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Abstract

We consider a decision-maker’s preferences over a class of decision trees
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nal. Given the decision maker’s contingent choices in each tree maximize her
(potentially non-consequentialist) conditional preferences, we show every (dy-
namically) consistent plan will be (ex ante) optimal with respect to her (static)
preferences over acts, if and only if those preferences exhibit_a_property in-
troduced by Grant et ali (2000) as a way to operationalize Savage’s (1954)
extralogical Sure-Thing Principle.
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1 Introduction

Denise Makim (hereafter referred to by her initials, DM) is considering whether to
invest in a wind farm or a small modular (nuclear) reactor. As she may be unsure
about the (future) returns from investing in a project, we model any uncertainty she
faces with a state space and identify each investment opportunity by an act, formally
a mapping from that state space to the space of (relevant) outcomes, in this particular
instance, the space of conceivable financial returns.

She views the result of the upcoming Presidential election as relevant for the at-
tractiveness of each project. Since she need not decide until after she has learned
the result of the election, she can make her choice of project contingent on the re-
sult. Suppose she considers only two results are possible for the election: either the
Republican Party’s nominee wins or the Democratic Party’s nominee wins.

Hence, there are four possible behaviors (courses of action) DM might take:

1. invest in the wind farm irrespective of which party’s nominee wins the presi-

dencys;

2. invest in the small modular reactor in the event the Republican wins, otherwise

invest in the wind farm;

3. invest in the small modular reactor irrespective of which party’s nominee wins

the presidency; and,

4. invest in the wind farm in the event the Republican wins, otherwise invest in

the small modular reactor.

Notice as each behavior induces a unique mapping from the state space to the space
of outcomes, that is, what we have referred to above as an act, it can be identified
with that act.

We are interested in DM’s preferences between and behavior within a class of
problems that, like the one described above, involve a choice from some fixed (finite)
menu of acts that she can condition on receipt of a signal. We refer to these problems
as (decision) trees. A special subclass of trees are those where DM’s course of action
is predetermined because the menu from which she is to make her choice, comprises a
single act.E] We refer to such trees as sole-option trees and shall identify the restriction

I More precisely, the menu conditioned on each outcome of a signal, is a singleton. This includes
the case in which DM only can choose, say, windfarm when the Democrat wins and reactor otherwise.



of her preferences to sole-option trees with her (static) preferences over acts. We refer
to this restriction of her preferences as her sole-option preferences.B

If we suppose DM anticipates correctly what her behavior in each tree will be, then
it is natural to require her preferences over trees be congruent with her preferences
over the corresponding acts her behavior generates. This idea is usually referred to as
sophisticated choice to distinguish it from myopic choice where she fails to anticipate
correctly her behavior.

However, what DM actually does within a tree need not necessarily be the same
thing as what she would choose were she able to commit to those choices ex ante.
Informally, it is natural to say DM’s behavior is ex ante optimal if her behavior within
each tree is best with respect to her sole-option preferences over the set of acts that
could have been achieved by any potential behavior in that tree. For example, if the
order in the listing above of DM’s four possible behaviors in her investment choice
problem corresponded to a strict ranking by her sole-option preferences over the four
acts they induced, then ex ante optimal behavior would require her to invest in the
wind farm irrespective of which party’s nominee wins the presidency.

To deem whether DM’s behavior is (dynamically) consistent requires us to enrich
our description of DM by defining her conditional preferences and then checking
whether her behavior is guided by those conditional preferences. To avoid requiring
her conditional preferences be consequentialist, we define them for each information
event (that is, any event on which she can condition her choice of act in some tree)
as well as for each conceivable baseline act. We interpret this relation as saying when
DM would prefer one act to another act knowing the conditioning event had obtained
and that the baseline act would have determined the outcome for all the states that
lay outside this conditioning event.

Equipped with this collection of conditional preference relations, we say DM’s
behavior within a specific tree is (dynamically) consistent if for each signal realization,
her behavior is guided by the conditional preference relational that corresponds to
her knowing the event in which that signal realization obtains has occurred and with
the baseline act set equal to the act her behavior in the tree induces. And, if this is
the case for all trees, then we refer to DM as a consistent planner.

One (essentially, tautological) way to ensure DM’s ex ante optimal behavior is
(dynamically) consistent is to link the specification of her conditional preferences to

2 Implicitly this rules out any framing effects of the kind discussed in Kahneman and Tversky
(1981)). Furthermore, it also precludes any intrinsic preference for information as introduced and
analyzed in the context of choice under risk in Grant et all (1998).



her sole-option preferences so that by construction she wants to follow through with
a plan of action that was judged (ex ante) optimal by her sole-option preferences.
In the sequel we refer to this as resolute conditioning. This notion is closely related
to the dynamic consistency properties considered in Johnsen and Donaldson ([1985),
Machina ([1989), McClennen (1990), Karni and Schmeidley (1991) and Halevy (2004).

In this paper, however, we consider under what circumstances does the (partial)
converse hold. That is, we address the following question?

Given DM engages in resolute conditioning, when can we conclude if she

is a consistent planner that her behavior must be ex ante optimal?

The answer turns out to be when (and only when) her sole-option preferences
satisfy (weak) decomposability, a property introduced by Grant et al, (2000) as a way
to operationalize Savage’s (1954) extralogical Sure-Thing Principle (STP). As Grant
et al. note, decomposability is implied by, but does not imply, Savage’s postulate
P2, that he proposed as a way to operationalize the STP. Indeed, we shall see that
if DM’s sole-option preferences strictly rank the four acts, corresponding to the four
possible behaviors in her investment choice problem, in the same order in which we
listed them above, then even though that entails a violation of P2, that ranking is
not inconsistent with her sole-option preferences satisfying decomposability.

In the next section we formally introduce our framework of decision trees as well
as the characterization of a decision-maker in terms of her preferences across trees
and her behavior within trees. This characterization of the DM is enriched in section
E by the specification of her conditional preferences and the notion of a consistent
plan in a tree corresponding to behavior within that tree that is guided by these con-
ditional preferences. This is followed by the formal definition of resolute conditioning
that links the DM’s conditional preferences to her sole-option preferences in such a
way as to ensure any ex optimal behavior is consistent. Our main result (Theorem m)
establishes that sole-option preferences satisfying decomposability is both necessary
and sufficient to guarantee the converse, namely, the behavior of a consistent planner
must be ex ante optimal. Focusing our attention on DMs whose sole-option prefer-
ences satisfy decomposability, Section @ demonstrates the computational advantages
this property affords us in generating behavior that is ex ante optimal.

For the last part of the paper we consider sole-option preferences that allow for
a separation between a decision-maker’s beliefs (over the likelihood of events) and
evaluations (of random outcomes). We begin in section H by specifying a family of
sole-option preferences that admit a representation that can be seen as an exten-



sion of Machina and Schmeidler’s (1992) class of probabilistically sophisticated non-
expected utility maximizers to a setting that allows for ambiguity in the sense that
the uncertainty the DM associates with some events cannot be quantified by a precise
probability. We refer to members of this family as Generalized Expected Uncertain
Utility Maximizers as the representation, like the Expected Uncertain Utility model
of Gul and Pesendorfer (2014) involves a probability defined on a rich set of events
the DM deems unambiguous. Adopting the nomenclature of Gul and Pesendorfer,
we refer to this probability as the DM’s prior. We show this prior maps any act to a
belief function (a generalization of a probability measure) defined over outcome-sets.
So, analogous to Machina and Schmeidler (1992), the second component of the repre-
sentation is a (mixture) continuous and (outcome-set) monotonic function defined on
belief functions. The final section provides examples of GEUU maximizers that have
appeared in the literature and our main result is that a GEUU maximizer satisfies
decomposability if and only if the function over belief functions in its representation
satisfies the betweenness property of Chew (1983) and Dekel (11986).

2 Decision Trees, Preferences and Behavior

We adopt Machina and Schmeidler’s (1992) rendition of Savage’s (1954) setting of
uncertainty. Let {2 be the state space. For any pair of events D, E C ), D\E denotes
the set of elements that are in D but not in £. Hence Q\ E' denotes the complement
of E. We refer to some events as information events and denote by Z the set of
information events (with generic elements R, é, R, et cetera). We assume 7 is a
mosaic, a collection of events in which (i) Q € Z; (i7) if R € Z then Q\ R € Z; and,
(7ii) if Ry,..., R, are all in Z and form a partition of €, then for all i, 57 € {1,...,n},
RiUR; e1h

An uncertain prospect or act is a mapping a in which for each state w in €2, a(w)
is the outcome from some set X that is associated with the act when the state w is
realized. Every act is simple in the sense that its image is a finite subset of X. Let A
denote the set of acts. For any pair of acts a and ¢’ in A and any information event
R € Z, we write aga’ for the act that agrees with a on R and with o’ on Q\R.

Our focus is on decision problems or trees like the one described in the introduc-

tion above, in which the DM selects an act from a (fixed) menu after learning the

3 See Kopylov (2007) for further discussion and elaboration of the role mosaics play in character-
izing the set of events that lend themselves to precise quantification by a probability.



realization of a signal. More formally, a signal is described by an Z-adapted (onto)
function o: Q@ — 5 (|S] < oo) with the interpretation that the realization of the
signal is s when the (information) event o~'(s) (in Z) obtains. A menu M C A (with
|M| < o0) corresponds to the set of acts from which the DM chooses after receipt of
the signal. Denote by 7' (with generic element 7 = ((S, o) , M)) the collection of all
such trees. Let 1 be a complete and transitive preference relation over such trees.
We assume this preference relation guides a choice, made ex ante by the DM, among
trees.

For example, let 7 = <(§ ,8) ,J\//j > denote the decision tree described in the
introduction. Recall the DM (in this case, Denise Makim) faced a choice between
investing in a wind farm or a small modular reactor that she could make contingent
on the result of the next presidential election. Let wf (respectively, smr) denote
the act corresponding to her investing in the wind farm (respectively, small mod-
ular reactor), thus M = {wf,smr}. Let e (respectively, d) correspond to Denise
being informed that the Republican (respectively, Democrat) candidate has won the
presidency. Hence & is the mapping from states to S = {e,d} in which -(e) (re-
spectively, 71(d)) is the event the Republican (respectively, Democrat) candidate
wins the election.

Within a given tree the DM chooses an act at each decision node following each
possible signal realization. Let b be a behavior function that, for each tree 7 =
((S,0) ,M) in T assigns an act from M to each signal realization s in S and let
b" be the corresponding behavior in the specific tree 7 with b € M denoting the
corresponding act selected in that tree after she sees the specific signal realization s.
Denote by B the set of all possible behaviors. With a slight abuse of our notation,
we shall identify the behavior b” in a specific tree 7 with an act in A, by setting
b7 (w) := b7 (w) whenever w is in 71 (s). Finally, let B(7) (C A) denote the set of acts
that can be generated by some behavior in the tree 7. More formally, we set

B(r):= {a € A: for each s € S, and every pair of states w,w’ € 7' (s),

a(w) =a(w') = a(w) for some a € M.}

Returning to the tree 7 described in the introduciton, b” = (b7 ,b7) € {wf, smr} x

4Recall DM views the two events 6 !(e) and 7 !(d) as not only mutually exclusive but also
exhaustive.



{wf ,smr} and so can be identified with the act it induces from the set
B(T) ={wf , wf,-1@smr,smr,smrowf}.

A special class of trees are sole-option trees in which the menu contains a single
act. Since there is only one possible behavior within each sole-option tree, we
identify the restriction of 7 to sole-option trees (which we denote by ) with the
DM’s (static) preferences over acts.

In the introduction we argued, a DM who knows her behavior should only be
considered sophisticated, if her preferences over trees reflects her sole-option prefer-
ences over the corresponding acts her behavior generates in each tree. The following

formalizes this idea.

Definition 1 A DM is sophisticated if for all pairs of trees T and 7" in T':
T 7 if and only if b7 2 b7

On the other hand, for her behavior to be considered ex ante optimal, it should
be the case that the act her behavior generates within each tree is best with respect
to her sole-option preferences over the set of acts that could have been achieved by
any potential behavior in that tree. The following formalizes this idea.

Definition 2 A DM’s behavior b is ex ante optimal if for each tree 7 in T, b™ 7 a,
for all acts a € B(T).

Recall in our investment choice example from the introduction, we observed that
if

wf = smro-1wf = smr = wfo-1smr,

then ex ante optimal behavior entails bj = bz =wf (or equivalently, b =wf).

Combining these ideas, we may view a DM whose behavior is both sophisticated
and ex ante optimal, as somebody who, when given a choice between two decision
trees, expresses a preference for one over the other if and only if there exists an
achievable act in the former that dominates (according to her sole-option preferences)
all the acts that are achievable in the latter. That is, 7 ZZy 7’ if and only if there
exists an (achievable) act a in B(7) for which a = o, for all acts o’ in B(7').



3 Consistent Plans, Resolute Choice and The Sure-
Thing Principle

To analyze the (dynamic) consistency of the DM’s behavior, we enrich our description
of the DM by defining, for each information event R € Z and each act a in A, her
conditional preference relation ~%. That is, we shall allow for the conditioning to
depend not only on the conditioning event R but (potentially) also on a “base-line”
act a. The DM’s behavior within a specific tree 7 will be deemed a (dynamically)
consistent plan if the act selected for each signal realization is optimal with respect
to her conditional preferences with o7!(s) as the conditioning event and the act
generated by b™ as the baseline act. If this is the case for all trees then we shall refer
to such a DM as a consistent planner.a

Definition 3 (Consistent Planning) The DM is a consistent planner if for all
trees T = ((S,0) ,M) in T, b" is a consistent plan, that is,

by ,éff_l(s) a forallae M and all s € S,
So, for example, if the DM is a consistent planner and her behavior b7 in the invest-

ment choice problem 7 described above, generates the act wf, then this entails

wf i:;"fl(e) smr and w f i”:fl(d) smr .

Machina (1989), McClennen (1990), and Halevy (2004) (along with others) have
argued a natural way to define conditional preferences is to link them to the uncon-
ditional preferences as follows.

Axiom 1 (Resolute Conditioning) The DM’s conditional preferences are resolute
with respect to a baseline act if for each information event R € T and each act a in
A d Z% d" <= dra Z dfa, for every pair of acts o’ ,a" € A.

If the DM engages in resolute conditioning then we see that by construction she
will want to follow through with any plan that was judged ex ante optimal by her
sole-option preferences.

Lemma 1 Suppose sz’om@ holds. If the DM’s behavior is ex ante optimal then she

is a consistent planner.

5 Such behavior is consistent in the sense of Siniscalchi (2011) and Strotz (1955).



Proof. Fix a DM characterized by <iT,b, (i‘}%)fé> Suppose b is ex ante
optimal. Then for each tree 7 = ((S,0),M) € T, b™ Z a for every a € B(1).
So in particular, for each s € S, b7 = a,-1(5)b” for every a € M. But as Axiom
holds, this means that b] ,%JZT,I(S) a for every a € M. That is, b” is a consistent plan. =

When does the (partial) converse hold? That is, given Axiom El holds, when is the
behavior of a consistent planner, necessarily ex ante optimal? The answer appears
to be when the DM satisfies Savage’s Sure-Thing Principle which can be (informally)

expressed as follows:

If the DM weakly prefers a to o', either knowing that the event R obtains,
or knowing that the complement of the event R obtains, then she weakly

prefers a to a' even when not knowing whether R has obtained or not.

Since objects like “a if the event R obtains” are at best subacts, we require a
means to extend these subacts to the entire state space. Savage does so in a way
that leads to a consequentialist conditional preference relation 2~g derived from - by
setting a 2Zg o' if and only if ara” 7 alza” for every act a” B Hence in order for these
conditional preferences to be well-defined and well-behaved, he requires ~~ satisfy his
postulate P2.

Axiom 2 (P2) For any pair of acts a and o’ in A and any information event R € Z:
arz adya = agrad = ad.

To see how this “operationalizes” his sure-thing principle, first notice that the two
conditional preference statements a Zg @’ and a Zog o require by definition (taking
a" = a) that both a 7= a’za and a 7 aga’, hold. Moreover, if 7~ satisfies Axiom E (P2)
then a 77 aza implies aga’ 77 o’. Hence from the transitivity of 77 we have a 77 a’, as
required.

However, as Lemma EI demonstrates, consistent planning is perfectly compatible
with conditional preferences that are not consequentialist. And indeed, recalling the
DM’s ranking of the acts in B(7T), namely,

wf = smro-1wf = smr = wfo-1smr,

6 The relation = is consequentialist in the sense that the preference between any pair of acts a
and a’ conditional on R obtaining only depends on those outcomes that can arise for a and o’ in
states that lie in the event R (or equivalently, is not affected by what outcomes might have arisen
for either a or o’ in states that are not in R).



we see this ranking violates P2, since smr 2 wf,-1()smr and yet we do not have
smry—wf Z wf, as P2 requires.

So instead, we propose interpreting the statement that a would be weakly preferred
to @’ if R were known to obtain, along the lines of Axiom EI (Resolute Conditioning).
That is, we set a 5% o' if and only if a 7 azra.l With our alternative interpretation,
the consistency condition we propose for 77 is the (weak) decomposability property of
Grant et al. (2000).E

Axiom 3 (Decomposability) For any pair of acts a and ' in A and any informa-
tion event R € T
a7 dpa and a 7 agd = azd .

To see how our alternative interpretation can also “operationalize” the sure-thing
principle, notice that the two conditional preference statements a 2% a’ and a ?\‘J?Z\R
a’ entail (by definition) the two unconditional preference statements a 7 a’za and
a - ara’. By applying Axiom B (Decomposability) we obtain a - d’, as required.

If a DM’s conditional preferences are resolute with respect to a baseline act and
she is a consistent planner then it turns out that the property of decomposability
is both necessary and sufficient for any consistent plan to be ex ante optimal. The
result is comparable to Halevy| (2004, Proposition 1), which characterizes the absence

of speculative trade in terms of decomposability.

Theorem 1 Consider a DM characterized by <f>\jT b, (?\j“R)';fé> Suppose Am’oma
(Resolute Conditioning) holds. Then the following are equivalent.

1. If the DM is a consistent planner then her behavior is ex ante optimal.

2. The DM'’s sole-option preferences satisfy Axiom B (Decomposability).

Proof

1. implies 2.
We establish this holds by proving the contrapositive, namely, if Axiom B does not
hold, then we can find a consistent plan that is not ex ante optimal. More specifically,

for Axiom B not to hold, means there exists an information event R in Z and two

" Notice that instead of requiring aga” 7 a’za” hold for every act a”, we need it hold only for
a’ = a.

8 Grant et al| (R000) state decomposability in terms of strict preferences but describe equivalence
with several non-strict criteria in Lemma 1.



acts a and @’ in A, for which a 2 aza and a 77 ara’, however a' > a. So consider the
tree 7 with S = {1,2}, 6(w) =1 ifw € R and 5(w) =2 if w ¢ R, and M= {a,ad'}.
A behavior b in which b7 is ex ante optimal for all 7 # 7 and for which b] = b7 = a
is a consistent plan. However, the behavior b for which b™ = b7 for all 7 # 7 and

b] = b} = d is ex ante superior.

2. implies 1.

To establish the ex ante optimality of any behavior b in which each 07 is a con-
sistent plan, we first establish the following property for any partition adapted to
I

If there is no strict incentive to move from one act toward another act on
any single element of that partition, then there is no strict incentive to

move from the former to the latter globally.
The following lemma expresses this more formally.

Lemma 2 Fiz a finite partition of events of the state space {Ry,...,R,}, with
R, eZ foralli="1,... ,n. Ifaaga foralli=1,... n then a - a.

Proof. We proceed by induction. Set a* := ag,y._ g, a, so that @' = Gg,a and
@" = a. As an induction hypothesis, suppose that a = @*. By assumption this
hypothesis holds for k = 1. For any k € {1,... ,n—1} we have a a’;ﬁla = UR,,,0
(by hypothesis) and a 7 ag,,,a"™ = @" (by the induction hypothesis). Hence by

applying Axiom J we have a = a**!

, as required. m

Since by definition, for each tree 7 = ((S,0) , M) in T, there is no strict incentive
to move away from the act prescribed by b for each event o~'(s) in the partition
{o071(s) }sres, it follows from lemma @ there can be no strict incentive to move away
globally to any act that can be generated by any other possible behavior, that is, any
act in B (7). Hence b is ex ante optimal.

4 Computing ex ante optimal behavior

In many areas of economics, we place conditions on problems to make it easier to
compute a solution. For example, we often assume some kind of convexity condition
in maximization problems to ensure that local necessary conditions for optimality are

in fact globally sufficient. Axiom 3 (decomposability) may also be thought of as a

10



condition under which it is enough to check “local” necessity conditions to find an
ex ante optimal plan for each tree. To see how, fix a tree 7 = ((S,0) , M) in which
M ={m! -~ mF}and S = {st, - -, s"}. Consider the following algorithm, which is

a version of coordinate ascent:
(1) Set a® := m! and a' := m!
(2) Set j:=0

(3) Set j:=j+landi:=0

(4) Seti:=i+1
(5) If mf,_l(sj)al >~ a' then set a' := me_l(Sj)a1
(6) If i < k then go to (4).

(7) If 7 < n then go to (3).
(8) Stop if a® = a', otherwise set a° := a' and go to (2)

Since the problem is finite, we know that this algorithm will stop. We want to ensure
that where-ever it stops is an optimum. A necessary condition for a particular plan
a to be optimal is that there is no other plan in B(7) that differs from a on only an
event o~ !(s) for some s in S and which is better. This is what the algorithm checks:
b" 7 mg-1(5b” for all m in M and all s in S. In a sense this is a local condition:
it considers deviations from the candidate optimal act at only one ‘place’ at a time.
Decomposability is equivalent to requiring that this local necessary condition is always
globally sufficient. The byproduct of our result is that we provide a necessary and
sufficient condition for the convergence of coordinate ascent algorithm to a global
optimum.

The computational convenience of Axiom E also shows in testing whether a given
candidate plan is optimal. A crude sufficiency check would involve checking the
candidate against all |B(7)| — 1 (= |M|l®l — 1) other feasible plans. Given decom-
posability, however, we need only check the local necessary condition for optimality.
This involves only (|M]| — 1) x |S| comparisons.

9 Coordinate ascent (decent) algorithm to our attention. is a widely used algorithm in operations
research and computer science, see for example Wright! (2015) and Nesterov (2012) for discussions.
We thank John Stachurski for bringing this to our attention.
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5 Generalized Expected Uncertain Utility

Maximization

Up to this point, the assumptions we have made about the DM’s preferences over
trees, and in particular her sole-option preferences, have not implied there exists any
way to separate the DM’s beliefs about the likelihood of (information) events obtain-
ing and her evaluations of (random) outcomes. In this section, we introduce a class
of sole-option preferences that affords such a separation. They can be seen to be an
extension of Machina and Schmeidler’s (1992) class of probabilistically sophisticated
non-expected utility maximizers to a setting that allows for ambiguity in the sense
that the uncertainty the DM associates with some events cannot be quantified by
a precise probability. In the following section we investigate what additionally is
implied if the sole-option preferences satisfy Axiom B (decomposability).

In the tradition of the voluminous literature initiated by Ellsberg (1961), our DM
perceives there to be ambiguity arising as a result of her possessing only incomplete
information about the underlying stochastic process that determines the resolution
of the uncertainty she faces. In particular, this means she is not comfortable quan-
tifying with a precise probability the uncertainty she associates with each and every
event. However, we assume she is able to do so for the class of information events.
In common with Gul and Pesendorfer’s (2014) family of expected uncertain utility
(EUU) maximizers, we assume her information is “rich” and “nice” enough to allow
us to represent her beliefs about the likelihood of information events obtaining with
a probability that we refer to as the DM’s prior.

Definition 4 (Prior) A prior u is a countably-additive and convex-ranged probability
defined on T which we now take to be a o-algebra of (risky) events.@ For each
information event R € T, with ,u(}A%) > 0, let pp denote the updated probability
conditional on R obtaining. That is,

pr(R) = MR—Q;{) forallReT.

(R

Even though the uncertainty associated with events that lie outside of Z cannot be

10 Countable-additivity requires the probability of the union of a countable collection of disjoint
elements from Z equals the infinite sum of the probabilities of these events. For u to be convex-
ranged requires for any event R in Z and any r in (0,1) there exists a subset R’ C R that is in Z
and for which u(R') = ru(R).

12



precisely quantified by pu, nevertheless p can provide a lower estimate of the likelihood
of such events obtaining and thus can be used to map each act a in A, to a (potentially
non-additive) measure over sets of outcomes, which we denote by 3 and define by
setting for each Y C X,

Ba(Y):=  sup  u(R)

RET,RCa~1(Y)

Intuitively, 3;(Y) may be interpreted as a lower bound the prior u places on the
likelihood the act a will lead to an outcome in the set Y obtaining. For any act a
that is measurable with respect to p, that is, a™(Y) € Z for all Y C X, we have
Bu(Y) = p(a=(Y)) and so in this case 3%(-) is a probability measure. More generally,
for any arbitrary act a, 8;(-) is a (simple) belief function (that is, a special type of
non-additive measure with finite support).

Definition 5 (Belief Function) A simple belief function 3: 2% — [0,1] is a totally
monotone normalized capacity with finite support. That is, 5(0) =0, 5(Y) =1, for
some Y C X with |Y| < oo, 5(Z) < B(Z') whenever Z C Z', and for any k > 2, and
any collection of sets of outcomes {Y1,...,Yx} each Y, C X,

g (LkJ Yj> =D DR G Vi (ﬂm)

Jj=1 IC{1,...k},I#0 el
Let Bel denote the set of belief functions (with finite support).@

In the sequel it will at times be useful to identify a belief function § with its associated

mass function m.

Definition 6 (Mass Function) Fiz a simple belief function 5 € Bel with support
Y C X. The mass function m associated with 3 can be inductively defined on all the
subsets of Y by setting:

(i) m(0) := 0;
(ii) m({z}) := B({z}) for each x € Y; and,

(iii) m(2) == B(Z) = > e, m(Z"), for each Z C Y, |Z| > 1.

1 That Bﬁ() satisfies all the properties required for a belief function is an immediate corollary of
Proposition 3.1 in Fagin and Halpern (1991)).
12 The mass function is also known as the Mobius inverse.

13



Notice, since by construction we have 5(Z) = >, c,m(Z’) for each Z C Y, the
association between belief and mass functions is indeed one-to-one.

We shall denote by m{, the mass function associated with the belief function
to which the prior p has mapped the act a. From its construction, it is natural to
interpret mZ(Y) as the weight of evidence the prior p places on the act a leading to
an outcome in the set Y occurring that has not already been assigned to some proper
subset of V.1

A consequence of the set Z being closed under intersection is that the following
Martingale property holds for the belief functions and hence for their associated mass

functions.

Proposition 2 Fiz a prior p. For any act a € A and any information event R € T:

B = n(R)BS, + p(Q\R)BL, 5 and,

my, = p(R)my  + u(Q\R)mZQ\R :

Extending Machina and Schmeidler’s (1992) concept of probabilistic sophisticated
preferences to our setting in which not all events are deemed measurable by the DM,
we require that her sole-option preferences admit a representation that along with her
prior can be characterized by a suitably monotonic and continuous real-valued func-
tion W defined over belief functions. The continuity property we impose is mixture
continuity, the analogue for belief functions of the one that Machina and Schmei-
dler impose on the corresponding function in their representation that is defined on

probability distributions.

Definition 7 (Mixture Continuity) A function W: Bel — R

is mixture continuous if for any three belief functions B, B’ and B" in A(X), the sets

{a € 0,1]: W(af + (1 —a)f") 2 W(B)} and {a € [0,1]: W(af + (1 — a)8") < W(F')}
are closed.

The monotonicity property we impose relies on the following notion of outcome-set

dominance.
Definition 8 (Outcome-Set Dominance) We say an outcome setY = {y1,... ,yx},
with y; 7= yir1 foralli=1,... k—1, dominates outcome set Z = {zy,... ,z,}, with

'3 Hence, for any act a that is measurable with respect to u, it follows that m(Y") = 0 for every
Y Ca(Q) with |Y| > 1.
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2; 75 Zip1 forall j = 1,... ,n—1, whenever either : k < n and y; > z for each

i=1,...,k;or, k>n and yj;gn = 2 foreach j=1,... n.

To formally define our monotonicity property, we introduce some additional no-
tation. For each non-empty ¥ C X, with |Y] < oo, let 3¥ denote the (degenerate)
belief function that assigns 1 to any outcome set that is a superset of Y (and hence,
assigns zero to any outcome set Z for which Y\Z # ). That is, 8Y(Z) :==1if Z DY
and Y (Z) := 0 otherwise.

Definition 9 (Outcome-Set Monotonicity) A function W: Bel — R is
outcome-set monotonic if for any belief function B € B, and any pair of finite outcome-

sets Y and Z:'Y dominates Z implies
W(aB¥ + (1 —a)B) > W(as?+ (1 —a)p), forallac (0,1].

To see the connection between our outcome-set monotonicity and Machina and
Schmeidler’s (1992) property of “monotonicity with respect to stochastic dominance”
we define /W, a function that maps mass functions to the reals, by setting /W(m) =
W (3), where (3 is the belief function associated with the mass function m. For each
non-empty Y C X, with |Y| < oo, let m* denote the (degenerate) mass function
that assigns 1 to Y (and hence, assigns zero to any outcome set Z not equal to
Y). Notice that the degenerate belief function 8Y is associated with the degenerate
mass function mY. With this identification in mind, it is straightforward to establish
that W satisfies outcome-set monotonicity if and only if W satisfies the following
“degenerate independence” property: for any mass function m and any pair of finite
subsets of X, Y and Z: Y dominates Z implies /W(amy + (1 —a)m) > /W(amz +
(1—a)m), forall € (0,1] .

To interpret this, consider a pair of acts that are mapped by the prior p to the
respective belief functions afY + (1 — a)8 and af? + (1 — «)B. If m is the mass
function associated with the belief function 5, then the mass functions associated with
these two acts are am” + (1 — a)m and am? + (1 — a)m, respectively. Notice these
two mass functions are identical except one has a weight o assigned to the outcome
set Y while the other has that weight assigned to the outcome set Z. If Y dominates
Z, then the first mass function can be seen to ‘(first-order) stochastically dominate’
the second. Indeed if the two acts in question were both measurable with respect
to p then m would be a mass function that assigns positive weight only to some
finite collection of singleton sets and we would have Y = {y} and Z = {z} for some
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pair of outcomes for which y > 2. Furthermore, by a standard induction argument
it follows the restriction of W to probability functions is monotonic with respect to
stochastic dominance just as it is for Machina and Schmeidler’s (1992) probabistically
sophisticated non-expected utility maximizer.

We now have assembled all the elements required for a formal definition of the
class of preferences that admit a representation characterized by a pair (u, W), where
w1 is a prior and W is a mixture-continuous and outcome-set monotonic real-valued

function (defined on belief functions).

Definition 10 (Generalized Expected Uncertain Utility Maximizers)
The sole-option preferences 7~ belong to the class of generalized expected uncertain
utility maximizers if there exists a prior pu and a mizture continuous and outcome-set

monotonic real-valued function W | such that for every pair of acts a and a' in A:
az a if and only if W(B%) > W(BY).

Returning to our example from the introduction of DM’s investment problem
as described by the decision tree 7, suppose DM’s prior assigns a probability of
0.11 to the Republican winning the election (that is, u(o~*(e)) = 0.11) and hence
assigns pu(o~1(d)) = 0.89 to the Democrat winning. In addition, suppose investing
in the wind farm yields DM a profit of 1 (billion dollars) irrespective of who wins
the election. Alternatively, by investing in the small modular reactor DM will face,
if the Republican wins, a gamble that yields a profit of either 5 with probability
10/11 or 0 with probability 1/11. Should the Democrat win, however, all DM can
ascertain is that her profit from investing in the small modular reactor will be either
5 or 0. That is, given her perception of the nature of the uncertainty she faces under
these circumstances, she is incapable of providing any more precise bounds on what
the probability of either of these outcomes will be. The following table specifies the
unconditional and conditional belief functions corresponding to DM’s four possible
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behaviors in 7.

Behavior Belief function
(b7, b7) ifs=e ifs=d unconditional
(wf,wf) By Bl Bl
(wf,smr) il (105} 1005{1} o 89 5{0 5}
(smr,wf) 1_115{0} + %5{5} s 1(1)_05{0} + %5{1} + 1_05{5}
(smr, smr) ﬁﬁ{O} + %5{5} (105} Wloﬁ{o} T %5{075} + %5{5}

Recall, since her sole-option preferences yield the ranking
wf = smro-1wf = smr = wfo-1smr,

it follows that

89 1
w (s > w o} Wy )
(5) > (1005 00”7 T 10”

89 1 11 89
w1 gt 050 2 g6H) < {1} 0s1) 1
(1005 00”10 100”7 100" (1)

One can readily verify from these inequalities and the corresponding definitions of
the conditional preferences obtained by applying resolute conditioning, that the ex
ante optimal behavior (wf ,wf) is the only consistent plan of action. However, since
the first inequality implies wf =/ smr while the third entails smr =™ wf we also
see that the conditional preferences are not consequentialist. Indeed from @) we see

that the first inequality may be reexpressed as

89 11 (/1 89
m ) - w (2L {0} {5} n
(1005 T 100" ) ~ (100 (115 1 5 ) 100" ) ’

while the third can be reexpressed as

11 89 89
W o L L gir) 3 gp0m o B9 g5
(100 ( & 1ﬁ 100" 1ooﬁ 100"

Hence we can “explain” DM'’s sole-option preference ranking over the four possible
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courses of action in the tree 7 as a manifestation of the certainty effect that has been
offered as one explanation for the modal choice pattern seen in the Allais common-

consequence paradox.

6 GEUU Maximization and Decomposability

Given a DM’s sole-option preferences belongs to the class of GEUU maximizers and
she engages in resolute conditioning (that is, Axiom m holds), for each information
event R € 7 and each baseline act a € A, we see that a’ 2% " if and only if

W(u(R)B, + 1 (Q\R) 85, ) = W(n(R)BL, + 1 (Q\R) By, ) - (2)

Furthermore, from Theorem m we know for every possible behavior of the DM that
constitutes a consistent plan to be ex ante optimal requires her sole-option preferences
satisfy Axiom H This means for any four belief functions 3, ', 8, and ' in Bel and

any A in (0,1), we require

W()\5+(1—/\)5/)>max{<)\//6\+(1_)\)ﬁ/> >W<)\5+(1—)\)3’>}
=>W()\5—l—(1—)\)ﬁ’)>W<)\§+(1_)\)§,>

A property of W that is sufficient (but, we hasten to add, not necessary) to ensure

this property holds, is linear additivity, namely,
WAB+ (1 =A)B) =AW () + (1 -N)W (). (3)

For the following three subclasses of GEUU maximizers, the function W associated
with the GEUU representation of their sole-option preferences is linearly additive.

Expected Uncertain Utility Maximization

In addition to a prior, the representation of Gul and Pesendorfer’s (2014) EUU max-
imizer is characterized by an interval utility that corresponds to the DM’s evaluation
of a set of outcomes. It comprises a Bernoulli utility v: X — R and a normalized
(interval) aggregator V: {(u,v') € v(X) x v(X): u < v'} — R that is continuous
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and monotonic in the sense that V(u,u') > V(u,u’) whenever v > u and v’ > ' and
satisfies V(u,u) = u for all w € V(X). And W takes the form

W) = 3V (mipete) maxo(s) ) m(y), ()

z€eY yey
YCX

Hurwicz Expected Utility Maximization

A special case of EUU Maximization explored in detail in Gul and Pesendorfer (2015)
is one in which the interval utility is additively separable. That is, V(u,u') = au +

(1 — a)u’ for some «v in [0, 1], hence

W(p) = Z (a minov(z) + (1 — «) maxv(y)> m(Y), (5)

zeY yey
YCX

Quasi-Arithmetic Mean Uncertain Utility Maximization

Eichberger and Pasichnichenkg (2021) introduce and axiomatize a representation over
belief functions in which the evaluation of a set of outcomes is performed by taking
a quasi-arithmetic mean of the Bernoulli utilities of the outcomes in that set. So, in
addition to a Bernoulli utility v: X — R it requires a second-order utility ¢: v(X) —
R that is continuous and monotonic, in the sense that ¢(w) > ¢(w') whenever w > w’,

such that
W)= ¢! (% Zcb(v(x))) m(Y). (6)

~

Since we established in section B our DM’s ranking of the four acts in B(7) violated
P2, it follows that her sole-option preferences cannot come from any member of the
class of GEUU maximizers for which W is linearly additive. However, the extension
of the well-known betweenness property of Chew (1983) and Dekel (1986) to belief
functions is both a necessary and sufficient for sole-option preferences that admit a
GEUU representation to satisfy Axiom E (decomposability).

Definition 11 (Betweenness) The function W: Bel — R exhibits the betweenness
property, if for all pairs of belief functions B and B' in Bel, W(B) > W(f') =
W(B) = W (A8 + (1= NB) > W(F), for all X in (0, 1).

Proposition 3 Suppose a DM’s sole-option preferences =~ admit a GEUU represen-
tation characterized by a prior p and mixture-continuous function W: Bel — R.
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Then the following are equivalent.
1. 7 satisfies Axiom B
2. W exhibits the betweenness property.

This proposition follows as a corollary to a representation result from a companion
paper in which we established that Axiom B holds if and only if the (sole-option)
preferences belong to the following subclass of GEUU maximizers.

Implicit Linear Uncertain Utility Maximization

In addition to a prior, an ILUU representation of the sole-option preferences is charac-
terized by a balanced outcome-set utility that represents the DM’s evaluation of a set
of outcomes relative to a balancing utility. It comprises a Bernoulli utility v: X — R
and a normalized (balanced) utility

U: {(Y,u) Y CX,|Y|<oo,u€ in)f(v(x),SUPU(y)}} - R,
HAS

yeX
that satisfies the following four properties:

(1) Balance Point Normalization: for any x € X: U({z},v(z)) =0.

(1) Balance Point Monotonicity: U is decreasing and continuous in its second ar-

gument.

(i) Outcome-Set Monotonicity: for any w in the interval (infyex v(z) ,sup,cx v(y)),
U(Y ,u)>U(Z,u), whenever Y dominates Z .

(iv) Outcome-Set Continuity: for any finite Y C X and any sequence of outcome-
sets Z" C X with |Z"| = |Y] for all n, if Z™ converges pointwise to Y, then
U(Z",u) = U(Y,u) for all u.

For any belief function 5 € Bel with finite support Y C X, W (/) is implicitly defined
as the (unique) solution to

Y U(Z.W(B)m(Z)=0, (7)

ZCY

14 See Theorem 1 in Grant et al| (2022).
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The explicit specifications of W' in expressions (A) — (B) are all special cases of
(@) in which U(Y ,v) equals V(YY) — v, for some outcome-set monotonic function
V. This in turn implies W is linearly additive. The next example can be viewed
as a parsimonious parameterization that cannot be expressed explicitly as a linearly
additive function.

Disappointment Averse Hurwicz Expected Utility Maximization

Consider a special case of ILUU in which the balanced outcome-set utility is charac-
terized by a Bernoulli utility v: X — R and two parameters o € [0,1] and v > —1
and takes the form

U (Y, u)

i 1-— — if i 11— <
&Erélgv(y)jt( Oz)rglea;w(z) u 10zrylé1)r/w(y)+( &)ria%;w(z) u

amingcy v(y)+(1—a) max ey v(z)—u

T 1fa2é1$v(y)+(1—a)ri%3<v(z)>u
(8)

The restriction of the sole-option preferences to acts that are measurable with respect
to Z may be seen as conforming to Gul’s (1991) risk preference model of disappoint-
ment aversion. Gul highlights a key feature of this model is the representation is
only one parameter richer than expected utility. The analogous parameter here is
v (> —1). Indeed we see from expression (8), Hurzwicz Expected Utility corresponds
to the case in which v = 0.

The property of disappointment aversion that Gul shows is both necessary and
sufficient to generate Allais style choice patterns requires v > 0.@ It is precisely
this property that can accommodate the ranking by the DM’s sole-option preferences
of the acts in B(T). To see this, without loss of generality, we set v(0) := 0 and
v(5) := 1. Furthermore, in order to make the calculations more straightforward let us
also assume our DAHEU maximizing DM is maximally ambiguity averse, and so we
set o := 1. Our task is to find what values of v(1) and v > 0 allow the inequalities in
() to hold. The table below lists the implicit characterization of the values of W for
each of the four possible behaviors of DM in the tree 7. For a fixed v > 0, it readily

15'We refer to a DM with v < 0 as elation seeking.

21



follows from the four equations in this table that the inequalities in (O) hold if v(1)

10 89v+100
1147 ’ 99y+110 /°

lies in the open interval (

Characterizing W (-) for the four behaviors available to DM in the tree B(T).

Behavior

(bz, bZ) %4 <5§b§’bz) ) implicitly defined as solution to:
(wf,wf) v (1) =W (7Y =0
(wf, smr) <”(1)W§+‘(: "o+ (0 W (ﬁ,ﬁ“’f ””)) 0.89 = 0

o (D
(smr, w) (0 W ( ff”””“’“’”)) 0.01 4 LOWETT)) ) o

157
1-W ﬁsmr,wf)
N
(smr, smr) (0 -Ww ( ,(fmr’smr)>> 0.90 + G fﬂ ) 0.1=0

7 Concluding Comments

In a setup involving signal-contingent choices over menus of simple acts, we have
shown that decomposability is the weakening of Savage’s P2 that is not only still
sufficient but also necessary for plans that are consistent to be ex ante optimal.
The result is comparable to the characterization in Halevy (2004) of the absence of
specualtive trades in terms of decomposability.

So decomposability allows for exactly that type of non-consequetialism of con-
ditional choice, under which the conditional optimality of a plan, & la Nash, still
guarantees global optimality. This observation leads to a straightforward verifica-
tion procedure for the optimality of a plan, reminiscent of the considerations in Gul
and Lanttqg (1990) that led those authors to employ the term ‘dynamic programming
solvability’ Indeed, echoing Grant et al, (2000), one can view decomposability as the
analogue of dynamic programming solvability for the setting of subjective uncertainty
where probabilities are not exogeneously specified.
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