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Abstract— The tremendous growth in mobile devices has
resulted in huge generation and usage of digital images. Image
quality assessment is thus an important issue for mobile media
applications. In this paper, we focus on the quality evaluation
of images generated by content-aware image retargeting,
in which the reference and the distorted images are of
different sizes. Through retargeting, many types of deformation
inconsistency lead to shape distortion, deformation artifacts,
and content information loss, worsening its perceptual quality.
The deformation inconsistency occurs on different levels of the
retargeted images. Limited by the accuracy of the alignment
between the original and retargeted images, previous methods
only focus on pixel-level and patch-level fidelity analyses and fail
to detect deformation inconsistency. In this paper, we improve
the alignment algorithm and propose a three-level representation
of the retargeting process. Based on the analysis of this three-
level representation, both fidelity measures and inconsistency
detection are combined to determine the final retargeting
quality. The proposed algorithm is validated on the public data
sets RetargetMe and CUHK. Experimental results demonstrate
that inconsistency detection contributes to accurately assessing
the image retargeting perceptual quality. This inspires us to
investigate more about deformation inconsistency to formulate
the objective quality of image retargeting.

Index Terms— Image retargeting, quality assessment, content
information loss, shape distortion, deformation artifacts, fidelity
measures.

I. INTRODUCTION

IN the last decade, we have witnessed the fast develop-
ment of mobile devices, which has imposed new demands

on convenient image display. Despite the fixed sizes and
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aspect ratios of media contents, image and video retargeting
techniques adapt the original content to different resolutions.
Traditional methods such as linear scaling and cropping suffer
from shape distortion or content loss. In contrast, content-
aware image retargeting methods adjust source images into
arbitrary sizes under two objectives: preserve salient contents
and avoid annoying artifacts. To assess the performance of
retargeting algorithms, many recent works focus on the quality
assessment of image retargeting [1]–[8].

Image retargeting algorithms [9], [10] can be roughly
categorized into two classes: discrete and continuous.
Discrete methods [11]–[14] directly remove (or insert) less
important pixels or patches to generate retargeted images.
Seam carving [11] iteratively removes eight-connected paths
of pixels known as seams. The direct removal of image
content may cause deformation artifacts such as jittering or
discontinuities and degrade perceptual quality. In contrast,
continuous methods [15]–[18] determine an optimal pixel-
wise mapping from the original size to the target size. The
pixel-wise mapping is determined by either solving a linear
system [15] or minimizing energy functions [16]–[18]. The
shape of salient content may be distorted due to inconsistent
deformation, worsening retargeting quality. Several studies
[19], [20] combined a few retargeting operators to alleviate
these weaknesses. In spite of their novelties, the above-
mentioned methods validate their performance only by small-
scale subjective assessment. Hence, a systematic objective
image retargeting quality evaluation method is necessary.

Image retargeting brings about deformations, which are
crucial in assessing the retargeting quality. Their existence
reduces the fidelity of retargeted images and induces various
types of inconsistency as shown in Fig. 1. Therefore, previous
methods on image retargeting quality assessment align the ref-
erence and retargeted images, and define the overall similarity
between aligned contents as the retargeting quality [2]–[8].
The formulation of the quality measures is generally based on
the analyses of three levels:

• Region-Level Analysis: The original and retargeted
images are segmented into regions. Region-level analysis
examines the deformation of regions’ shapes. Region-
level inconsistency occurs if some regions are over-
squeezed or over-stretched. In Fig. 1(a), the squashing
of the girl’s face leads to region-level inconsistency.

• Patch-Level Analysis: The segments in the region-level
analysis are further divided into patches. Patch-level
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Fig. 1. Retargeted images with deformation inconsistency. (a) Scaling deforms the shape of the face, leading to region-level inconsistency. (b) SNS introduces
inconsistent warping, distorting the girl’s face, resulting in patch-level inconsistency. (c) The cropped image snips the surfboard, damaging the integrity of
salient objects. (d) Non-homogeneous warping removes some content in the original image, resulting in the pixel discontinuities labelled in red.

analysis explores the deformation of patches. Patch-level
inconsistency happens if some patches go through
deformations differently from the others, leading to a
distortion mirror effect. In Fig. 1(b), the retargeted image
obtained by scale-and-stretch (SNS) [16] retains the
height of the forehead but lengthens the heights of the
nose, mouth and jaw, leading to distortion of proportions.

• Pixel-Level Analysis: Pixel-level analysis investigates
the pixels in the original image that are employed to
generate the retargeted image. Pixel-level inconsistency
indicates that not all the pixels are preserved through
retargeting, causing two possible instances of disagree-
ment: discontinuities and content information loss.
In Fig. 1(c), cropping removes part of foreground objects
while in Fig. 1(d) the retargeted image obtained by
non-homogeneous warping [15] suffers from severe
discontinuities. Both images are disliked by human
viewers.

However, due to the limited accuracy of image alignment
algorithms, existent quality metrics for retargeted images do
not fully exploit the perceptual quality degradations on all
levels: [2] and [6] rely on pixel-level analysis; [3]–[5] and [7]
incorporate both pixel- and patch-level analyses; [8] combines
pixel- and region-level analyses. Moreover, these quality
metrics only consider an overall similarity or fidelity of the
retargeted images but ignore the deformation inconsistency.
Hence, we propose a full reference objective quality evaluation
method for image retargeting by analyzing the fidelity and
detecting the inconsistency of the retargeted image on three
different levels. The original and retargeted images are first
aligned by flow estimation, which enables us to analyze

the retargeting process on three different levels: region-level
analysis that models the shape distortion of segments, patch-
level analysis that investigates the shape distortion of patches,
as well as pixel-level analysis that studies the deformation
artifacts and content information loss. Apart from the fidelity
measurements, we also detect three types of deformation
inconsistency, which achieves promising performance on
benchmark datasets.

Compared with the preliminary conference paper [8], the
precision of the flow estimation has been improved by modi-
fying the energy function. In [8], we only attempted to capture
the discontinuities of retargeted images, which can be regarded
as the pixel-level inconsistency. In this paper we include patch-
level and region-level inconsistency detections, which further
improve the prediction performance. In the fidelity analysis,
the conference paper only combined pixel-level information
loss and the region-level aspect ratio change. In this paper we
also incorporate the patch-level fidelity analysis. The current
work outperforms [8] on both RetargetMe and CUHK datasets.

The rest of the paper is organized as follows. Section II
introduces some related works on image retargeting quality
assessment. In Section III and IV, we describe the details of the
proposed fidelity measures and the detection of inconsistency
respectively. Section V presents the experimental results and
the final section concludes the paper.

II. RELATED WORKS

Many pioneer works have devoted to large-scale user study
on benchmark datasets of retargeted images. Rubinstein et al.
set up the dataset RetargetMe [1] while Ma et al. built the
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Fig. 2. The image retargeting quality assessment framework. Flow estimation matches original and retageted pixels and constructs the three-level representation
of the retargeting process. For each level, we propose a fidelity measure. On the raw measure maps, darker areas indicate lower fidelity. Based on the raw
measures, three cases of inconsistent distortions are detected. The fusion of the fidelity measures and the inconsistency detection determines the final quality
score.

dataset CUHK [21]. Both studies claimed that humans agree
on the perceptual quality of retargeted images. They also
mentioned that content loss, deformation artifacts and shape
distortion degrade the retargeting quality. Besides, they con-
cluded that the image distance metrics [20], [22]–[26] could
hardly predict image retargeting quality. Castillo et al. [27]
collected the eye-tracking data on a benchmark of retargeted
images and found that eye-tracking information improves
the quality predicting performance of computational distance
metrics. Conducting large-scale user study and using an eye
tracker are not always feasible. Hence, recent studies on
image retargeting quality assessment concentrate on objective
methods inspired by image quality assessment.

Traditional image quality assessment metrics, such as mean
square error (MSE), peak-signal-to-noise ratio (PSNR) [28],
structural similarity (SSIM) [29], [30] and some recent quality
metrics [31], [32] cannot be applied to image retargeting
quality assessment because of the difference of sizes between
the original and retargeted images. To investigate the retarget-
ing deformation, scale invariant feature transform (SIFT) [33]
and SIFT flow [25] have been adopted to align original and
retargeted images [2]–[8]. Given the alignment, the retargeting
process can be analyzed on different levels. In [2] and [6], the
average SSIM indices for matched SIFT keypoints are defined
as the retargeting quality. These two methods only examine
pixel-level deformation artifacts and content information loss.
Hsu et al. [7] defined the local variance of SIFT flow vector
fields as the perceptual geometric distortion. Liang et al. [5]
incorporated aesthetic components in the quality measure.
In [4], the author applied Delaunay triangulation on SIFT
feature points to separate original images and retargeted
images into triangles. The shape deformation of triangles
is also considered in the final quality measure. Similarly,
Zhang et al. [3] divides original and retargeted images into
patches and define the average aspect ratio similarity as the

retargeting quality. These four methods add patch-level analy-
sis to their objective quality evaluation methods. Liu et al. [34]
fused four quality factors of both shape deformation and visual
content change by using support vector regression (SVR)
[35]–[37] for retargeting quality measure. Ma et al. [38]
employ pairwise rank learning for no-reference retargeted
image quality assessment. In [8], we combined region-level
analysis of foreground objects, pixel-level deformation arti-
facts and content information loss to formulate the retargeting
quality. By combining analyses on different levels, these
methods achieve better performance on predicting the retarget-
ing quality. Still, the above-mentioned methods have limited
performance due to the misalignment of SIFT-based alignment
algorithms and ignorance of deformation inconsistency in the
formulation of the quality measure.

III. IMAGE RETARGETING FIDELITY MEASURES

The overall framework of the proposed method is shown
in Fig. 2. Given a pair of original and retargeted images,
we estimate the flow vector field by colors. The flow field is
visualized by the method in [39] in Fig. 2. The estimated flow
vector field bridges the difference of sizes between the original
and retargeted images, and the three-level representation of
the retargeting process is established based on it: region-level
segmentation, patch-level partition, and pixel-level correspon-
dence. Three fidelity measures, region shape fidelity, patch
shape fidelity as well as pixel information fidelity, are defined
to model the overall similarity between the retargeted image
and the original one. From the raw measure maps in Fig. 2,
we observe that the area of severe distortion is overwhelmed
by well-preserved regions. A weighted sum of all the raw
measures easily ignores such severe distortions. Therefore,
deformation inconsistency at different levels is also examined,
including shape distortion, foreground cropping, and discon-
tinuity. By combining fidelity measures and inconsistency
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Fig. 3. Misalignment of SIFT keypoints under radical change of target aspect
ratio. The retargeted image on the left is generated by SNS. SIFT keypoints
are represented by circles. The radius of the circle and the direction of the
shown radius represent the scale and the orientation of the corresponding SIFT
keypoint respectively.

detection, we obtain the final quality measure for the retargeted
image. In this section, we concentrate on the image alignment
and the definition of three fidelity measures. Throughout
this paper, we adopt the following rules in the denotations.
A symbol with a superscript or subscript o indicates its relation
with the original image. In contrast, superscript or subscript r
implies the connection with the retargeted image. Those sym-
bols without such denotations are related to both images.

A. Alignment Between Original and Retargeted Images

As original and retargeted images are of different sizes,
a correspondence map is essential to align pixel pairs from
the original and retargeted images. Recent works on image
retargeting quality assessment [2]–[4], [6]–[8] adopt SIFT
feature matching or SIFT flow to build up the correspondence.
However, radical change of target aspect ratio affects the
SIFT descriptors. Besides, some retargeting algorithms gener-
ate unforeseen textures whose SIFT descriptors differ greatly
from the original ones. These facts defy the assumption that
SIFT descriptors remain constant through image retargeting.
In Fig. 3, we present an example that SIFT descriptors fail
to align feature points correctly. The retargeted image and
the original one are presented alongside, and only 40 pairs
of matched SIFT keypoints are exhibited to facilitate visu-
alization. The keypoint, labeled in red, at the third (from
left to right) pier of Ponte Sant’Angelo in the retargeted
image is wrongly aligned to the second pier in the original
image. This suggests that previous methods based on SIFT
feature matching are sometimes comparing unrelated pixels
or patches. To improve the accuracy of alignment, we investi-
gated the characteristics of different retargeting algorithms and
discovered that color is the best descriptor to align retargeted
images. Despite the change of aspect ratio after retargeting,
the correctly aligned pixels still present similar color. Inspired
by SIFT flow, we propose a similar feature matching method,
color-flow, whose energy function is defined as Eq. 1.

E(w) =
∑

pr

min(||Ir (pr ) − Io(pr + w(pr ))||1, t)

+
∑

(pr ,qr )∈ε

min(α|u(pr ) − u(qr )|, d)

+ min(α|v(pr ) − v(qr )|, d) (1)

Here Io and Ir denote the original image and the retargeted
image. The variable to optimize is the flow field w, and for
each retargeted pixel pr , u(pr ) and v(pr ) are the two compo-
nents of the flow vector w(pr ). Set ε consists of all the spatial
neighborhoods in the retargeted image. The first term acts as
the data term, which forces the color similarity for matched
pixels. The parameter t limits the amount of maximum error,
and avoids the impact of outlier pixel pairs whose colors differ
significantly. The second term is a smoothness term which
encourages the continuity of the adjoined pixels’ flow vectors.
The parameter α controls the continuity of the flow field. Using
a larger α will achieve a more consistent flow field. Similar
to the parameter t , d avoids the impact of outlier pixel pairs
whose flow vector components differ significantly. We remove
the small displacement term in the energy function of SIFT
flow because a retargeted image is composed of patches across
the whole original image and some flow vectors may have
considerable magnitudes. This energy function is optimized
by belief propagation and the parameter settings are discussed
in the experiment results.

The estimated flow bridges the different resolutions of the
original and retargeted images. The fidelity and inconsistency
of the retargeted images can be thus studied on different
levels. Before calculating the retargeting fidelity measures and
detecting inconsistent distortion, we obtain the saliency map of
the original image, denoted as So, to represent the importance
of each pixel in the image. The determining factor in the choice
of the saliency algorithm is whether the algorithm can light up
the whole salient region evenly because we want to quantify
the amount of distortion at different levels in the inconsistency
detection. Most early saliency algorithms [40]–[42] assign
high importance values only on the boundary pixels of the
salient content while severe inconsistent distortion often occurs
in the smooth inner regions. The saliency algorithm applied
in this work is the graph-based visual saliency (GBVS) [43]
because of its accuracy in predicting human gaze fixation.
Besides, GBVS assign consistent importance values in the
salient content, without paying too much attention to
the boundary pixels. Recent saliency algorithms, such as
the region contrast method introduced in [44], assign identical
importance values to all the pixels in the same region. Such
algorithms may also be employed in our framework. The
saliency map of the retargeted image Sr is derived from the
original saliency map So and the estimated flow field w by
assigning Sr (pr ) = So(pr + w(pr )). The saliency map pair
So and Sr acts as the weights of different regions, patches and
pixels in the calculation of the retargeting fidelity measures.

B. Region-Level Measure: Region Shape Fidelity

The segmentation of the original and retargeted images
contributes to analyzing region-level deformations of the retar-
geting process. A perfect segmentation result should delineate
well the object boundaries and superpixel-based segmentation
algorithms suit such requirement. The algorithm [45] tends
to over-segment the original image and have irregular seg-
ment boundaries. In our conference paper [8], we adopted
the method [46], which segments an image by merging
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Fig. 4. Image segmentation results. Segments boundaries are labelled in
red. The red regions in the images on the right are the corresponding salient
regions by using a threshold of 60%.

superpixels. This method has one parameter that controls
the merging of pixels and using the same parameter on
different images may obtain different number of segments.
Therefore in this work, we apply segmentation to original
images by aggregating superpixel (SAS) [47], whose only
parameter is the number of segments. We denote the set
of pixels in the i th segment of the original image as R

o
i .

Its counterpart in the retargeted image can be obtained by
assigning R

r
i = {pr |pr +w(pr ) ∈ R

o
i }. Morphological filtering

is applied to the warped segmentation to alleviate the impact
of possible mismatches. The segmentation of the original and
retargeted images establishes the region-level representation of
the retargeting process.

A segment consisted of salient pixels is considered impor-
tant. We sort all the segments in the descending order of the
average saliency of their pixel members,

∑
po∈R

o
i

So(po)/|Ro
i |.

Here | · | stands for the cardinality of the set. Segments
which rank in the top and make up 60% of total saliency
values are considered important segments to preserve. The
saliency threshold of 60% is tested on the RetargetMe and is
sufficient to capture all the salient content in an image. Some
segmentation results and the corresponding salient regions of
images on the dataset RetargetMe are shown in Fig. 4. The
set of important segments is designated as Simp . Only the
important segments are considered in the region-level analysis.
In addition, the pixels that belong to any important segments
compose the important pixel set Psal . Finally, the saliency of
an important segment i is defined by Eq. 2.

si
seg =

∑
po∈R

o
i

So(po)
∑

po∈R
o
j , j∈Simp

So(po)
(2)

All the saliency values for important segments can form a
vector sseg and they sum up to 1. By defining such a saliency
measure for segments, we regard that region-level analysis of
retargeting quality is more relevant with large salient segments.

1) Region Shape Fidelity: A well-preserved retargeted
region should share similar shapes with the original one. In the
conference paper [8], we proposed the region shape fidelity
the aspect ratio change of the segments’ bounding boxes. This
measure can detect some severe compressed regions, however,
in many cases only part of the salient regions has been
squeezed and the bounding box does not change significantly.
Therefore in this paper we focus on the deformation of the
segment boundaries. To investigate shape distortion, we rely
on some shape coding techniques. Freeman chain code [48]
could represent the contour of a patch or region. Therefore,
the histogram of chain code (CCH) [49] is widely adopted
in shape coding and recognization of irregular objects such
as characters. Inspired by this, we compare the chain code
histograms of original and retargeted segments to examine
the shape fidelity of regions. CCH can help to detect both
the consistent compression and the local distortion of the
segments. Throughout this work, we consider the chain codes
consisting of 8 directions.

For an important segment i ∈ Simp which has not been
removed in the retargeted image, we first calculate the con-
vex hulls of the original and retargeted segments. Then,
the contours of the convex hulls are extracted, denoted as
co

i and cr
i respectively. For each pixel on the contour, its

direction is coded with integer values k = 0, 1, . . . , 7 in
a counterclockwise sense starting from the direction of the
positive x-axis. The chain code histogram is a simple discrete
function as given in Eq. 3,

h(k) = nk

n
, k = 0, 1, . . . , 7 (3)

where nk is the number of contour pixels whose chain code
equals k, and n is the total number of links in the chain code.
After obtaining the two chain code historgrams ho

i and hr
i ,

we calculate the histogram intersection as the region shape
similarity mi

region = ∑
k min(hr

i (k), ho
i (k)). The region shape

fidelity measure mregion is defined as the weighted average of
histogram intersections, defined by Eq. 4.

mregion =
∑

i∈Simp ,|Rr
i |>0 si

segmi
region∑

i∈Simp ,|Rr
i |>0 si

seg
(4)

A higher value of mregion indicates better preservation of the
regions’ shape. This measurement is sensitive to the squeeze
or stretch of important objects.

C. Patch-Level Measure: Patch Shape Fidelity

Given the retargeted segmentation, patch-level partition
is established to scrutinize local deformations. For each of
the segment in the retargeted image, we partition it by
20 × 20 squares. The intersection of the segment and squares
are defined as local patches. Those with a smaller area are
merged with adjacent larger ones to guarantee that all patches
share similar area. Repeating this procedure on all segments,
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we can derive the patch-level representation of the retargeting
process. The i th retargeted patch is denoted as P

r
i . By warping,

we can obtain its counterpart in the original image: P
o
i =

{po|po = pr +w(pr ), pr ∈ R
r
i }. The importance of each patch

is assessed by the retargeted saliency map, as shown in Eq. 5.

si
patch =

∑
pr ∈R

r
i

Sr (pr )
∑

pr
Sr (pr )

(5)

The importance measures of all patches can form a vector
spatch , which sum up to 1.

1) Patch Shape Fidelity: Apart from region-level shape
distortion, patch-level shape distortion also determines the
retargeting quality. A well-preserved retargeted image should
keep the aspect ratios of the patches in the important regions
and avoid distortion of proportions. Similar to region shape
fidelity, the chain code histograms of original and retargeted
patches are compared to examine patch shape fidelity. The only
difference is that both important and less important patches
are considered in the definition of this measurement. For a
patch i , the convex hulls of the original and retargeted patches
are computed. By extracting the contours of the convex hulls
and counting the occurrence of directions for contour pixels,
we obtain two chain code histograms ho

i and hr
i . The patch

shape similarity is defined as mi
patch = ∑

k min(hr
i (k), ho

i (k)).
The patch shape fidelity is a weighted sum of patch shape
similarity, as defined by Eq. 6.

m patch =
∑

i

si
patchmi

patch (6)

The patch shape fidelity describes the preservation of local
shapes, which is sensitive to large discontinuities as well as
the squeeze or stretch of patches.

D. Pixel-Level Measure: Pixel Information Fidelity

In Fig. 5, we exhibit how the pixel-level representation is
established. The estimated flow in the top row is visualized
by [39]. At pixel level, each retargeted pixel pr has its
counterpart po = pr + w(pr ) in the original image. Repeating
this procedure for all the retargeted pixels, we can obtain
an original mask whose resolution equals that of the original
image as shown in Fig. 5. This mask denotes all the original
pixels which are employed to generate the retargeted image.
After applying morphological closing to fill the narrow seams
or holes in the mask, we define the filtered mask as the cor-
respondence map of the retargeted image, denoted as Mcorr .
This map evaluates the pixel information fidelity and detects
deformation inconsistency such as foreground cropping and
discontinuity. Here we denote several sets of pixels which
is useful in the detection of pixel-level inconsistency. The
set of boundary pixels in the retargeted image is denoted
as P

r
bound . According to the correspondence map, we locate

the corresponding set of pixels in the original image P
o
bound .

A correspondence map may contain many holes because of
content removal, as shown in the right image in the second row
in Fig. 5. For each connected hole, we apply morphological
dilating to obtain the set of original pixels on the boundary
of the hole, denoted as P

o
hole. According to the estimated

Fig. 5. Pixel-level image representation. The top row displays the original
and the retargeted images as well as the estimated flow field. The second row
presents the original mask and the correspondence map Mcorr . The last row
shows the boundary pixels of the holes in the correspondence map P

o
hole and

the pixels of discontinuity candidates Pdsc .

flow field w, its corresponding pixel set in the retargeted
image, P

r
hole, can be located, and the set of discontinuity

candidates can be derived as Pdsc = {(po, pr )|pr ∈ P
r
i , po =

pr + w(pr ),∀i, ∃p ∈ P
r
i

⋂
P

r
hole}.

1) Pixel Information Fidelity: To quantify information loss,
we should recognize the regions preserved by the retargeted
image. The correspondence map Mcorr is used in the pixel-
level analysis of retargeting quality. Saliency is regarded as
the information in our work. The ratio between the amount of
saliency in the correspondence map and the total saliency is
defined as the pixel information fidelity, as shown in Eq 7.

m pxl =
∑

po∈Mcorr
So(po)∑

po
So(po)

(7)

By doing so, we establish a three-level representation of the
retargeting process: region-level segmentation that examines
the deformation of regions’ shapes, patch-level partition that
investigates the deformation of patches and pixel-level corre-
spondence that studies the preservation of information. The
three measures on these levels describe the overall fidelity of
retargeted images.

IV. IMAGE RETARGETING INCONSISTENCY DETECTION

Apart from the three-level fidelity measures, we observe
several anomalies that degrade retargeting quality greatly as
shown in Fig. 1. Firstly, shape distortion can be inconsistent at
two levels: region-level and patch-level. At region level, some
important regions will be squeezed or stretched more severely
than others while distortion of proportions occurs at patch
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Fig. 6. Retargeted images with different types of shape distortion. For the
Sanfrancisco image, the heart-shape structure is squeezed greatly. For the Deck
image, discontinuities occupy the salient region and lead to shape distortion.
The third retargeted image suffers from the distortion of proportions because
the scaling factors for houses differ and result in shape distortion.

level. Secondly, some retargeted images crop important regions
to preserve less important ones, contravening the objectives
of image retargeting. Last but not least, deformation artifacts
due to discontinuities alter the visual semantics of the original
image. These two anomalies can be assessed by pixel-level
correspondence map. In this section, we detail how to probe
the anomalies in the retargeted image.

A. Region- & Patch-Level Inconsistency: Shape Distortion

Recently, some papers pay attention to shape distortion [3],
[4], [8]. Still, they are not able to locate it in the retargeted
image. As illustrated in [1], there are two causes of shape
distortion: over-squeeze or over-stretch of foreground objects,
and distortion of proportions in important regions. According
to our observation, three instances of deformation may lead
to such shape distortion. In Fig. 6, we exhibit three retar-
geted images, each of which represents a specific deformation
instance of shape distortion. We detect such deformation
instances by checking whether any of the following rules is
violated.

Firstly, some algorithms apply continuous mapping to
important regions, leading to over-squeeze or over-stretch. For
instance, the heart-shape sculpture in the Sanfrancisco image
of Fig. 6, which is an important structure in the original image,
is squeezed heavily in the horizontal direction. To detect such
deformation inconsistency, we compare the retargeted image
with the image scaled by the same retargeting ratio in terms
of the region shape similarity of important objects. If there
exists some important regions whose region shape similarity
is smaller than that of the corresponding scaled image, then
the retargeted image is considered inconsistently retargeted

because it does not preserve important regions well. This first
rule can be represented as Eq. 8,

rshape,1 =
{

0 ∃i ∈ Simp , mi
region < mi

region,scl − δ

1 otherwise
(8)

where δ = 0.05 is a tolerance parameter to increase the
robustness of the rule. Secondly, several algorithms remove
some content of important regions, causing over-squeeze or
over-stretch. For example, some chairs on the deck in the
Deck image of Fig. 6 are removed, inducing the over-squeeze
of the foreground structures. To detect such deformation
inconsistency, we check whether the important segments in
the retargeted image are blemished by discontinuities. This
rule can be represented by Eq. 9.

rshape,2 =
{

0 ∃i ∈ Simp , (po, pr ) ∈ Pdsc : pr ∈ R
r
i

1 otherwise
(9)

Finally, the third deformation instance is the distortion
of proportions in the important regions. In the
Brasserie_L_Aficion image of Fig. 6, the houses are
scaled by different scaling factors, resulting in a distortion
mirror effect. The third rule checks the consistency of
deformation inside the same segment. All the local patches
are examined whether its warping differs significantly from
the segment it belongs to. If the portion of such local patches
exceeds a threshold, then we consider the retargeting process
incoherent. This rule can be represented by Eq. 10.

rshape,3 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
∑

i∈L
si

patch > 95%

L = {i |Pr
i ⊂ R

r
j , rw,i ∈ (0.8 × rw, j , 1.2),

rh,i ∈ (0.8 × rh, j , 1.2)}
0 otherwise

(10)

where rw = wr/wo and rh = hr/ho represents the width ratio
and height ratio for the corresponding patch or segment after
retargeting. By constraining the range of possible dimension
ratios, the patches that suffer from abnormal deformation
could be located. The overall detection rule for global
inconsistency is hence rshape = rshape,1 ∧ rshape,2 ∧ rshape,3.

B. Pixel-Level Inconsistency: Foreground Cropping Detection

Image retargeting aims at the protection of salient objects
or regions in an image. The cropping of foreground regions is
thus undesirable. Still, some images have multiple foreground
objects or regions and removal of some content is inevitable.
As a result, we only consider the cropping of foreground
regions for images labelled as evident foreground objects.
If the image contains multiple foreground regions, we skip
this detection and set rcrop = 1.

The detection of the above situation is quite simple. If the
intersection of the importance pixel set P

o
sal and the boundary

pixel set P
o
bound is not empty, then the retargeting process

crops the important regions. The quality is thus worsened. This
detection can be defined by Eq. 11.

rcrop =
{

0 ∃po ∈ P
o
bound : po ∈ P

o
sal

1 otherwise
(11)
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Fig. 7. Retargeted images which crop foreground regions. For each image,
the segmentation boundary is labelled in red. The important objects are the
forest, the lotus and the fishing boat respectively.

Most images in the datasets RetargetMe and CUHK contain
multiple important objects. Therefore, the number of retargeted
images in need of foreground cropping detection is small.
Apart from the example we show in Fig. 1(c), there are
ten other retargeted images which suffer from foreground
cropping. Cropping, non-homogeneous warping and shift map
editing are susceptible to foreground cropping. In Fig 7,
we show three retargeted images with foreground cropping.

C. Pixel-Level Inconsistency: Discontinuity Detection

Deformation artifacts caused by discontinuities deteriorates
retargeting quality greatly. However, due to their sparsity in
the retargeted image, previous evaluation methods often ignore
them after averaging all the quality measurements. To detect
discontinuities in a retargeted image, we rely on the set
of discontinuity candidates Pdsc. SSIM index is applied to
compare the similarity between the local patches around each
pixel pair in the set. If the index is smaller than a threshold
η = 0.9, the retargeted pixel in the pixel pair is regarded
as a discontinuous pixel. If the affected retargeted pixels
make up 5% of the total saliency, then we regard the image
blemished by discontinuities. The detection for discontinuity
can be defined by Eq. 12.

rdsc =
∑

(po,pr )∈Pdsc,SS I M(po,pr )<η

Sr (pr )/
∑

pr

Sr (pr ) < 5%

(12)

Discontinuity is prevalent in image retargeting, whose
existence is detrimental to objects and structures, as shown
in Fig. 8. In our work, the three proposed fidelity measures
hardly detect them in most images. The introduction of this
detection improves the performance of perceptual quality
evaluation substantially.

Fig. 8. Retargeted images with discontinuities. Pixels which lead to
discontinuities are labeled in red.

D. Overall Quality

To determine the final quality measure, we combine the
fidelity measures and inconsistency detection by Eq. 13.
Both fidelity measure QFidelity and inconsistency detection
QInconsistency ranges from [0.0.5]. Fidelity measure examines
how much content has been preserved and how well they
are preserved overall while the detection of deformation
inconsistency tests against some anomalies. Here we assume
that these three common distortions of retargeting, namely
shape distortion, foreground cropping and discontinuity
detection, are independent of each other. It is intuitive
that foreground cropping does not lead to shape distortion
nor discontinuities in the retargeted image, and vice versa.
Discontinuities are mainly local distortions where far-away
original pixels form new patches unseen in the original image.
In contrast, shape distortions are global distortions where
the original regions or patches are stretched or squeezed
inconsistently. Consequently discontinuities and shape
distortions are approximately independent. Any occurrence
of these three distortions further reduces the retargeting
quality. As a result, the inconsistency measure is defined as
the linear fusion of the three detection results. The weights
for three criteria sum up to one. Since shape distortion and
deformation artifacts outweigh content information loss in
determining image retargeting quality, we set wcrop = 0.4,
wshape = wdsc = 0.3. The detection of any deformation
inconsistency brings about similar deduction of quality indices.

Q = 1

4
m pxl × (mregion + m patch)

︸ ︷︷ ︸
QFidelity

+ 1

2
(wcrop × rcrop + wshape × rshape + wdsc × rdsc)

︸ ︷︷ ︸
QInconsistency

(13)

V. EXPERIMENT RESULTS

A. Datasets

For the experiments, we test our retargeting quality assess-
ment framework on two benchmark datasets: RetargetMe
dataset [1] and CUHK dataset [21]. The RetargetMe dataset
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TABLE I

COMPARISON OF RETARGETED IMAGE ALIGNMENT ACCURACY

contains 37 original images. Eight different operators, includ-
ing cropping (CR), scaling (SCL), seam carving (SC) [11],
multi-operator (MOP) [20], shift-map editing (SM) [14],
scale-and-stretch (SNS) [16], streaming video (SV) [18]
as well as non-homogeneous warping (WARP) [15], are
compared based on the linked-paired comparison design. The
viewer chooses the one with better quality from two retargeted
images alongside. The number of votes for retargeted images
is collected as the subjective quality scores. To compare
subjective and objective scores, their rankings are assessed
by Kendall τ rank coefficient defined by Eq. 14.

τ = nc − nd
1
2 n(n − 1)

(14)

where n is the length of the ranking and equals 8 in this case.
In addition, nc is the number of concordant pairs while nd

is the number of disconcordant pairs. Here, the concordance
examines whether the image with the higher subjective quality
in the image pair is also favored by the predicted quality
measure. A perfect match of all rankings induces that τ = 1
while a perfect disagreement of all rankings has τ = −1.

The CUHK dataset contains 57 original images. Apart
from the eight algorithms studied in RetargetMe dataset,
another two operators, optimized seam carving and scal-
ing (SCSL) [19] and energy-based deformation (ENER) [17]
are included as candidate operators. The dataset contains
171 retargeted images and the mean opinion scores (MOS)
are collected as the subjective quality scores, which resembles
traditional subjective image quality assessment. Besides, the
standard deviations of opinion scores σ are also calculated
for each image. To compare subjective and objective scores,
we first fit the objective scores by the nonlinear function in
Eq. 15,

f (x) = β1

(1

2
− 1

1 + eβ2(x−β3)

)
+ β4x + β5 (15)

which is inherited from [50]. After nonlinear regression, the
fitted objective scores and subjective scores are compared
in terms of Pearson linear correlation coefficient (LCC),
Spearman rank-order correlation coefficient (SROCC), root
mean square error (RMSE) and outlier ratio (OR). Here
outlier ratio means the ratio of images that the fitted objec-
tive score is not in the interval [M OS − 2σ, M OS + 2σ ].
Larger LCC and SROCC indicate higher correlation between
subjective and objective scores and hence imply good perfor-
mance of the objective quality measure. In contrast, a smaller
RMSE and OR means better performance.

B. Alignment Accuracy

We tested on two benchmark datasets RetargetMe and
CUHK to compare the alignment capabilities of SIFT descrip-
tor and colors. Both datasets consist of retargeted images
whose retargeting ratios are either 0.50 or 0.75. For each
pair of original and retargeted images, we apply the alignment
algorithm to obtain a correspondence map. A deformed image
is generated by warping the original image according to the
correspondence map. Finally, we compare the deformed image
with the retargeted image. If the alignment is perfect, the two
images should appear exactly the same. PSNR and SSIM index
are utilized to compare the similarity between the two images.
For SIFT-flow, we use the default parameter setting. In the
implementation of color-flow, we normalize the three color
channels before alignment. In this case, color-flow achieves
its best performance when the smoothness parameter α falls
within the range of [10, 30] for images whose dimensions are
smaller than 500. We set α = 20 in the experiment. The
comparison is presented in Table I.

Besides, we have set up a validation dataset for the flow
estimation. The dataset consists of about 140 original images
from RetargetMe and CUHK database, more than 800 warped
images and the ground truth warping correspondence. We
choose three retargeting methods, seam carving [12], ARAP
and ASAP [51] to retarget all the original images. Each image
is retargeted by these three methods at two retargeting ratios:
0.50 and 0.75. We also warp 8 original images by applying
content-aware rotation (CAR) [52]. Each image is rotated by
two angles: 5 degrees and 10 degrees. Some original and
warped images are shown in Fig. 9. The comparison between
SIFT-flow and color-flow on this validation dataset is shown
in Tables II. Here MAE is short for the mean absolute error
and measured in terms of pixels. We also assess the precision
of the alignment result, which is the ratio of pixels whose
estimated flow vectors equal the ground truth one. The ground
truth flow field for ASAP and ARAP are rounded to the nearest
integer because they are continuous methods and the ground
truth flow vector may have a sub-pixel precision while our
estimated vectors only have pixel-level precision.

From both tables, we notice that our alignment algorithm
outperforms SIFT-flow on both retargeted and rotated images.
The image reconstructed by color-flow looks more like the
warped images subjectively. Besides, color-flow has less reg-
istration errors and higher accuracy. SIFT-flow degrades signif-
icantly when the retargeting ratio is 0.50 or when the rotation
angle is 10 degrees. The warped images suffer from severe
distortion under both cases. Warped images contain many
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Fig. 9. Images from the validation dataset. From left to right: original image,
warped image, correspondence flow vectors. From top to bottom: (a) 0.5 times
width retargeting by SC; (b) 0.75 times height retargeting by ASAP;
(c) 5 degrees CAR. The flow field is visualized by [39].

TABLE II

VALIDATION OF THE FLOW FIELD ESTIMATION

unforeseen textures whose SIFT descriptors differ greatly from
the original patches. Therefore, the performance of SIFT flow
is very poor. Even though the amount of unforeseen textures is
reduced when the retargeting ratio is 0.75 or when the rotation
angle is 5 degrees, our method is still superior.

The basic hypothesis that the SIFT descriptors of the
matched pixels may not alter does not hold for image retar-
geting. Two matched local patches may differ significantly
in terms of SIFT descriptors because of severe distortion.
Although color information is not a good matching descriptor
for many applications, in the context of image retargeting, two
matched pixels should still share the same color. Thats why
we make use of color information to guide the flow estimation.
The second term in the flow energy functions guarantees
the continuity of the flow vectors; therefore the descriptors
reflect both local and global color similarity, leading to
higher estimation accuracy. This experiment shows that colors
align retargeted images much more accurately than SIFT
descriptors.

TABLE III

THE IMPACT OF THE SALIENCY THRESHOLD FOR SALIENT SEGMENTS

TABLE IV

THE IMPACT OF PARAMETERS FOR THE INCONSISTENCY DETECTION

C. Parameters Settings for the Overall Quality

In the inconsistency detection, we define the salient seg-
ments as the segments which occupy 60% of total saliency
values. The threshold has some impact on the number of
salient segments and hence influence the result of shape
distortion detection. In this section, we first validate the choice
of this threshold value. This threshold is sampled in the
range of [0.50, 0.70] with a step size of 0.05. We apply
our framework on the RetargetMe dataset using different
thresholds and evaluate the average τ coefficients on the
37 images. The comparison is shown in Table III. As shown in
the table, the choice of the saliency threshold has some impact
on the quality prediction performance. When the threshold is
set within [0.50, 0.70], the performance of the overall quality
is robust to the change of the saliency threshold. The number
of salient segments by using different thresholds in this range
differs by no more than two. Therefore, its impact on the shape
distortion detection is not significant.

There are three parameters for the inconsistency detection
in Eq. 13. In this subsection, we discuss how different para-
meters impact on the inconsistency detection. The experiment
is tested on the RetargetMe dataset and we compare the
quality prediction performance of the inconsistency detection
QInconsistency under different parameter settings in terms of
average Kendall τ coefficient. The performance under dif-
ferent parameters is listed in Table IV. Among the three
inconsistency detections, foreground cropping has the least τ
coefficients because its occurrence is quite low. Retargeted
images with discontinuity are sometimes favored by human
viewers, such as the ones shown in Fig. 11. Shape inconsis-
tency has the best performance among the three because it
occurs quite often in retargeted images. As listed in the table,
the performance is quite robust to the change of parameters
as long as the setting are not too extreme, for example setting
one of the three parameters within in the range of [0, 0.1].
For most parameter settings, the average τ coefficients are
greater than 0.50. The inconsistency detection is hence an
essential component that classifies the retargeted images into
different quality groups. Together with the fidelity measures,
the inconsistency detection makes a good quality predictor.
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TABLE V

COMPARISON OF DIFFERENT IMAGE RETARGETING QUALITY ASSESSMENT METHODS ON RETARGETME DATASET

Our proposed fidelity measure is the multiplication of the
pixel information fidelity m pxl and the shape fidelity mregion+
m patch . By applying this fidelity measure in the overall quality,
the mean and standard deviation of the τ coefficients for the
overall quality is (0.625, 0.231) on the RetargetMe dataset.
We also test the performance of the overall quality by modify-
ing the fidelity measure as a linear fusion of the three measures
Q′

Fidelity = wpxl ×m pxl +wregion ×mregion +wpatch ×m patch.
When the trio of parameter (wpxl, wregion , wpatch) equals
(0.2, 0.15, 0.15), the mean and standard deviation of the resul-
tant τ coefficients is (0.627, 0.221). By setting the parameters
as (0.17, 0.17, 0.17), the mean and standard deviation of the
resultant τ coefficients is (0.633, 0.201). The use of weighted
sum or multiplication in the fidelity measure does not differ
significantly on the performance. We choose multiplication
of fidelity measures mainly because the measures for region
shape fidelity and patch shape fidelity are always biased
towards the retargeting method of cropping, which happens
to achieve high retargeting quality on the RetargetMe dataset.
By multiplication of information fidelity and shape fidelity, the
measure is less biased towards cropping and apply to more
general datasets where cropped images are not so preferred.
In the following subsection, the performance of the whole
framework is tested on two benchmark datasets.

D. Performance on RetargetMe Dataset

To demonstrate the performance of our evaluation method,
we compare it with two computational image distances SIFT
flow [25] and EMD [26], and six quality measures based
on image alignment: IRQA [6], IR-SSIM [2], Liang [5],
PGDIL [7], ARS [3] and the region-based method [8]. Among
them, IRQA and IR-SSIM focus on pixel-level fidelity; PGDIL
and ARS combine pixel-level and patch-level fidelity analyses;
Liang’s method and the region-based method combine pixel-
level and region-level fidelity analyses. We also compare
the respective performance of the fidelity measures QFidelity
and the inconsistency detection QInconsistency. In Table V,
we show the mean and standard deviation of the τ coefficients
on the 37 image sets. The performance on images of different
attributes is also listed in the table. In addition, a χ2 test
against the null hypothesis that the observed coefficients are
randomly sampled from the τ distribution is examined on
each retargeting method. A small p-value indicates that we
can reject the hypothesis and the predicted ranks are not

Fig. 10. Predicted quality of the retargeted images on the ‘ArtRoom’
image set.

randomly chosen. For a fair comparison, we directly copy the
performance statistics provided by the original papers with
some missing data left blank.

From the table, we observe that most measures based on
image alignment outperform computational image distances.
By combining different levels of fidelity analysis, PGDIL [7],
ARS [3], Liang’s [5] and the region-based method [8] achieve
better performance than IRQA [6] and IR-SSIM [2]. Although
Liang’s method [5] also incorporates the region-level analysis
by measuring the similarity of area and color histogram of
salient objects, the salient regions extracted by [44] are not
always aligned after retargeting. This degrades its performance
to some extent. Our proposed fidelity measures alone have
mediocre performance because they do not detect severe
distortions in the raw measures. The retargeted images with
a small part of severe distortions are overwhelmed by well-
preserved regions, and their fidelity measures are higher than
those of the retargeted images that distribute distortions evenly.
This is the common problem for many earlier works like
IRQA [6] and IR-SSIM [2]. The improvement of our method
mainly attributes to the detection of shape distortion, fore-
ground cropping and discontinuities. The detection of severe
distortions attempts to classify retargeted images into different
quality groups and contributes to the performance of the whole
framework.

Besides, we show the predicted quality of the retargeted
images on one of the image set in Fig. 10. Among the
8 algorithms, SC and SM suffer from discontinuities as well
as shape distortions. Therefore, they have a rather low quality.
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TABLE VI

THE VIOLATION RATE OF THREE CRITERIA FOR
DIFFERENT ALGORITHMS (%)

TABLE VII

COMPARISON OF DIFFERENT IMAGE RETARGETING QUALITY
ASSESSMENT METHODS ON CUHK DATASET

Besides, SCL and SNS only suffer from shape distortion.
In contrast, the other 4 retargeted images are free of severe
distortions. Consequently they have the best quality.

We also analyze the common types of anomalies for the
8 algorithms. In Table VI, each item shows the rate of
occurrence for the corresponding anomaly among all 37 image
sets. From the table, we can notice that CR, MOP and
SV usually produce high-quality retargeted images because
they rarely generate images with deformation inconsistency.
Shift map is prone to discontinuities and ranks fourth on the
number of retargeted images with no deformation inconsis-
tency. The other four algorithms are not always robust and
prone to distortions. SC is susceptible to discontinuities while
SNS suffers from distortion of proportions on many images.
Non-homogeneous warping is constructed on a linear system,
whose robustness is poor. Scaling always produces shape
distortion. This analysis coincides with the study in [1] and
inspires that we should pay more attention to the detection of
inconsistency in formulating the retargeting quality.

E. Performance on CUHK Dataset

On CUHK dataset, we also compare with 8 other retar-
geting quality assessment frameworks. IR-SSIM is replaced
by GLS [4] because the latter one is especially suited to
this dataset by incorporating patch-level fidelity analysis. The
LCC, SROCC, RMSE and OR between the fitted objetive
scores and MOS are listed in Table VII. The authors in [5]
did not evaluate their method on the CUHK dataset. Therefore,
we test its performance by running its open-source code on
this dataset. Again, more levels of fidelity analysis promise
higher performance in quality prediction. Liang’s method [5],
which does not align the salient content in the original and

Fig. 11. Retargeted images with discontinuities which do not provoke visual
artifacts. The white regions on the retargeted images denote discontinuities.

the retargeted images, performs inferiorly to the other methods
with multiple-level fidelity analysis. Our method outperforms
the rest because it can recognize the inconsistency in a
retargeted image. The detection of deformation inconsistency
acts as a quality classifier. With more instances of deformation
inconsistency, the objective quality of retargeted images drops
quickly. For images which suffer from the same number of
inconsistency instances, the fidelity measure is capable of
choosing the one with better quality. Overall, the combination
of fidelity measures and inconsistency detection achieves great
performance on predicting the quality of image retargeting.

F. Limitations

Despite such improvement, the proposed method has its
limitations. We assume that inconsistency on different levels
degrades retargeting quality. For most images, this assumption
holds because such inconsistency leads to visual artifacts and
shape distortion. However, as shown in Fig. 11, there are a few
retargeted images with strong discontinuities favored by many
viewers. Discontinuities in these retargeted images resemble
real-world scenes and deceive the viewers. Besides, human
viewers have distinct tolerance of deformation inconsistency
on different images. The same amount of shape distortion or
discontinuities may have disparate impact on the retargeting
quality. The semantics of the images need to be studied to
solve this problem, which is currently hard to implement.

VI. CONCLUSION

Image retargeting adapts original content to arbitrary sizes
under two goals: preserve the important content and avoid
introducing annoying inconsistency. Therefore, to formulate
the retargeting quality, both the retargeting fidelity and
deformation inconsistency should be considered. In this
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paper, we propose a retargeting quality assessment framework
which could model fidelity and detect inconsistency on
different levels. To achieve this goal, we improve the
alignment algorithm between the original and retargeted
images. To obtain the final quality measure, we assess the
retargeting fidelity and detect deformation inconsistency on
three different levels: region-level segmentation, patch-level
partition and pixel-level correspondence. On both RetargetMe
and CUHK dataset, we achieved the best performance. This
inspires us to concentrate more on the detection of retargeting
inconsistency in the quality assessment of image retargeting.
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