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ABSTRACT

We present here an explicit time-domain representation of any compactly supported dyadic
scaling function as a sum of harmonic splines. The leading term in the decomposition corre-
sponds to the fractional splines, a recent, continuous-order generalization of the polynomial
splines.

1. INTRODUCTION

The theory of dyadic wavelet decomposition is entirely based on a basic—scaling—function
ϕ(x) which is assumed to satisfy good analytic (approximation-wise) properties (partition
of unity, stability) together with a geometric condition: a two-scale relation of the form

ϕ(x) =
∑

k∈ �

hkϕ(2x− k). (1)

This relation seems to make it almost impossible to express ϕ(x) using standard func-
tions, with the noteworthy exception of the fractional B-spline case which is obtained when
hk = 2−α

(
α+1
k

)
where α is the degree of the spline.1 For most standard scaling functions

such as Daubechies scaling functions, it is indeed possible to compute the value of ϕ(x)
exactly for rational arguments only, but not for irrational values like π.

In this paper, we show that all compactly supported scaling functions, i.e., most clas-
sical scaling functions, can be expressed in an harmonic form, similar to a Fourier series
decomposition. As a result it is possible to have an evaluation of a scaling function at
any point, not only rational. Moreover, this decomposition uncovers new scaling functions
that had never been considered before: the harmonic splines. The result shown here is a
development of a similar decomposition that was initially derived by us in another paper2
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2. CENTRAL BASIS FUNCTIONS

In order to derive our harmonic decompostion, we first need to un-localize the scaling
function ϕ(x). We will show indeed in this section that any compactly supported scaling
function ϕ(x) can be expressed as a digitally filtered version of a self-similar, one-sided but
non compactly-supported function ρ(x)

ϕ(x) =
∑

k≥0

pkρ(x− k). (2)

We will call these “central basis function” by analogy to a similar problem arising in the
theory of radial basis functions.

Since ϕ(x) is compactly supported, we will assume with no loss of generality that hk = 0
for k 6∈ [0, L]. Then, we define the function ρ(x) as

ρ(x) =





ϕ(x) if x ∈ [0, 1[

h−j0 ρ(x2−j) if x ∈ [2j−1, 2j[ for some j ∈ N
0 if x < 0.

(3)

Proposition 1. ρ(x) is self-similar, i.e., it satisfies the property

ρ(x) = h0ρ(2x). (4)

Moreover, there exists a sequence of coefficients pk such that (2) holds.

Proof. By construction, ρ(x) satisfies the self-similarity property for x > 1/2. Then,
because ϕ(x) = 0 for x < 0, we simply observe that the scaling relation (1) reduces to
ϕ(x) = h0ϕ(2x) when 0 ≤ x ≤ 1 where ρ(x) is identified as ϕ(x). Whence the self-similar
relation.

Next, we consider the function

ρ0(x) =
∑

k≥0

rkϕ(x− k) such that

{
r0 = 1
rn = h−1

0

∑
k≥0 hn−2krk for all n ≥ 0.

Note that ρ0(x) is such that ρ0(x) = ϕ(x) for x ∈ [0, 1[. Using the definition of the
coefficients rk, we easily verify that ρ0(x) = h0ρ0(2x). As a result, ρ0(x) = ρ(x). Since
ρ0(x) is a filtered version of ϕ(x − k), we finally conclude that the reverse is true as well;
that is, ϕ(x) is a filtered version of ρ(x).

Conversely, it is a simple matter to verify that ϕ(x) defined by (2) automatically satisfies
a scaling relation of the form (1). Whether it is always possible to find a localization filter
with coefficients pk such that ϕ(x) is in L2 is still unknown to us; we surmise, though, that
the filter defined by

pk =

∫ ∞

0

ρ(x)
xk

k!
e−x dx for k ≥ 0

is a good candidate for this goal.



3. HARMONIC DECOMPOSITION

The self-similar equation (4) is very interesting because, as we observe below, it can be
recast into a 1-periodicity condition satisfied by an auxiliary function u(x):

u(x) = 2−αxρ(2x) =⇒ u(x+ 1) = u(x)

where we have let α = − log2(h0).

As we know, periodic functions of L2 are equal to their Fourier series decomposition
almost everywhere which, in the present case, reads:

u(x) =
∑

n∈ �

cne
2iπnx where cn =

∫ 1

0

u(ξ)e−2iπnξ dξ

We thus obtain the following expression for the central basis function ρ(x):

ρ(x) =
∑

n∈ �

cnx
α+ 2iπn

log2
+ (5)

where we have used the definition x+ = max(x, 0). Note that we have an exact expression
of cn in terms of ϕ(x), in the case where ρ(x) is obtained from a scaling function ϕ(x) (e.g.,
Daubechies scaling function):

cn =
1

log 2

∫ 1

1/2

ϕ(x)x
−α−1− 2iπn

log2 dx.

The harmonic terms x
α+ 2iπn

log2
+ can be localized using a generalized finite difference filter.

We call “harmonic splines” the functions that are obtained through this process; their
Fourier transform takes the following expression:

β̂
α+ 2iπn

log2 (ω) =

(
1− e−iω
iω

)1+α+ 2iπn
log2

.

Notice that these functions are usually not compactly supported. Conversely, we have the
identity:

x
α+ 2iπn

log2
+ =

∑

k≥0

Γ(1 + k + α + 2iπn
log2

)

k!
β
α+ 2iπn

log2 (x− k)

which provides an explicit expression for the coefficients rk of the “un-localization” filter of
the harmonic spline.



Finally, by putting things together, we obtain the main result of this paper:

Theorem 3.1. Every compactly supported scaling function ϕ(x) can be expressed as a sum
of harmonic splines:

ϕ(x) =
∑

k≥0

∑

n∈ �

γk,nβ
α+ 2iπn

log2 (x− k) (6)

where the coefficients γk,n are defined by

γk,n = cn
∑

k′≥0

pk−k′
Γ(1 + k′ + α + 2iπn

log2
)

k′!

This result is surprising in a number of aspects:

• A sum of scaling functions is usually not a scaling function; here, it is only because
of very particular coefficients that the expression (6) is a scaling function—and that
it is compactly supported.

• Usually, (generalized) spline functions appear through a convolution bringing regu-
larity and approximation order to scaling functions3; here, they appear through an
addition, using quantified complex degrees.

• If we truncate (6) over n, we get a function that satisfies the very same two-scale
difference equation as ϕ(x); but this approximation is usually not in L1 because its
Fourier transform is not continuous at ω = 0.

• The expression (6) makes it possible to evaluate standard scaling functions at arbitrary—
in particular, irrational—values of x; as we noticed in introduction, this is unusual
for arbitrary scaling functions.

We show in Fig. 1 the behavior of the decomposition formula (6) when we restrict the
summation index n to the finite range [−N,N ]. Note that the fractal structure becomes
more apparent and finer grained as one adds more terms to the expansion. Interestingly,
the value α = − log2(h0) (real part of the degree of the harmonic splines) coincides with
the Hölder regularity of Daubechies scaling function.
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Figure 1. Approximation of Daubechies scaling function of length 4 using the terms cn
in (6) for |n| ≤ N and for various values of N = 0, 1, . . . 9. In a bold line, plot of the
Daubechies scaling function.


