuous domain and the discrete domain. To have the
operator-like behavior on the input signal, one should put the
operator wavelet as the wavelet at the analysis side, and its
dual at the synthesis side. In that case, the filters of Fig. 4 are

To correctly perform a wavelet decomposition of a signal
, specified by its measurements at the initial scale,

one should apply a prefilter to obtain the coefficients for
its representation in . Here, we use the interpolation presen-
tation of the B-spline representation at the initial scale.
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Fig. 3. The (rescaled) B-spline wavelet, the operator wavelet, and the limiting form, for various values of associated to the operator , with . (a)
; (b) ; (c) ; (d) .

Fig. 4. The discrete wavelet transform for one decomposition level. (a) The
continuous-domain representation. (b) The discrete-domain representation.

In practice, we implement the operator wavelet transform
using an FFT-based algorithm [39]. Given the analytical knowl-
edge of all filters in the Fourier domain, this implementation
method allows perfect reconstruction irrespective of the filter
support that may be finite or infinite. It should be noted that
using the FFT should be seen as a computational method that al-
lows deploying a fast and exact algorithm within the constraints
of periodic boundary conditions.

D. Decomposition of Elementary Singularities

Proposition 2 (Analytical Wavelet Footprint): Analyzing an
elementary singularity associated to the fractional derivative
(order , phase parameter , and located at position ) by
the operator wavelet (order , phase parameter ) at scale

and position leaves a footprint that can be approximated
by the analytical form , as
defined by (24).

Proof: Given the properties of the operator wavelets and its
fractional integrals, we can easily derive any wavelet coefficient

at scale and position of the discrete operator-wavelet
decomposition for the given singularity:
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Fig. 5. Effect of the elementary singularity on the operator wavelet ( , ). Several subsets of singularities are shown in (a)–(d). The sweep-through
starts in blue and ends in red.

We first illustrate the analytical wavelet footprint by the non-
sampled form . In Fig. 5, the singularities of
Fig. 1 are analyzed by the operator wavelet ( , ). In-
terestingly, changing the phase of the singularity influences the
shape and symmetry of the operator wavelet, while changing the
order of the singularity affects mainly the amplitude.

Proposition 3 (Lipschitz Regularity): The signal model of (8)
with singularities of order , , is uniformly Lip-
schitz . Consequently, there exists
such that the coefficients at level and position of the
operator wavelet decomposition of satisfy

(26)

where is the scale.
Proof: Let us introduce as the Lipschitz

exponent of the th singularity, and the upperbound

for the limiting form of the analytical wavelet footprint. Then,
using scale , we can easily derive that

where and .
When the operator wavelet (or its fractional integral) is used

as a wavelet basis, the wavelet coefficients will be sampled
versions of the continuous function. A useful feature is the
mono- or bimodal character of these coefficients, as can be
observed from Fig. 6. This property follows from the fact that
the smoothing kernel—the interpolating B-spline—converges
rapidly to the sinc-function [40]. Consequently, the smoothing

kernel at scale 0 will have a bandwidth of approximately
. Samples of this function at positions all have

the same sign, while samples of its derivatives could be mono-
or bimodal only. This property is useful for applications, since
the analytical wavelet footprint will have two local extrema at
most.

IV. RESULTS AND DISCUSSION

We now illustrate the analytical footprints for the task of re-
trieving elementary singularities from an operator-wavelet de-
composition. The algorithm that we are using is greedy and
matches footprints one-by-one in a multiscale fashion; it is sum-
marized in Appendix D.

A. Stepwise Parametric Fitting With Analytical Footprints

To illustrate the concept, we applied the algorithm to a piece-
wise polynomial signal of length 512 where the singularities are
discontinuities; i.e., eight singularities of the type . We se-
lect the operator wavelet decomposition with parameters ,

. In Fig. 7(a), the decomposition of the signal on the op-
erator wavelet basis is shown with three decomposition levels.
The bimodal property allows us to find potential singularity lo-
cations by looking for the local extrema at a given scale ,
which are used as initial estimates for the positions of
the singularities. Next, we perform parametric fitting of the ex-
pression of Proposition 2 using the Levenberg–Marquardt al-
gorithm (Matlab 7.8.0) to solve the nonlinear least-squares fit-
ting criterion based on information at all scales. Both param-
eters, amplitude and edge position, are defined continuously.
We use multiple initial estimates for the position (i.e.,

) and retain the parameters of the best fit. In
Fig. 7(c), we show the measured and fitted coefficients for the
largest local extremum of the first decomposition level (corre-
sponding the edge at position 305 in the signal). The fitted co-
efficients are then subtracted from the wavelet decomposition
and the procedure is repeated for the next local extremum. In
this way, we obtain a list of singularities that allows us to syn-
thetize the singularity signal shown in Fig. 7(b), together with
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Fig. 6. Mono- or bimodal character of the wavelet coefficients of an edge singularity , where varies between 0 and 1 and 14 steps. Top: operator
wavelet , . Middle: operator wavelet acting on edge singularity. Bottom: wavelet coefficients of the edge singularity at different shifts (red to blue)
are sampled versions of the middle plot; they are all mono- or bimodal.

Fig. 7. (a) Original signal ( , ) with its operator wavelet decomposition. (b) Singularity signal obtained from (a) with its operator wavelet
decomposition. The wavelets coefficients in (a) and (b) are almost completely identical, while the difference in the lowpass subband encodes the smooth part. (c)
Result of the fitting procedure for the large edge of the signal at position 305. The fitting uses all scales at the same time; coefficients from coarse scales are larger.
(d) Reconstructed signal, together with the constituting singularity and smooth signal parts. The SNR of the reconstruction is 43 dB.

its wavelet decomposition. The wavelet subbands are identical
to those of the original signal (as they should be), while the

lowpass subband contains the residual that encodes the smooth
polynomial part. To compensate for the asymptotic nature of
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Fig. 8. (a) Original signal ( , ) with its operator wavelet decomposition. (b) Singularity signal obtained from (a) with its operator wavelet decom-
position. The wavelets coefficients in (a) and (b) are almost completely identical, while the difference in the lowpass subband encodes the smooth part. (c) Result
of the fitting procedure for the large edge of the signal at position 90. The fitting uses all scales at the same time; coefficients from coarse scales are larger. (d)
Reconstructed signal, together with the constituting singularity and smooth signal parts. The SNR of the reconstruction is 62 dB.

the analytical footprint, we adjust the amplitudes of the singu-
larities by a global scaling factor obtained by linear regression
between coefficients of all wavelets subbands of the synthetized
singular signal and the ones of the original signal. Finally, by
reconstructing the difference between the original lowpass and
the one of the singularity signal, we obtain the smooth part that
can be added to the singularity signal and constitutes the recon-
structed signal; see Fig. 7(d). We show an example for another
type of singularity (discontinuity of the derivative; i.e., ,

) in Fig. 8.
One important issue is how well singularities can be sepa-

rated when they are close to each other. For the proposed algo-
rithm, singularities are fitted independently, and consequently
their footprints can interfere if too close. We define the con-
stant as the distance over which the envelope of the operator
wavelet is below a given percentage of its peak value; given
the sinc-like behavior of the smoothing kernel, this happens ap-
proximately for (see also Fig. 6 bottom). There-
fore, avoiding interaction between footprints for decompo-
sition levels requires singularities to be spaced at least
samples apart. Notice that this condition is very similar to the
one in [15], where the size of the wavelet filter played a central
role. Empirically, we found that our one-by-one fitting proce-
dure gave correct results for in the noiseless case,

corresponding to , which leads to a minimal signal sepa-
ration of for a decomposition with levels.

Finally, we mention that artificial discontinuities may arise
due to the periodic boundary conditions of our FFT-based
implementation. To avoid this type of artifact, we linearly
detrended the singularity signal before obtaining its decom-
position and then added it back to the reconstructed lowpass
residual.

Although our algorithm is not specifically designed for de-
noising, it can yield competitive results for the class of singular
signals satisfying (8). In Fig. 9, we show the outcome when ap-
plying the same algorithm as before to the signal deteriorated
with additive Gaussian noise (SNR 20 dB). All signal discon-
tinuities are well recovered and the remaining noise originates
from the residual lowpass subband; the total SNR improvement
is about 7 dB.

B. Discussion

We demonstrated that it is possible to extract and characterize
singularities from the operator-wavelet decomposition using the
analytical wavelet footprints. The analytical form replaces an
explicit dictionary that needs to be learned and that suffers from
redundancy in the case of shift-variant wavelet signatures (as
occur with nonredundant bases). The algorithm is related to
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Fig. 9. The SNR improvement of the reconstructed signal is 7 dB (noisy signal 20 dB).

matching pursuit [41] in the sense that the singularities are fitted
one by one. However, the dictionary is never explicit and the
parameters are retrieved by a numerical optimization
algorithm. Discretizing the positions on the (uniform) mea-
surement grid would allow to solve the problem with matching
pursuit or sparsity-pursuing algorithms [3]. While applying al-
gorithms from the discrete setting is outside the scope of this
paper, theoretical results on the exact recovery criterion can shed
light on the minimum spacing between singularities [42], [43].
Specifically, for the case of spike deconvolution with Morlet
wavelets and small noise, the minimum spacing of was
found, with the width (standard deviation) of the Gaussian
smoothing kernel [3], [44]. For the operator wavelet, we have

, which makes the bound . Empirically, we
found a lower bound of in the noiseless case, which is
the same order of magnitude; the difference could be explained
by high order of the operator wavelet that we use and
the fact that we exploit the knowledge that only two singularities
needs to be fitted. Another advantage of parametric fitting of the
analytical footprints is the ability to reach subsample resolution
since the problem is completely formulated in the continuous
domain; this opens the door to superresolution. The stepwise
fitting algorithm that was applied in Section IV-A is primarily
meant as a proof-of-concept. We believe that it may be improved
on several counts.

In the present implementation, the singularities are fitted one
after the other. A more evolved version could fit multiple sin-
gularities at the same time, explicitly taking into account their
interference patterns. Another option is to rely on additional in-
formation provided by different operator wavelets. One attrac-
tive choice is to use a Hilbert-pair of operator wavelets [45],
[46]; i.e., the ones corresponding to order with phase param-
eter , and order with phase parameter , respectively.

We should also mention that the approach is not necessarily
optimal for denoising. Although the operator wavelet decom-
position is a semi-orthogonal one, that is, wavelets of different
scales are orthogonal but not within the same scale. Therefore,
white noise will become correlated between wavelet coefficients
at the same scale. The fitting procedure could be extended to
take into account the correlation. Also, depending on the amount
of noise, the local extrema could be detected at a different de-

composition level or using a more robust detector. Moreover, the
number of decomposition levels directly influences the amount
of smoothing in the lowpass subband.

Finally, we mention that the proposed algorithm preselects
the type of singularity that will be fitted. Although the same
operator-wavelet decomposition can be used to deal with dif-
ferent singularities, going beyond this limitation is a remaining
challenge for future research. Our attempts to let the parametric
fitting also take care of the order or the phase of the singulari-
ties did not give satisfactory results. Another problem related to
mixing signatures of singularities of different order is their sig-
nificant difference in dynamic range [e.g., compare Figs. 7(a)
and 8(a)].

V. CONCLUSION

In this paper, we proposed a particular wavelet basis, named
operator wavelets, that is part of the family of fractional
B-spline wavelets. The corresponding (nonredundant) wavelet
transform acts as a multiscale fractional derivative operator,
which have been studied extensively in mathematics. We pro-
vided a closed-form formula for the response of these wavelets
to the whole class of self-similar singularities. We also
showed a practical algorithm to extract the singularities from
a given signal and separate and reconstruct the singularity and
the smooth parts. One attractive feature of our approach is that
it works for nonredundant decompositions and explicitly takes
into account the effect of subsampling. This could open new
possibilities for signal analysis on compact decompositions.

APPENDIX A
CONSTRUCTION OF FRACTIONAL B-SPLINE WAVELETS

These B-splines satisfy the three admissibility conditions for
a scaling function [17], [18]:

i) They generate a Riesz basis; i.e., the autocorrelation filter
is bounded by two constants

.
ii) They fulfill the partition of unity:

(27)

iii) They satisfy a two-scale relation.
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Consequently, the B-splines generate a multi-resolution analysis
of ; that is, a sequence of nested subspaces

(28)

We now revisit and extend the design strategy for the semi-
orthogonal spline wavelet transform that was initially proposed
in [31]. To that end, we select the wavelet space

(29)

as the orthogonal complement of , such that .
The wavelet is therefore constrained to be orthogonal to all in-
teger-shifted versions of the scaling function at the same scale,
which also implies orthogonality to wavelets at different scales;
i.e., , for .

By construction, the wavelet at scale 1 is included in ,
which is expressed as

(30)

It also has to fulfill the orthogonality condition : b

(31)

Taking the -transform of (31) results into

(32)

This condition requires to be an odd poly-
nomial; thus the degree of freedom of .

APPENDIX B
PROOF OF PROPOSITION 1

First, we verify that the proposed form of satisfies the
semi-orthogonality condition of (32). We then derive the Riesz
bounds of the wavelet filter as

Consequently, the wavelet generates a Riesz basis if
. This guarantees a stable perfect recon-

struction filter bank when implementing the discrete wavelet
transform.

To characterize the operator-like behavior of the semi-orthog-
onal spline wavelet, we rewrite (18) as

(33)

(34)

where we have used the identity .
Note that in (34), none of the factors except cancels at

. Therefore, we derive the asymptotic form of (34) as

as
(35)

with the constant
, where

is the Riemann zeta function.

APPENDIX C
PROOF OF PROPOSITION 1

First, we show that the operator wavelet of (22) is obtained
for , which is bounded and thus a
valid choice. For this , we find in the Fourier domain that

(36)

The term can be recognized as the interpolation pre-
filter of the th order symmetric B-spline. By identifying the
interpolating B-spline , we further develop (36) as

(37)

which corresponds in the spatial domain to

(38)

The resulting wavelet filter becomes

(39)

which can be rewritten as

(40)

and thus satisfies the wavelet filter condition derived in
Appendix A.

Second, the expression of the operator wavelet (36) can be
further manipulated in the Fourier domain:

(41)

The proposed wavelet depends on the space defined by the
B-spline scaling function, but is independent of the choice of
a particular spline scaling function. Since the second factor in
(41) is essentially constant for , we may infer that this
wavelet closely matches the frequency response of the operator
over a large range in the Fourier domain. Indeed, the order of
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the second term of the Taylor development at increased
from to :

as (42)

Finally, we derive an explicit form of . We start from
(41) and use the fact that the wavelet has most of its
energy mostly around and . This allows us to approximate
the sum in the denominator by two dominant terms

We now focus on the positive frequencies and apply the
change of variables where is close to 0:

where the last step makes use of the approximation .
This latter expression we then use to compute the Fourier inverse
of the analytical signal of the wavelet:

where we used the change of variables to
identify the Beta function for which the identity

holds. This ultimately yields the

following asymptotic expression for the operator wavelet and
its fractional integrals:

(43)

The complex argument of the -function can be evaluated
using .

APPENDIX D
ALGORITHM FOR STEPWISE PARAMETRIC FITTING

We first choose the operator wavelet transform (order ,
phase ). Next, we select the singularity type that we want to
recover (order , phase ). The signal is decomposed
in the operator wavelet basis, resulting in coefficients
at scales and positions . For a chosen
subband at scale , we now make a list of the local extrema

, . The core of the algorithm will now fit sin-
gularities one by one for each local extremum. Specifically, we
optimize the parameters of the analytical footprint (amplitude

, position ) using the Levenberg-Marquardt optimization
algorithm based on the multiscale information of the wavelet
coefficients , . We try several initial esti-
mates for the position .
Next, the fitted analytical footprint is subtracted from the co-
efficients . After fitting singularities,
we synthetize the singularity signal using
and obtain its wavelet coefficients . We now adjust the
singularity amplitudes by least-squares solution of the op-
timal scaling factor between and the initial coefficients

. Finally, we reconstruct the smooth signal from the
residual lowpass only. Our approximation of

based on the singular signal model is given by .
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