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ABSTRACT

We propose a new orthonormal wavelet thresholding algorithm for denoising color images that are assumed to
be corrupted by additive Gaussian white noise of known intercolor covariance matrix. The proposed wavelet
denoiser consists of a linear expansion of thresholding (LET) functions, integrating both the interscale and
intercolor dependencies. The linear parameters of the combination are then solved for by minimizing Stein’s
unbiased risk estimate (SURE), which is nothing but a robust unbiased estimate of the mean squared error
(MSE) between the (unknown) noise-free data and the denoised one. Thanks to the quadratic form of this MSE
estimate, the parameters optimization simply amounts to solve a linear system of equations.

The experimentations we made over a wide range of noise levels and for a representative set of standard
color images have shown that our algorithm yields even slightly better peak signal-to-noise ratios than most
state-of-the-art wavelet thresholding procedures, even when the latters are executed in an undecimated wavelet
representation.

Keywords: Color image denoising, orthonormal wavelet transform, SURE minimization, interscale consisten-
cies, intercolor similarities

1. INTRODUCTION

Many efficient denoisers make use of multiresolution tools such as the wavelet transform.1,2 Its appealing property
is its ability to concentrate most of the signal information into few large coefficients, while the noise—assumed
as additive, Gaussian and white—is uniformly spread throughout all coefficients. In the transformed domain, a
simple processing such as thresholding becomes then very efficient.3–7

The most straightforward strategy to remove additive Gaussian white noise from color images is simply to
apply an existing grayscale denoiser separately in each color channel of the standard Red-Green-Blue (RGB)
representation. However, this approach is far from being optimal, due to the potentially strong common in-
formation shared by the color channels. To improve this basic solution, the images are usually denoised in a
more “decorrelated” color space, such as the luminance-chrominance (YUV) representation.8 An alternative or
complement to this approach consists in devising specific non-separable color image denoising algorithms.6,9–11

In this paper, we propose to extend our previous grayscale denoiser7 to color image denoising (see12 for a
more complete theory on multichannel image denoising) in an orthonormal wavelet representation. Following the
general approach introduced in,7,13 we build our wavelet estimator as a linear expansion of thresholding (LET)
functions taking into account both the interscale consistencies and the intercolor similarities. The unknown
weights of the linear combination are then solved for by minimizing Stein’s unbiased risk estimate (SURE),14

which is a robust estimate of the mean squared error (MSE) between the —unknown— noise-free image and the
denoised one, that does not require any prior on the original image. In the SURE-LET framework, the noise-free
wavelet coefficients are thus not even considered as random; the only randomness is induced by the noise. Our
linear parametrization conjugated with the quadratic form of SURE reduces the parameters optimization to a
simple resolution of a linear system of equations.

Further author information:
florian.luisier@epfl.ch; thierry.blu@epfl.ch

1



2. SURE-LET FOR COLOR IMAGES

In this paper, we consider N -pixel images with 3 color channels. We denote these color images by a 3×N matrix
whose columns are the color component values of each pixel:

x = [x1,x2, . . . ,xN ] where xn =

xn,1

xn,2

xn,3

 .

We assume that these images are corrupted by an additive color component-wise Gaussian white noise
b = [b1,b2, . . . ,bN ] of known intercolor covariance matrix R, i.e.

E
{
bnbT

n′

}
= R δn−n′

We denote the resulting noisy color image by y = [y1,y2, . . . ,yN ] and we thus have:

y = x + b. (1)

Note that, in our work, the original image x is not considered as a realization of some random process; the
only randomness comes from the noise b, and therefore, the noisy image y is also random.

The quality of the denoised image x̂ will be evaluated by the widely used Peak Signal-to-Noise Ratio (PSNR)

PSNR = 10 log10

( 2552

MSE

)
dB, (2)

which involves the Mean-Squared Error (MSE) criterion defined by:

MSE =
1

3N
Tr

{
(x̂− x)(x̂− x)T

}
=

1
3N

N∑
n=1

‖x̂n − xn‖2

The denoising process will contain a critically sampled Orthonormal Wavelet Transform (OWT) applied to
each color channel (see Figure 1). Denoting the resulting wavelet subbands at scale j ∈ [1, J ] and orientation
o ∈ [1, 3] by superscripts, we thus have:

yj,o = xj,o + bj,o (3)

The linearity and orthonormality of the OWT has two important consequences:

1. The noise statistics are preserved in the transform domain, i.e. its wavelet coefficients are Gaussian and
independent within and between the subbands, with the same intercolor covariance matrix R.

2. The MSE in the image domain is simply a weighted sum of the subband MSE’s.

Thanks to these two properties, an independent processing θj,o of each individual noisy wavelet subbands
yj,o becomes particularly suitable. The thresholding function θj,o will also involve an interscale predictor pj,o

obtained by appropriately filtering the lowpass subband at the same scale j (see Figure 2), as detailed in.7 Notice
that, due to the statistical independence between subbands of different scale or orientation, θj,o and pj,o are
statistically independent.

From now on, we will drop the subband superscripts j and o, and consider the denoising of a color wavelet
subband y = x + b, given its independent interscale predictor p, by using a R3 × R3 → R3 function θ relating
the coefficients of y and p to the coefficients of the estimate x̂ through

x̂n = θ(yn,pn), for n = 1, 2, . . . , N. (4)
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Figure 1. Two iterations of a 2-D orthonormal wavelet transform applied to a RGB image.

Our aim will be then to find the θ that will minimize the MSE defined in (3). Since we do not have access
to the noise-free data x, we will instead rely on an adapted version of Stein’s unbiased risk estimate (SURE)14

to accurately estimate the actual MSE, as shown below:

Theorem 2.1. Assume that θ(·, ·) is (weakly) differentiable with respect to its first variable. Then, if the estimate
x̂ is built according to (4), the following random variable

ε =
1

3N

N∑
n=1

‖θ(yn,pn)− yn‖2 +
2

3N

N∑
n=1

Tr
{
RT∇1θ(yn,pn)

}
− 1

3
Tr {R} (5)

is an unbiased estimator of the MSE, i.e.

E {ε} = E

{
1

3N

N∑
n=1

‖x̂n − xn‖2

}
.

Here, we have denoted by ∇1θ the matrix containing the partial derivatives of the color components of
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Figure 2. Construction of the interscale predictor p.

θ = [θ1, θ2, θ3]T with respect to its first variable:

∇1θ(u,v) =


∂θ1(u,v)

∂u1

∂θ2(u,v)
∂u1

∂θ3(u,v)
∂u1

∂θ1(u,v)
∂u2

∂θ2(u,v)
∂u2

∂θ3(u,v)
∂u2

∂θ1(u,v)
∂u3

∂θ2(u,v)
∂u3

∂θ3(u,v)
∂u3


The variance of the above MSE estimate ε depends on the number of samples N . Since in color image

denoising the data are usually quite huge (typically 256× 256× 3), ε can be reliably used as the actual MSE. In
particular, its minimization will closely tend to the minimization of the actual mean squared error between the
processed image and the—unknown—noise-free image.

Following the SURE-LET approach previously introduced in,7,13 the denoising function θ will be built as a
linear expansion of simple thresholding θk:

θ(yn,pn) =
K∑

k=1

aT
k θk(yn,pn)

= [aT
1 ,aT

2 , . . . ,aT
K ]︸ ︷︷ ︸

AT


θ1(yn,pn)
θ2(yn,pn)

...
θK(yn,pn)


︸ ︷︷ ︸

Θ(yn,pn)

. (6)

where Θ(yn,pn) is a 3K × 1 vector and A is a 3K × 3 matrix.
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In this framework, the unbiased MSE estimate defined in (5) is quadratic in the unknown parameters A, and
its minimization boils down to the following linear system of equations:

A = M−1C (7)

where

M =
N∑

n=1

Θ(yn,pn)Θ(yn,pn)T

C =
N∑

n=1

(
Θ(yn,pn)yT

n −
(
∇1Θ(yn,pn)

)T
R

)
Notice that if M is not a full rank matrix, we can simply take its pseudo-inverse to choose among the

admissible solutions.

3. A NEW INTERSCALE-INTERCOLOR THRESHOLDING FUNCTION

We now propose a natural extension of the denoising function presented in7 by taking into account the potentially
strong similarities between the various color channels. We will use K = 4 thresholding θk’s, one for each
particular class of coefficients. These classes are determined by a smooth decision function γ(x) = e−

|x|
3·12 applied

to a weighted combination of the predictors/wavelet coefficients, leading to the following interscale-intercolor
thresholding function:

θ(yn,pn) = γ(pT
nR−1pn)γ(yT

nR−1yn)︸ ︷︷ ︸
small predictors/small coefficients

aT
1 yn

+
(
1− γ(pT

nR−1pn)
)
γ(yT

nR−1yn)︸ ︷︷ ︸
large predictors/small coefficients

aT
2 yn

+ γ(pT
nR−1pn)

(
1− γ(yT

nR−1yn)
)︸ ︷︷ ︸

small predictors/large coefficients

aT
3 yn

+
(
1− γ(pT

nR−1pn)
)(

1− γ(yT
nR−1yn)

)︸ ︷︷ ︸
large predictors/large coefficients

aT
4 yn

(8)

4. EXPERIMENTS

4.1 Context

All the experiments of this section have been carried out on N = 512×512 RGB images from the set presented in
Figure 3. We have applied our interscale-interchannel thresholding algorithm after 5 decomposition levels of an
orthonormal wavelet transform (OWT) using the standard Daubechies symlets2 with eight vanishing moments
(sym8 in Matlab). We have assumed that in the red-green-blue (RGB) color representation, the intercolor noise
covariance matrix is given by:

R =

 σ2
R 0 0
0 σ2

G 0
0 0 σ2

B


This assumption implies that, in other color spaces, there will usually be noise correlations between the color

channels. However, contrary to the other algorithms that have been previously published (see Section 4.2), ours
is quite insensitive to the color representation (variations of ±0.1 dB), thanks to our linear parametrization which
acts as an ”optimal“—in the minimium SURE sense— color space projector. From now on, we will thus apply
our intercolor algorithm in the RGB representation only.
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Figure 3. Test images used in the experiments, referred to as Image 1 to Image 8 (numbered from left-to-right and
top-to-bottom).

4.2 Comparisons

We have chosen to compare our method with two state-of-the-art multiresolution-based denoising algorithms:

• Pižurica’s et al. ProbShrink-YUV ,8 which is an application of their original grayscale denoiser in the
luminance-chrominance color space in the undecimated wavelet transform.

• Pižurica’s et al. ProbShrink-MB ,6 which is a multiband extension of their original grayscale denoiser. For
color image denoising, it has to be applied in the standard RGB representation, and for equal noise variance
in each channels.

We have applied these two algorithms with the—highly redundant—undecimated wavelet tranform (UWT)
using the code of the authors∗ with their suggested parameters; we have considered the same number of decom-
position levels and the same wavelet (sym8 ) as with our method. Since these algorithms have been shown in6,8

to favorably compare with the multiband wavelet thresholding described in,9 as well as with the vector-based
linear minimum mean squared error estimator proposed in,10 they constitute a good reference for evaluating our
solution.

In a first experiment, we have corrupted the test images with additive Gaussian white noise having the same
variance in each RGB channel. The PSNR results are displayed in Table 1. Despite being performed in a non-
redundant wavelet representation, our solution gives even slightly better (+0.3 dB on average) output PSNRs
than both variants of the ProbShrink applied in the undecimated wavelet representation. From a visual point
of view, our algorithm holds its own against these state-of-the-art multiresolution-based redundant approaches
(see Figure 4).

In a second experiment, the test images have been corrupted with additive Gaussian white noise having a
different power in each RGB channel (σR = 38.25, σG = 25.50, σB = 12.75). The PSNR results are displayed in
Figure 5 and a visual example is shown in Figure 6. As can be observed, our SURE-LET approach outperforms
the ProbShrink-YUV in terms of PSNR (around +1 dB).

∗Available at: http://telin.rug.ac.be/∼sanja/
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(A) (B)

(C)

(D) (E)

Figure 4. (A) Part of the noise-free Image 5. (B) Part of the noisy Image 5 : PSNR = 18.59 dB. (C) Result of our
SURE-LET (OWT sym8 ): PSNR = 26.79 dB. (D) Result of the ProbShrink-MB (UWT sym8 ): PSNR = 25.44 dB. (E)
Result of the ProbShrink-YUV (UWT sym8 ): PSNR = 26.59 dB.
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Table 1. Comparison of Color Denoising Algorithms (Same Noise Level in Each RGB Channel)
σRσRσR = σGσGσG = σBσBσB 5 10 20 30 50 100 5 10 20 30 50 100

Input PSNR [dB] 34.15 28.13 22.11 18.59 14.15 8.13 34.15 28.13 22.11 18.59 14.15 8.13

Method Image 1 512× 512 Image 2 512× 512
OWT SURE-LET 37.80 34.64 31.90 30.33 28.35 25.66 36.62 33.35 30.72 29.19 27.16 24.48

UWT ProbShrink-YUV 8 36.52 34.22 31.63 30.08 28.03 25.23 35.33 33.02 30.59 28.98 26.83 24.11
UWT ProbShrink-MB6 37.46 34.42 31.47 29.83 27.76 25.03 36.33 33.35 30.74 29.20 26.85 24.28

Method Image 3 512× 512 Image 4 512× 512
OWT SURE-LET 35.12 30.49 26.64 24.71 22.59 20.37 39.11 35.70 32.29 30.29 27.77 24.77

UWT ProbShrink-YUV 8 33.98 29.59 26.12 24.27 22.27 20.07 38.37 35.41 31.53 29.41 27.09 24.15
UWT ProbShrink-MB6 34.83 30.15 26.17 24.16 21.98 19.81 38.78 35.23 31.80 29.81 26.87 23.97

Method Image 5 512× 512 Image 6 512× 512
OWT SURE-LET 38.35 33.67 29.21 26.80 24.03 20.88 39.87 35.88 32.01 29.88 27.45 24.64

UWT ProbShrink-YUV 8 37.47 33.24 28.96 26.56 23.86 20.68 39.21 35.78 31.92 29.77 27.27 24.25
UWT ProbShrink-MB6 36.71 31.99 27.69 25.44 22.84 19.93 38.69 34.66 30.87 28.82 26.52 23.78

Method Image 7 512× 512 Image 8 512× 512
OWT SURE-LET 38.69 34.24 30.29 28.15 25.63 22.72 41.05 37.56 34.00 31.88 29.26 26.11

UWT ProbShrink-YUV 8 37.87 33.71 29.91 27.90 25.47 22.58 40.27 37.13 33.56 31.58 29.08 25.77
UWT ProbShrink-MB6 37.05 32.64 28.88 26.87 24.58 21.91 40.49 36.92 33.36 31.24 28.61 25.55

Notes: 1. UWT stands for the redundant Undecimated Wavelet Transform, whereas OWT stands for the non-redundant Orthonormal
Wavelet Transform.

2. Output PSNRs have been averaged over ten noise realizations.

Figure 5. PSNRs comparison between our algorithm (OWT SURE-LET ) and a state-of-the-art multiresolution-based
method (UWT ProbShrink-YUV ) for a different noise power inside each RGB color channel (input PSNR: 19.33 dB).

Finally, we must emphasize that the execution of the un-optimized Matlab implementation of our algorithm
only lasts around 6s for 512×512 color images on a Power Mac G5 workstation with 1.8GHz CPU†. To compare
with, the ProbShrink requires approximately 19s under the same conditions.

5. CONCLUSION

The natural extension of our previous grayscale denoiser has been shown to be particularly efficient for de-
noising color images. Thanks to an appropriate integration of both the interscale and intercolor similarities
inside the SURE-LET framework, our orthonormal wavelet estimator is even competitive —both qualitatively
and computationally— with the best state-of-the-art multiresolution algorithms which use highly redundant
transforms.

†The interested reader can check our online demo.15
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(A) (B)

(C) (D)

Figure 6. (A) Noise-free Image 6. (B) Noisy Image 6 : PSNR = 19.33 dB. (C) Result of the ProbShrink-YUV (UWT
sym8 ): PSNR = 30.25 dB. (D) Result of our SURE-LET (OWT sym8 ): PSNR = 31.67 dB.
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