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Abstract

I theoretically and quantitatively show that the cross-sectional ranking of the interest

elasticities of investment between large and small firms is counterfactually flipped in the

models with fixed and convex adjustment costs. Then, I develop a heterogeneous-firm

real business cycle model where the semi-elasticities of large and small firms’ investments

are matched with the empirical estimates. In the model, following a negative TFP shock,

the timings of large firms’ lumpy investments are significantly synchronized due to the

low elasticity to the general equilibrium effect. After a surge of large firms’ lumpy

investments, TFP-induced recessions are especially severe, and the semi-elasticity of

the aggregate investment drops significantly.
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1 Introduction

Large surges in the fraction of large firms making large-scale investments occurred during

1980, 1998, and 2007.1 These three years were followed by recessions within two years. Is it

merely a coincidence that investment surges of large firms precede recessions?

This paper studies a mechanism that makes an economy more fragile to a negative TFP

shock after a surge in lumpy investments of large firms. I develop and analyze a business cycle

model with heterogeneous firms in which the semi-elasticities of large and small firms’ invest-

ments are matched with the empirical estimates. Then using the model, I qualitatively and

quantitatively analyze the amplification of productivity-driven aggregate fluctuations. Due

to the low interest elasticity, the nonlinearity in the large firms’ investments is not washed out

by the general equilibrium effect, leaving large firms’ large-scale investment timings synchro-

nized after a negative aggregate TFP shock. These synchronized investments of large firms

generate macro-level nonlinearity, and the response of aggregate investment to an aggregate

TFP shock depends on the large firms’ past investment history.

Large firms are a particular focus of this paper for three reasons. First, large firms are in-

sensitive to fluctuations in macroeconomic conditions, including the interest rate. Therefore,

they generate a significant nonlinearity in the aggregate investment dynamics. Second, large

firms are the most observable group of firms, as most of them are listed and subject to finan-

cial disclosure regulations mandated by the U.S. Securities and Exchange Commission (SEC).

Therefore, any forward-looking information contained in the large firms’ investment dynamics

can be traced in a timely manner and be conducive to designing contemporaneous policies.

Last, large firms account for a substantial portion of the aggregate investment. Therefore, the

large firms’ investment fluctuations significantly impact the aggregate investment dynamics.

The contribution of this paper can be broadly summarized into three dimensions: 1)

model, 2) measurement, and 3) policy implications. First, on the model side, I theoretically

and quantitatively show that the cross-sectional ranking of the interest elasticities between

large and small firms’ investments are counterfactually flipped in the existing models. Then, I

develop and analyze a heterogeneous-firm real business cycle model that can correctly capture

the cross-sectional ranking of the interest elasticities. Using the model, I show that aggre-

gate investment displays substantial state dependence due to large firms’ interest-inelastic

capital adjustment patterns. Second, this paper develops a fragility index based on the large

firms’ recent capital adjustment history. The fragility index has predictive power on the

one-period-ahead investment growth and serves as a sufficient statistic on the responsiveness

of the aggregate investment to a TFP shock. In practice, this index is easy to trace contem-

poraneously compared to other indices in the literature, as the index is based on large firms’

observable variables. Third, I show that aggregate investment’s interest elasticity depends

on the level of the fragility index over the business cycle, which implies that the effectiveness

1Following Cooper and Haltiwanger (2006), I define an investment beyond 20% of existing capital stock
as a large-scale capital adjustment. Firms that hold capital stocks greater than the 90th percentile of the
capital distribution in each industry based on the two-digit NAICS code are defined as large firms.
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of the monetary policy can be low after a surge of large firms’ lumpy investments.2

Using the U.S. Compustat data and monetary policy shocks, I document that the interest

elasticities of large firms are substantially lower than those of small firms. Also, the extensive

margin variation in the fraction of making lumpy investments is significantly less sensitive to

an interest rate change in large firms than in small firms. Then, using a two-period firm-level

investment model, I theoretically show that the cross-sectional ranking of the elasticities in

the models with standard convex adjustment cost is counterfactually flipped. Also, I compare

the empirical patterns with the interest elasticities computed from the full dynamic models

incorporating capital adjustment costs. As predicted by the theoretical results, the cross-

sectional ranking of the elasticities between large and small firms is inconsistent with the

empirical result. Therefore, a new model framework is necessary to study how the surges in

the large firms’ lumpy investments affect the business cycle.

I develop and analyze a heterogeneous-firm real business cycle model in which a firm-level

investment is subject to a size-dependent fixed cost and convex adjustment cost. A firm-level

size-dependent fixed cost is grounded on the production line (establishment) level fixed costs

that increase exponentially in firm size. The speed of the increase in the cost depends on the

interdependence across the production lines within the firm. The size-dependent fixed cost

is parametrized to capture this interdependence across the production lines. This parameter

controls the large and small firms’ interest elasticities in the extensive margin. I calibrate

this parameter to match the ratio of interest elasticities between large and small firms.

The calibrated baseline model with size-dependent fixed cost can correctly capture the

average interest elasticity for all firms and the cross-sectional ratio of the elasticities be-

tween large and small firms. Also, the elasticities of the fraction of firms making large-scale

investments are consistent with the empirical estimates.

Using this model, I study how the large firms’ synchronized large-scale investments affect

the business cycle. When an aggregate TFP shock hits the economy in the model, the

timing of lumpy investments is synchronized across all firms. This is because firms tend to

hold their investment project until the economy recovers sufficiently close to a normal level.

After this initial synchronization in the investment timings, firm-level lumpy investments

display substantially different recovery patterns over the post-shock periods depending on

the firm size. The synchronized large-scale investment leads to a surge of large firms’ lumpy

investments, while small and medium firms do not display such patterns: the investment

timings of small and medium firms are smoothed out over the post-shock periods. This is

because the large firms’ investments in the extensive margin are insensitive to the general

equilibrium effect: a rising interest rate due to the increasing investments does not incentivize

large firms to spread out their investment timings. However, the surge in the interest rate

makes small and medium firms flatten investment timings over the post-shock periods as they

are relatively nimble in terms of investment timing adjustment.

Next, I construct a fragility index that measures the fraction of large firms that have

2The policy implication is limited to a positive implication, as the model does not include a monetary
policy block.
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recently completed a large-scale capital adjustment. This index is distinguished from other

indices in the literature as it is constructed from readily observable allocations instead of

firm-level productivities (Bachmann et al., 2013; Caballero and Engel, 1993). The fragility

index gives information on how large a fraction of large firms is ready to make a large-scale

investment. After a surge of large firms’ lumpy investments, the fragility index increases, as

many firms have recently finished large-scale investments after the surge. Then, in the follow-

ing period, due to a lack of large firms willing to make a large-scale investment, the response

of aggregate investment to a TFP shock deviates from the one in the steady-state, resulting

in a state-dependence in the investment dynamics. When the fragility index increases by

one standard deviation, the aggregate investment responds 0.56 percentage points stronger

to the same negative one-standard-deviation TFP shock. This shows that the fragility dy-

namics amplify the productivity-driven aggregate fluctuations due to the history-dependence

of aggregate investment.

The fragility index has predictive power on the aggregate investment dynamics, as it is

significantly correlated with the one-period-ahead fraction of firms making large-scale invest-

ments. From the regression of the aggregate investment on the exogenous output shocks and

the fragility index, I document that the fragility index is significantly negatively correlated

with the future investment growth both in the model and the data at a similar magnitude.

Especially from the predicted investment growth solely using the fragility dynamics, I report

that around 43 per cent of the drop (out of the entire seven percentage point drop) in the

investment growth during the dot-com bubble crash is accounted for by the fragility index

dynamics. On the other hand, the investment plunge during the Great Recession is not ex-

plained well by the fragility fluctuations. Despite the preceding surge of lumpy investments of

large firms, it turns out that the surge happened during a particularly short period, resulting

in a fragility index lower than those of other recessions. Also, because the Great Recession has

been asymmetrically driven by the crash of small firms, the large firms’ investment dynamics

is relatively less capable of explaining the Great Recession (Fort et al., 2013).

The fragility dynamics also significantly affect the interest elasticity of the aggregate in-

vestment. For this analysis, I measure the semi-elasticity of aggregate investment at each

time on the business cycle. As the fragility index increases by one standard deviation, the

semi-elasticity of the aggregate investment drops by 0.27 percentage points. This is because

there are not many large firms that can flexibly participate in and out of the large-scale in-

vestment plan after a surge of large-scale investments (high fragility period). The main caveat

of this result is that the effectiveness of the conventional monetary policy is state-dependent

due to the elasticity fluctuations. Especially after a surge of large firms’ lumpy investments,

the effectiveness of the monetary policy decreases because the corporate investment channel

is less responsive than during the normal period.

Related literatures This paper contributes to the literature that studies how firm-level

lumpy investments affect the business cycle. Abel and Eberly (2002) empirically showed that

there are statistically and economically significant nonlinearities in firm-level investments.
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They point out that it is necessary to track the cross-sectional distribution of firm-level in-

vestments to account for aggregate investment. Cooper et al. (1999) and Gourio and Kashyap

(2007) found aggregate investment is largely driven by establishment-level capital adjustment

in the extensive margin. Especially, Cooper et al. (1999) found synchronized lumpy invest-

ments can generate an echo effect of aggregate shocks in partial equilibrium. Gourio and

Kashyap (2007) pointed out that if a fixed cost is drawn from a highly concentrated non-

uniform distribution, aggregated lumpy investments show different impulse responses than

frictionless models in partial equilibrium. In contrast, Khan and Thomas (2008) found that

lumpiness in investment at the establishment level is washed out after aggregation due to a

strong general equilibrium effect.

I contribute to the literature by theoretically and quantitatively showing that the cross-

sectional ranking of the interest elasticities in the existing model frameworks is counterfactual.

This fact is particularly important as the growing body of empirical research in the litera-

ture points out the importance of large firms’ investment in the business cycle and their

inelasticities to the macroeconomic environment (Crouzet and Mehrotra, 2020). Therefore,

to structurally analyze the role of large firms in the business cycle, a new model framework

is necessary. In my model, the interest elasticities of large firms and small firms become

consistent with the empirical estimates. Using the model, I conclude that large firms’ lumpy

investments generate substantial nonlinearity in the aggregate investment fluctuations. This

is a consistent result with Koby and Wolf (2020), which shows the observed dampening effect

of factor price is not as strong as the implied level in models with a fixed cost, using the

semi-elasticity estimates to the bonus depreciation from Zwick and Mahon (2017).

In this paper, the aggregate investment endogenously fluctuates due to large firms’ syn-

chronized patterns from the past aggregate TFP shocks. Therefore, the focus of this paper is

shared with Carvalho and Grassi (2019), which highlights the endogenous source of aggregate

fluctuations from the large firms’ dynamics. While one of the most important ingredients for

the aggregate fluctuations in their paper is the granularity of large firms, which breaks the

law of large numbers, my paper focuses on the low interest elasticity of large firms to the

general equilibrium effect. Therefore, once jointly accounted, these two empirically supported

but not tightly related characteristics of large firms can potentially account for the greater

importance of large firms on the business cycle.

There are several papers that are closely related to the modeling contribution of this

paper. House (2014) points out that a conventional model with fixed cost cannot capture

inelastic lumpy investments due to a strong general equilibrium effect; model-implied lumpy

investments are highly price-elastic. To overcome this limitation in the fixed cost model,

Bachmann et al. (2013) introduce maintenance and replacement investments under the high

fixed cost parameter. In their model, micro-level lumpiness does not wash away after aggre-

gation, leading to state-dependent sensitivity of aggregate investment in general equilibrium.

Winberry (2021) includes habit formation in the household’s utility function so that aggre-

gate TFP sensitivity of real interest rate becomes counter-cyclical. Combined with convex

adjustment cost, the counter-cyclically responsive real-interest rate does not strongly dampen
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aggregated lumpy investments over the business cycle.

In contrast to these approaches, I introduce a size-dependent fixed adjustment cost in the

model on top of the convex adjustment cost. The size-dependent fixed adjustment cost is

micro-founded in the production-line (establishment) level fixed cost and the interdependence

across the lines. This feature helps the model correctly capture inelastic large firms and elastic

small firms.

The fragility index of this paper is closely related to several papers measuring the respon-

siveness of an economy to exogenous aggregate shocks. Caballero et al. (1995) develops a

micro-level adjustment hazard function that captures heterogeneous price adjustment proba-

bility. Dynamics in the cross-section of the hazard rates generates substantial nonlinearity in

the economy’s aggregate dynamics. Bachmann et al. (2013) defines a responsiveness index as

a function of the aggregate productivity and sufficient statistics of the joint distribution of the

capital stocks and the idiosyncratic productivities. They show that the responsiveness index

is significantly driven by the fraction of capital-adjusting firms. Relatedly, Baley and Blanco

(2021) shows that two sufficient statistics can characterize aggregate investment dynamics:

1) the capital to productivity ratio’s dispersion and 2) its covariance with the duration of

inaction. Compared to these papers, my paper highlights the role of the marginal distribution

of large firms’ inaction duration over the business cycle, which is readily observable in the

data in a timely manner due to their mandated financial disclosure.

Also, this paper is related to the literature studying the state-dependent effectiveness of

monetary policy. The most closely related paper is Tenreyro and Thwaites (2016), which

shows that business investment and durables expenditure are less responsive to monetary

policies during recessions. I document that the investment drop during the recession of the

dot-com bubble crash is substantially accounted for by the rising fragility index. At the same

time, I show that the interest elasticity of aggregate investment significantly decreases in the

fragility index. According to this result, monetary policy could not have functioned effectively

during the dot-com bubble crash. Likewise, my paper gives a micro-founded explanation of

why monetary policy is not effective during a recession. Going one step further, it gives a

testable implication: monetary policy in a recession not preceded by a surge of large firms’

lumpy investments might be as effective as in normal years.

Last, this paper contributes to nonlinear business cycle literature. A large body of re-

search has focused on the nonlinearity in aggregate fluctuations that arise when heterogeneous

agents are subject to micro frictions. Berger and Vavra (2015) concludes that lumpiness in

households’ durable adjustment results in pro-cyclical responsiveness of aggregate durable

expenditures to an aggregate shock. Fernandez-Villaverde et al. (2020) found that financial

frictions can generate endogenous aggregate risk under the heterogeneous household model.

In this setup, the aggregate allocations display state-dependent responsiveness to an aggre-

gate TFP shock. Volatility shocks in real interest rate studied in Fernandez-Villaverde et al.

(2011) and uncertainty shocks in Bloom et al. (2018) are also highlighted as an important

source of the nonlinearity in the business cycle. To this literature, this paper contributes by

analyzing interest-inelastic large firms’ lumpy investments as a significant source of nonlin-
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earity in the aggregate investment dynamics.

Roadmap Section 2 shows motivating facts about surges of large firms’ lumpy investments

before and after the recessions. Section 3 analyzes the firm-level interest elasticities in the

existing models and compares them with the data. Section 4 develops a heterogeneous-firm

business cycle model in which the cross-section of the interest elasticities is matched with

the empirical estimates. Section 5 analyzes the macroeconomic implications of the calibrated

model. Section 6 concludes. Proofs and other detailed figures and tables are included in

appendices.

2 Motivating fact

In this section, I empirically analyze the cyclical behavior of the lumpy investments of large

firms.

I use U.S. Compustat data for the firm-level empirical analysis. While Compustat data

covers only public firms, its coverage is relatively less an issue in this analysis because the

focus is on firms with large capital stocks. Throughout the empirical analysis, large firms

are defined as firms that hold capital stocks greater than the 40th percentile of the capital

distribution in each industry of the two-digit NAICS code. The choice of the 40th percentile

is to define large firms in Compustat space consistent with large firms in Zwick and Mahon

(2017), which estimated the interest elasticities of firm-level investments.3 The sample period

covers 1980 to 2016. Firms with negative assets and zero employment are excluded from the

sample. All the firm-level variables except capital stock and investment are deflated by

the GDP deflator. Investment is deflated by the nonresidential fixed investment deflator

available from National Income and Product Accounts data (NIPA Table 1.1.9, line 9). The

firm-level real capital stock is obtained by applying the perpetual inventory method to net

real investment. The industry is categorized by the first two-digit NAICS code.4

Table 1 reports summary statistics for large and small firms during the sample periods.

Under the given definition of large firms, greater than 90% of aggregate sales and employments

belong to large firms. On average, large firms are around 20 times greater than small firms in

sales and employment. Large firms are old firms on average, listed around five years longer

than small firms. Large firms’ ratio of total liability out of the total asset is around 53.1%

and is smaller than the small firms’ fraction 121%.

3In Zwick and Mahon (2017), large and small firms are defined as the top 30% and bottom 30% of sales
distribution. From the size cutoffs (15.4M, 48.8M) in terms of sales in years 1998 through 2000 and 2005
through 2007 (Table B.1, panel (d)), I compute the corresponding capital size cutoffs in Compustat.

4If only the SIC code is available for a firm, I imputed the NAICS code following online appendix D.2 of
Autor et al. (2020). If both NAICS and SIC are missing, I filled in the next available industry code for the
firm.
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Table 1: Summary statistics of large and the other firms

Large Non-large

Total
Aggregate Sales ($1 bil.) 11,317.1 629.6
Aggregate Employment (1 mil.) 39.2 3

Firm-level
Avg. Sales ($1 mil.) 1,420.1 67.8
Avg. Employment (1K) 5.1 0.3
Avg. Age after IPO (yrs.) 11.1 5.7
# of Firms. 7,984 9,294
Avg. Liability / Total Asset (%) 53.1 121

Notes: Large firms are defined as top 60% firms in terms of the size of capital stock, and the other
bottom 40% firms are defined as non-large firms. Aggregate level statistics are obtained from the
time-series average of the cross-sectional sum of firm-level variables separately for large and small
firms. Firm-level statistics are obtained from the time-series average of the cross-sectional mean of
firm-level variables separately for large and non-large firms. All the firm-level variables are from
U.S. Compustat data except for age after IPO. Age after IPO is obtained from a firm’s current
financial year minus the financial year of the first observation in Compustat data.

2.1 Surges of large firms’ lumpy investments and recessions

In the following analysis, I empirically analyze the relationship between large firms’ lumpy

investments and the timing of recessions. I define an investment spike as a firm-specific event

where a firm makes a large-scale investment greater than 20% of the firm’s existing capital

stock.5 I refer to this investment spike as a lumpy investment or capital adjustment in the

extensive margin interchangeably. Then, I define spike ratio as follows:

Spike ratioj,t :=

∑
i∈j

I{iit/kit > 0.2}

# of j-type firms at t
, j ∈ {small, large}

The numerator counts all the incidences of investment spikes from firm type j ∈ {small, large}
at time t, and it is normalized by the total number of j-type firms. Figure 1 plots the time

series of spike ratio of large firms. On average, 9.2% of large firms adjust their existing capital

stocks in the extensive margin in a year. As can be seen from Figure 1, since 1980, there

have been only four periods (1980, 1996, 1998, and 2007) during which the fraction of large

firms making spiky investments surged beyond one-standard deviation. Three out of the four

events were followed by recessions within two years.

Conversely, there were four recessions in the U.S. over the same period, and three out of the

5The 20% cutoff is from the non-convex adjustment cost literature (Cooper and Haltiwanger, 2006; Gourio
and Kashyap, 2007; Khan and Thomas, 2008). If a firm’s acquired capital stock is greater than 5% of existing
capital stock in a certain year, I rule out the observation from the sample due to noisy accounting during the
acquisition year.
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Figure 1: Three surges of large firms’ lumpy investments before recessions
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Notes: The firm-level large-scale investment is defined as an investment greater than 20% of the existing
capital stock. The solid line plots the time series of the fraction of large firms making large-scale investments.
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four recessions were preceded by the surge of large firms’ lumpy investments. The exception

was the recession in 1990, and it was the mildest recession among the four recessions.

Figure 2: Conditional heteroskedasticity of aggregate investment
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Relatedly, in the following analysis, I show that the aggregate investment rate is condition-

ally heteroskedastic on the average lagged spike ratio of large firms. That is, the residualized

volatility of the aggregate investment rate is high if a great fraction of large firms have made

lumpy investments in recent years.

For this analysis, I use aggregate data on non-residential investment (NIPA Table 1.1.5,

line 9) and aggregate capital (Fixed Asset Accounts Table 1.1, line 4) from BEA. The thick line

in Figure 2 plots logged estimates of the standard deviation of residuals from autoregression of
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aggregate investment rates as a function of the recent average of large firms’ spike ratio.6 The

recent average is based on the average spike ratio of the past three years. As can be seen from

this figure, aggregate investment rates are heteroskedastic conditional on the lagged average

spike ratio. Table A.1 reports the regression coefficients for the fitted line. According to the

regression result, a one-standard-deviation increase (1.47%) in the large firms’ past spike ratio

is associated with a one-standard-deviation increase (0.50%) in the aggregate investment’s

residualized volatility. Consistent with the patterns in Figure 1, the three recession years of

interest are located at the top-right corner in Figure 2.

Motivated by these facts, I analyze the role of large firms’ lumpy investments on the

aggregate investment fluctuations. Before I move on to the analysis, I discuss several more

reasons for the importance of studying the large firms on the business cycle.

2.2 Why large firms?

This paper focuses on the role of large firms’ lumpy investments in the business cycle. Such

focus derives naturally from the motivating fact in the previous section: surges of large firms’

lumpy investments have been followed by recessions. On top of this, there are three important

reasons for studying large firms.

First, large firms are insensitive to fluctuations in macroeconomic conditions, including

the interest rate. According to Crouzet and Mehrotra (2020), large firms are cyclically less

sensitive than small firms. Relatedly, Zwick and Mahon (2017) points out that large firms are

twice less sensitive to a tax change than small firms. In the next section, I also show that the

extensive margin elasticities of large firms’ large-scale investments are significantly lower than

those of small firms. Then, the large firms’ synchronized timings of large-scale investments

are not easily mitigated by macroeconomic counterforces such as the general equilibrium

effect. Therefore, the interest-inelastic investments of large firms add a substantial nonlinear

component to the aggregate investment dynamics.

Second, large firms are readily traceable in a timely manner. Most large firms are listed

in the U.S., subject to financial disclosure regulations mandated by the U.S. SEC. Therefore,

any forward-looking information contained in the large firms’ investment dynamics can be

almost contemporaneously observed and be conducive to designing contemporaneous policies.

Finally, large firms account for a substantial portion of the aggregate investment. Accord-

ing to Zwick and Mahon (2017), the investments of the top 5% of firms in their sample cover

more than 60% of entire investments. Therefore, the large firms’ investment fluctuations

strongly affect the aggregate investment cycle.

6This empirical analysis is motivated from the conditional heteroskedasticity analysis in Figure 1 of Bach-
mann et al. (2013).
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3 Firm-level interest elasticity in the existing model

and the data

In this section, I theoretically and quantitatively investigate how the existing models predict

the interest elasticities of large and small firms. Especially, I study the role of convex and

fixed adjustment costs on the cross-section of the interest elasticities.

3.1 A two-period model with a convex adjustment cost

Consider a firm that is given capital stock k and productivity z. For simplicity, I assume a

firm lives only for two periods. A firm’s investment is subject to a standard convex adjustment

cost. A firm produces business output using a concave production function, f(z, k) = zkα.7

The idiosyncratic productivity follows a Markov chain, z′|z ∼ Γ . Then, the problem of

firm-level investment can be summarized as follows:

max
I

−I − µ

2

(
I

k

)2

k + qEzz′((1− δ)k + I)α

where I is the investment; µ is the convex adjustment cost parameter; z′ is the future pro-

ductivity; α ∈ (0, 1) is the span of control parameter; q is the discount factor. A variation

in q is equivalent to the change in the interest rate. The first-order condition with respect to

investment I leads to the following inter-temporal optimality condition:

1 + µ

(
I∗

k

)
= qEz′α((1− δ)k + I∗)α−1 (1)

Taking a log on both sides and using an approximation of log(1 + x) u x for small x,

Equation (1) can be reduced into the following form:8

µ

(
I∗

k

)
u log(q) + log(Ez′α) + (α− 1)log(k) + (α− 1)

(
I∗

k
− δ
)

Then, I re-arrange the terms to obtain the following equation:

I∗

k
u A(µ)log(q) +B(µ, k) (2)

where A(µ) = 1
µ+(1−α)

and B(µ, k) = A(µ)(log(Ez′α) + (α− 1)log(k)− (α− 1)δ). It is worth

noting that the second term on the right-hand side, B(µ, k) does not play any role in the

response of investment to the change in q. Equation (2) provides rich implications about the

response of investment to the change in q.

7For simplicity, I assume the optimal labor demand is implicitly considered in the production function.
8I use the following substep: log(k(1− δ) + I∗) = log

(
k
(

(1− δ) + I∗

k

))
= log(k) + log

(
(1− δ) + I∗

k

)
u

log(k)− δ + I∗

k
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First, Equation (2) implies that the investment-to-capital ratio positively (negatively)

responds to an increase in q (decrease in r). This is because an increase in q makes future

production more profitable to a firm, leaving greater investment motivation for the firm. This

is formally proven without an approximation in Lemma 3 in Appendix B.1.

Second, Equation (2) implies that the firm-level interest elasticity increases in size. To

clearly present the implication, I multiply k on both sides of Equation (2), and I take partial

derivatives with respect to k and q on both sides to get

∂2

∂q∂k
I∗ u A(µ)

∂2

∂q∂k
klog(q) = A(µ)︸ ︷︷ ︸

>0

1

q︸︷︷︸
>0

> 0.

The inequality above holds for any µ > 0. In a model without the convex adjustment cost,

the same equation could be derived with µ = 0. In the following statement, I formally show

that the interest sensitivity of investment, ∂logI∗

∂q
, increases in size k.

Proposition 1 (Size-monotonicity in the interest elasticity).

Given µ > 0, the following inequalities holds:

(i)
∂

∂k

(
∂k∗

∂q

)
> 0 for ∀k > 0

(ii)
∂

∂k

(
∂logk∗

∂q

)
> 0 for ∀k > 0

(iii)
∂

∂k

(
∂I∗

∂q

)
> 0 for ∀k > 0

(iv)
∂

∂k

(
∂logI∗

∂q

)
> 0 if I∗ > 0.

Proof. See Appendix B.1 �

The result of Proposition 1 is contradictory to the empirical findings in Zwick and Mahon

(2017). According to the paper, the large firms’ interest elasticities are significantly smaller

than those of the small firms.9 From the fact that A(µ) decreases in µ, a large µ can mitigate

the counterfactually diverged elasticity ranking, but it cannot flip the order. Therefore, a

model with convex adjustment cost only cannot be a proper model to study the role of large

firms’ investments on the business cycle. This theoretical prediction will be quantitatively

verified in the following section’s comparison of the elasticities in the infinite period problem.

Third, Equation (2) implies that the elasticity of firm-level investment decreases in µ, as

A(µ) decreases in µ. This prediction is consistent with the computational outcomes in Win-

berry (2021) and Koby and Wolf (2020), which argue that the convex adjustment cost helps

9Zwick and Mahon (2017) defines large firms as the top 30% firms in the sales distribution and the small
firms as the bottom 30% in the sales distribution. Under this definition, the elasticity ratio between small
and large firms is around 2.
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the elasticity of the average investment to be lowered to the empirical estimate. Intuitively,

the higher the convex adjustment cost parameter, the higher the marginal cost of adjustment,

leaving the marginal response to a change in q costlier. This prediction is formally proved in

the following proposition without the approximation:

Proposition 2 (Elasticity dampening effect).

Given µ > 0, if I∗ > 0, the following statements hold:

(i)
∂

∂µ

(
∂k∗

∂q

)
< 0

(ii)
∂

∂µ

(
∂logk∗

∂q

)
< 0

(iii)
∂

∂µ

(
∂I∗

∂q

)
< 0

(iv)
∂

∂µ

(
∂logI∗

∂q

){≤ 0 if 1
1−δ ≥ µ

> 0 if 1
1−δ < µ

.

Proof. See Appendix B.1 �

In the last statement of Proposition 2, the response of investment to q in per cent can

increase in µ if µ is sufficiently large. This is due to the convex adjustment parameter’s

dominant shrinking force on the level of the denominator in 1
I∗
∂I∗

∂q
= ∂logI∗

∂q
.

To sum up, the convex adjustment cost is helpful for controlling the average elasticities of

firm-level investment. However, it does not help flip the counterfactual ranking of elasticities

between large and small firms.

3.2 A two-period model with a fixed adjustment cost

Now I consider a two-period model in which a firm needs to pay a fixed adjustment cost

ξ ∼ Unif [0, ξ] to invest.10 If a firm does not pay the fixed cost, the firm’s capital stock

simply depreciates at the rate of δ. Except that the convex adjustment cost is replaced by

the fixed cost, the model is the same as the one in the previous section.

I define ξ∗(k, q) as the threshold of adjustment with respect to the shock realization, ξ as

follows:

ξ∗(k, q) := −I∗ + qEzz′((1− δ)k + I∗)α︸ ︷︷ ︸
Net benefit of capital adjustment

− qEzz′((1− δ)k)α︸ ︷︷ ︸
Net benefit of inaction

.

Thus, a firm invests if ξ∗(k, q) > ξ. Then, I define ψ(k, q) as a probability of adjustment as

10The random shock assumption is following Khan and Thomas (2008).
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follows:

ψ(k, q) :=
min{ξ∗(k, q), ξ}

ξ
.

The ex-ante investment, Î can be characterized in the following form:

Î = ψ(k, q)I∗

where I∗ is unconstrained optimal level of investment that satisfies the first-order condition

(1) under µ = 0.11 The interest elasticity of the ex-ante investment Î depends on how both

ψ(k, q) and I∗ respond to a change in q. Then, I define a cutoff k̂(q) = k∗

1−δ , where a firm

with k greater than this threshold makes a negative investment. In Lemma 5 of Appendix

B.3, I formally show that such k̂ uniquely exists given q. The following decomposition holds

for ∀k ∈ (0, k̂(q)):12

∂

∂q
log(Î) =

∂

∂q
log(ψ(k, q)) [Extensive margin responsiveness]

+
∂

∂q
log(I∗) [Intensive margin responsiveness]

The average response of firm-level investment per cent is additively separable into extensive

and intensive margin responsiveness. As the intensive margin has been studied in the previous

section, I focus on the extensive margin responsiveness in this section.

In Lemma 6, I show that ψ(k, q) increases in q. This is because a higher discount factor

leads to a greater discounted future profit, leaving the marginal benefit of investment greater.

Therefore, firms respond to an interest rate change in both extensive and intensive margin

in the same direction. However, when it comes to the rankings of extensive margin elasticity

over the size, the theoretical prediction in the extensive margin diverges from the one in the

intensive margin.

To understand the cross-sectional ranking of the extensive margin interest elasticities, I

decompose the partial derivative of log(ψ(k, q)) with respect to q and k for ∀k ∈ (0, k̂(q)) as

11For the simplicity of the proofs, I assume µ = 0 for the model with a fixed cost.
12We focus only on firms that make positive investments as in the empirical specification in Zwick and

Mahon (2017). Therefore, the extensive margin transition from non-adjuster to adjuster is ignored. However,
the transition in the opposite direction is counted.
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follows:

∂

∂k

∂

∂q
log(ψ(k, q)) =

∂

∂k

∂

∂q
log(ξ∗(k, q))

=
∂

∂k

∂
∂q
ξ∗(k, q)

ξ∗(k, q)
(3)

= −
∂ξ∗(k,q)
∂k

∂ξ∗(k,q)
∂q

ξ∗(k, q)2︸ ︷︷ ︸
Denominator effect (> 0)

+

∂2ξ∗(k,q)
∂q∂k

ξ∗(k, q)︸ ︷︷ ︸
Direct effect (< 0)

(4)

In the following proposition, I determine the sign of each component in the decomposition.

Proposition 3 (The effect of the firm size and the price on the adjustment probability).

For ∀k s.t. ξ∗(k, q) < ξ(q),

∂ξ∗(k, q)

∂k

∂ξ∗(k, q)

∂q
< 0 and

∂

∂k

∂

∂q
ξ∗(k, q) < 0.

Proof. See Appendix B.3. �

According to Proposition 3, the first term of the right-hand side in Equation (4) is positive

while the second term is negative. In other words, as the size of a firm increases, the magnitude

of the change in the adjustment probability (the numerator of (3)) decreases, but at the same

time, the adjustment probability also decreases (the denominator of (3)). Therefore, the

ranking of the investment response in the extensive margin in per cent across the firm size

cannot be determined.

To sum up, the fixed cost affects the ex-ante investment response through the extensive

margin. When measured in the absolute value, the ranking of the interest elasticity in the

extensive margin decreases in firm size. However, when measured in per cent, the ranking

becomes unclear due to the countervailing force from the interest rate effect on the level

of the adjustment probability. The ex-ante investment elasticity is determined by both the

intensive and extensive margin responsiveness. From the previous section, the ranking of the

intensive margin responsiveness is counterfactually flipped in the model. Therefore, to correct

the counterfactual ranking by including the fixed cost, the extensive margin elasticity needs

to be substantially lower for large firms in the model with both convex and fixed adjustment

costs. In the next section, I quantitatively investigate the ranking of the large and small

firms’ interest elasticities under the infinite-period models with different adjustment costs.

3.3 Comparison of the semi-elasticities across models

This section compares the semi-elasticities of firm-level investment across different models.

I consider three different models: 1) a model with fixed cost (Khan and Thomas, 2008); 2)

a model with convex adjustment cost; 3) a model with both fixed and convex adjustment
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cost (Winberry, 2021). As each model is based on the description of the reference paper,

I abstract the detailed explanation of each model. The models are calibrated to match the

cross-sectional average of the investment-to-capital ratio and the cross-sectional average spike

ratio.13 Additionally, for the model with both fixed and convex adjustment costs, I matched

the cross-sectional dispersion of the investment-to-capital ratio.

Table 2 reports the semi-elasticities of firm-level investments for different groups across

different models. The elasticities are measured by the average contemporaneous change in

the firm-level investment in per cent from the steady-state when the interest rate changes

by 1%.14 In particular, I calculate the average between the elasticity measured when the

interest rate increases by 1% and the one measured when the interest rate decreases by 1%

to address the asymmetry in the responses to the positive and negative interest rate shocks.

The average interest elasticity of group j ∈ {All, Small, Large} is defined as follows:

Elasticityjt =

∫
{Iijt>0}∆log(Iijtψijt + Icijt(1− ψijt))dΦj

∆rt

where ψijt is the extensive margin adjustment probability; Iijt is then investment after fixed

cost is paid and Icijt is the investment when the fixed cost is unpaid; Φj is the joint distribution

of firms conditional on group j.

The elasticity of the spike ratio of group j is defined as the average contemporaneous

change in the fraction of firms investing greater than 20% of the existing capital stock when

the interest rate changes by 1%.

ElasticitySpikeRatiojt =

∫
{Iijt>0}∆I

{
Iijtψijt+I

c
ijt(1−ψijt)
kijt

> 0.2
}
dΦj

∆rt

According to Table 2, in any of the three models, the interest elasticity of investment is

greater in large firms than in small firms. By including both fixed and convex adjustment

costs, the counterfactual elasticity divergence is slightly mitigated, as can be seen from the

lowest small-to-large ratio, 0.62. Still, the ratio is substantially lower than the empirical ratio

of 1.95, as reported in the fourth column. This is due to a dominant intensive margin impact

that is proved in Proposition 1.

Consistent with findings from the literature, the average interest elasticity is in the empir-

ically supported range when convex adjustment cost is included. When both fixed and convex

adjustment costs are included, the average elasticity is around 5, satisfying an empirical upper

bound of 7.2 from Zwick and Mahon (2017).

I also analyze the spike ratio’s elasticity as this elasticity can be directly measured in the

12The model with convex adjustment cost is a simpler version of the model with both fixed and convex
adjustment cost, where the fixed cost is discarded. The models do not include the habit formation in the
household utility differently from Winberry (2021).

13The target moment is the same as in the baseline model calibration, which is reported in Table 4
14The elasticity is measured in the partial equilibrium as in Winberry (2021) and Koby and Wolf (2020).
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Table 2: Semi-elasticity comparison across models

Fixed Convex only Convex + Fixed Data

Investment
All 382.73 18.18 5.01 7.2
Small 313.76 14.8 4.32
Large 481.93 21.79 6.99
S/L ratio 0.65 0.68 0.62 1.95

Spike ratio
All 25.61 1.97 1.04
Small 37.97 0.74 1.24
Large 16.39 1.35 1.14
S/L ratio 2.32 0.55 1.09

Notes: The semi-elasticities of investment variables are computed from contemporaneous invest-
ment response to an interest rate change in the partial equilibrium. To address the asymmetry
between responses to the positive and negative interest rate shocks, I report the average responses
to the positive 1% and negative 1% interest rate changes.

data and can guide us on the missing component in the model for capturing the cross-section

of the empirically supported interest elasticities. Based on the comparison of the model-

implied elasticities and the data estimates in the next section, I discuss how the models need

to be improved.

When a model includes only a fixed cost, the large firms’ spike ratio elasticities are 2.6

times lower than those of small firms. In contrast, the convex adjustment cost flips the ranking

of elasticity of the spike ratio, leaving large firms to become relatively more elastic than small

firms. When both adjustment costs are considered, small and large firms’ elasticities of the

spike ratios are a similar level.

3.4 Firm-level interest elasticities of investments in the data

In this section, I empirically estimate the elasticity of firm-level investment using firm-level

balance sheet data and monetary policy shocks in the literature. Prior research papers in

the literature have provided the well-identified interest elasticities of firm-level investments,

but those estimates are not informative enough to pin down the missing component in the

existing model frameworks. For this, I estimate the elasticities of small and large firms’ spike

ratios to develop a model with realistic firm-level investment.

I construct an exogenous monetary policy shock following Ottonello and Winberry (2020)

and Jeenas (2018). The monetary policy shock is obtained by time aggregating high-frequency

monetary policy shock identified from the unexpected jump (drop) in the federal funds rate

during a 30-minutes window around the announcement of the Federal Open Market Com-
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mittee (FOMC).15 To capture the unexpected component in the federal funds rate, I use

the change in the rate implied by the current-month federal funds futures contract. All the

data on the timings of the FOMC announcement and the high-frequency surprise are from

Gurkaynak et al. (2005) and Gorodnichenko and Weber (2016). The sample period covers

from March 1990 until December 2009. I follow the convention that the positive monetary

policy shock is an unexpected increase in the federal funds futures rate, so it implies the

contractionary monetary policy.

To match the data frequency between the firm-level data and the monetary policy shock,

I time aggregate the monetary policy shocks. Specifically, I compute the one-year backward

weighted average monetary policy shock at each firm’s financial year end. The weight of each

surprise is determined by the number of days between the corresponding FOMC announce-

ment and the next FOMC announcement.16 If the next FOMC announcement was made

after the financial year end, the days are counted until the financial year end. This data

joining process matches a firm’s balance sheet information and the monetary policy shock at

the same financial year. The weighted moving average monetary policy shock is plotted in

Figure B.1.

Large firms and small firms are defined respectively as top 60% and bottom 20% of capital

distribution at each year in Compustat data. This choice is to match the definition of large

and small firms in Zwick and Mahon (2017).17 I consider log of firm-level investment, log(Iit)

and binary indicator of investment greater than 20% of existing capital stock, I{ Iit
kit
> 0.2} as

dependent variables in the regression.

To study the heterogeneous firm-level investment responses to the monetary policy shock,

I estimate the following regression separately for large firms and small firms:

f(kit, kit+1) = βMPt + αi + αsy + Controlsit + εit

where MPt is the monetary policy shock; αi is firm fixed effect; αsy is sector-year fixed effect.

The control variables include lagged current account (ACTt−1), lagged total debt (DTt−1), and

operating profit (OIBDPt) normalized by lagged total asset (ATt−1), log of lagged capital

stock, and log of employment (EMPt). The standard errors are two-way clustered across

firms and years.

Table 3 reports the coefficient of monetary policy shock (MPt) for large and small firms

across different choices of dependent variables.18 As can be seen from the first two columns,

the elasticity of the investment is significantly lower in large firms than in small firms. This is

consistent with the empirical results in the literature and contradictory to the model-implied

elasticities in the previous section. Also, the sensitivity of the spike ratio is significantly lower

15The result is robust over the choice of a wider window (one-hour window) as reported in Table B.3.
16A higher weight is assigned for a monetary policy shock when there was greater amount of time for a

firm to respond to the shock (Ottonello and Winberry, 2020).
17The closest regression result in Zwick and Mahon (2017) is Table B.2. Following the paper, I use the

capital expenditure CAPXt as an investment variable.
18I check the robustness of result using a different cutoff 10% than 20% in Table B.2.
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Table 3: Investment sensitivities to the monetary policy shocks

Dependent variables:

log(Iit) I{ Iit
kit
> 0.2}

L S L S

MPT ight,t -2.201 -7.025 -0.870 -2.072
(0.606) (2.41) (0.366) (0.676)

Obs. 29,400 7,903 29,400 7,903
R2 0.929 0.791 0.603 0.558
Firm FE Yes Yes Yes Yes
Sect.-year FE Yes Yes Yes Yes
Firm-level ctrl. Yes Yes Yes Yes
Two-way cl. Yes Yes Yes Yes

Notes: The independent variables include monetary policy shocks, fixed effects (firm and sector-
year), and firm-level control variables (lagged current account (ACTt−1), lagged total debt
(DTt−1), and operating profit (OIBDPt) normalized by lagged total asset (ATt−1), log of lagged
capital stock, and log of employment (EMPt)). The numbers in the bracket are the standard
errors. The standard errors are clustered two-way by firm and year.

in large firms than small firms, as reported in the third and fourth columns.19

The differences in the elasticities in Table 2 and Table 3 sharply indicate that the exist-

ing models with fixed and convex adjustment costs cannot correctly capture the ranking of

interest elasticities between large and small firms. Therefore, a new model is needed to study

the role of large firms’ investments over the business cycle. Then, a question still remains

about which component of the existing model needs to be improved to capture the empirical

relationship. There are broadly two directions: lowering either intensive or extensive margin

elasticities of large firms.

On this issue, the elasticity of spike ratio gives an answer. I set the model with both fixed

and convex adjustment costs as a benchmark model. From the comparison of the interest

elasticities of spike ratios between the benchmark model and the data, the large firms’ spike

ratio needs to be less elastic, and small firms’ spike ratio needs to be more elastic than in

the benchmark model to match the empirical counterpart. Therefore, the extensive margin

elasticity needs to be improved from the benchmark model. In the following section, I develop

a heterogeneous-firm real business cycle model where the elasticities of investments and spike

ratios are at the empirically supported level through the modification in the extensive margin

investment patterns of the benchmark model.

19Two estiamtes are statitically different under the significance level of 0.05.
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4 Model

I develop and analyze a heterogeneous-firm real business cycle model in which the cross-

section of the semi-elasticities of firm-level investment is matched with the empirical esti-

mates. In the model, time is discrete and lasts forever. There is a continuum of measure one

of firms that own capital, produce business outputs, and make investments. The business

output can be reinvested as capital after a firm pays adjustment costs.

4.1 Technology

A firm owns capital. It produces a unit of goods that can be converted to a unit of capital

after paying an adjustment cost. The production technology is a Cobb-Douglas function with

decreasing returns to scale:

zitAtf(kit, lit) = zitAtk
α
itl
γ
it, α + γ < 1

where kit is firm i’s capital stock at the beginning of period t; lit is labor input; zit is

idiosyncratic productivity; At is aggregate TFP. Idiosyncratic productivity, zit, and aggregate

TFP, At, follow the stochastic processes as specified below:

ln(zit+1) = ρzln(zit) + εz,t+1, εz,t+1 ∼iid N(0, σz)

ln(At+1) = ρAln(At) + εA,t+1, εA,t+1 ∼iid N(0, σA)

where ρi and σi are persistence and standard deviation of i.i.d innovation in each process

i ∈ {z, A}, respectively. Both stochastic processes are discretized using the Tauchen method

in computation.

4.1.1 Investment and adjustment cost

I assume a firm-level large-scale investment could be made only after paying a total ad-

justment cost Cit, which varies over firm-level allocations. The total adjustment cost is a

function of capital stock kit, investment size Iit, and a fixed cost shock ξit ∼iid Unif [0, ξ] as

in Winberry (2021). And this total adjustment cost is composed of two additively separable

parts: a convex adjustment cost and a fixed adjustment cost. The convex adjustment cost

is a function of the current capital stock kit and the investment Iit as assumed in the litera-

ture. The fixed cost Fit is a function of the current capital stock kit and a fixed cost shock

ξit ∼iid Unif [0, ξ]. The fixed cost does not incur if a firm adjusts capital within a moderate

range (Iit ∈ Ω(kit) := [−νkit, νkit]). A firm needs to pay a fixed cost for investment beyond

this range. The fixed cost is assumed to be overhead labor cost, so it varies over the business

cycle due to wage fluctuations.20

20This setup is following Khan and Thomas (2008) and Winberry (2021).
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To summarize, I assume the following total adjustment cost structures:

Cit = C(kit, Iit, ξit;wt)

= µ

(
Iit
kit

)2

kit + F (kit, ξit)wt

F (kit, ξit) =

{
ξitk

ζ if Iit 6∈ Ω(kit) = [−νkit, νkit]
0 if Iit ∈ Ω(kit) = [−νkit, νkit]

The difference of this model from the existing literature is the size-dependent fixed cost

parametrized by the extensive margin elasticity dispersion parameter, ζ. As ζ increases, the

extensive margin elasticity gap between small and large firms broadens, leaving the cross-

section of the interest elasticity consistent with the empirical level in Zwick and Mahon (2017)

and Koby and Wolf (2020). In Section 5, I quantitatively investigate how the ζ parameter

affects the dispersion of interest elasticity.

4.1.2 Size-dependent fixed cost: A theoretical explanation

In this section, I provide a theoretical explanation for the presence of size-dependent fixed

cost. The presence of fixed cost in the investment has been widely accepted in the micro-level

investment literature. However, it has been relatively less investigated whether the fixed cost

occurs at the establishment level or at the firm level. Depending on the model specification

and the granularity of the data, each paper flexibly defines the fixed cost.

In this paper, the fixed cost is modeled at the firm level, but its functional form is grounded

on the establishment-level fixed cost. I argue that if a firm decides to make a large-scale in-

vestment by expanding establishments, fixed cost occurs at each existing establishment due

to interdependence across the establishments. For example, if a new establishment is con-

structed, the production lines in the existing establishments have to be adjusted to coordinate

with the new one, and managers have to be reallocated across the different production units.

Therefore, intuitively, firm-level fixed cost increases in the number of establishments and the

degree of interdependence across the establishments.

To sharpen the theoretical points clear, let’s assume a firm has n number of establishments

and plans to expand a new factory. If establishments are coordinated pairwise, and if the fixed

cost of each coordinated pair is ξ, the total firm-level fixed cost F is as follows:

F2 =

(
n

2

)
× ξ =

n(n− 1)

2
ξ

which features quadratic growth in the number of establishments. This was when each estab-

lishment is interdependent pairwisely. Then, if an establishment’s operation is dependent on
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ζ−1 number of other establishments on average, the firm-level fixed cost becomes as follows:

Fζ =

(
n

ζ

)
× ξ =

n(n− 1)(n− 2) . . . (n− ζ + 1)

ζ!
ξ

The firm-level fixed cost Fζ exponentially increases in the number of establishments to the

power of ζ. For a higher interdependence across the establishments, the fixed cost increases

faster. Even if the source of the fixed cost is not at the establishment level, the intuitive

explanation is that the interdependence across the basic operation unit (e.g., department or

team) convexly raises the complexity inside the firm. And this increases the firm-level fixed

cost when the firm makes a large-scale capital adjustment.

In this paper, the number of establishments (or basic production units) is proxied by the

total capital stock kit. This is consistent with Cao et al. (2019). Using the US administrative

data, Cao et al. (2019) points out that the firm growth is substantially driven by the expansion

in the number of establishment. Therefore, the number of establishments is well-proxied by

the size of the capital stock kit.

4.2 Household

A stand-in household is considered. The household consumes, supplies labor, and saves in

a complete market. In the beginning of a period, the household is given with an equilty

portfolio a, information on the contemporaneous distribution of firms Φ, and the aggregate

TFP level A. The household problem is as follows:

V (a;S) = max
c,a′,lH

log(c)− ηlH + βEV (a′;S ′)

s.t. c+

∫
ΓS,S′q(S, S

′)a′(S ′)dS = w(S)lH +

∫
a(S)dS

Gφ(S) = Φ′, GA(A) = A′, S = {Φ,A}

where V is the value function of the household; Φ is a distribution of firms; A is an aggregate

productivity; ΓS,S′ is the aggregate state transition probability; c is consumption; a′ is a

state-contingent future saving portfolio; lH is labor supply; w is wage; and r is real interest

rate. Household is holding the equity of firms as their asset.

From the household’s first-order condition and the envelope condition, I obtain the fol-

lowing chracterization of the stochastic discount factor q(S, S ′):

q(S, S ′) = β
C(S)

C(S ′)

I define p(S) := 1
C(S)

. In the recursive formualation of a firms’ problem in the next section, I

use p(S) to normalize the firm’s value function following Khan and Thomas (2008).
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4.3 A firm’s problem: Recursive formulation

In this section, I formulate a firm’s problem in the recursive form. A firm is given with capital

k, an idiosyncratic productivity z, in the beginning of a period. Also, they are given with the

knowledge on the contemporaneous distribution of firms Φ and the aggregate TFP level A.

For each period, firm determines investment level I and labor demand ld. A firm’s problem

is formulated in the following recursive form:

J(k, z;S) = π(k, z;S) + (1− δ)k

+

∫ ξ

0

max {R∗(k, z;S)− F (k, ξ)w(S), Rc(k, z;S)} dGξ(ξ) (5)

R∗(k, z;S) = max
k′≥0

− k′ − c(k, k′) + Eq(S, S ′)J(k′, z′;S ′)

Rc(k, z;S) = max
kc∈Ω(k)

− kc − c(k, kc) + Eq(S, S ′)J(kc, z′;S ′)

The following lines explain the details of each component in the value function.

(Operating profit) π(z, k;S) := max
nd

zAkαnγd − w(S)nd (nd: labor demand)

(Convex adjustment cost) c(k, k′) :=
(
µI/2

)
((k′ − (1− δ)k)/k)

2
k

(Size-dependent fixed cost) F (k, ξ) := ξkζ

(Constrained investment) Ic ∈ Ω(k) := [−kν, kν] (ν < δ)

(Idiosyncratic productivity) z′ = Gz(z) (AR(1) process)

(Stochastic discount factor) q(S, S ′) = β (C(S)/C(S ′))

(Aggregate states) S = {A,Φ}
(Aggregate law of motion) Φ′ := H(S), A′ = GA(A) (AR(1) process),

Then, I multiply p(S) = 1/C(S) on the both sides of line (5) to obtain

p(S)J(k, z;S) = p(S)(π(k, z;S) + (1− δ)k)

+

∫ ξ

0

max {p(S)R∗(k, z;S)− p(S)w(S)F (k, ξ), p(S)Rc(k, z;S)} dGξ(ξ)

I define the normalized value functions as follows:

J̃(k, z;S) := p(S)J(k, z;S)

R̃∗(k, z;S) := p(S)R∗(k, z;S)

R̃c(k, z;S) := p(S)Rc(k, z;S)

It is necessary to check whether the recursive form is preserved for the normalized value
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functions. Using p(S)q(S, S ′) = βp(S ′),

R̃∗ = max
k′≥0

(−k′ − c(k, k′))p(S) + Ep(S)q(S, S ′)J(k′, z′;S ′)

= max
k′≥0

(−k′ − c(k, k′))p(S) + Eβp(S ′)J(k′, z′;S ′)

= max
k′≥0

(−k′ − c(k, k′))p(S) + βEJ̃(k′, z′;S ′)

Similarly,

R̃c = max
kc∈Ω(k)

(−kc − c(k, kc))p(S) + βEJ̃(kc, z′;S ′).

Therefore, the recursive form is preserved for the normalized value functions. As in Khan and

Thomas (2008), the recursive form based on the normalized value function eases computation

of the dynamic stochastic general equilibrium because the price p depends only on the current

aggregate state variable S.

A firm makes a large scale investment only if R∗(k, z;S) > Rc(k, z; s). Therefore, a firm-

level extensive margin investment decision can be characterized by the threshold rule, gξ∗ , as

follows:

gξ∗(k, z;S) = min

{
R̃∗(k, z;S)− R̃c(k, z;S)

w(S)p(S)kζ
, ξ

}
.

This threshold rule is distinguished from the threshold rules in other existing models in that

the threshold weakly decreases in the size of a firm. In other words, the required marginal

benefit of large-scale investment is greater for large firms to make the extensive margin

investment than for small firms. This generates an empirically-supported cross-section of

interest elasticities. I quantitatively show this in Section 5.

I denote gk∗ as the optimal future capital stock conditional on the extensive margin

investment, gkc as the optimal future capital stock conditional on the small-scale investment,

and gk as the unconditional optimal investment.

Then, the following relationship holds:

gk(k, z;S) =

{
gk∗(k, z;S) if ξ < gξ∗(k, z;S)

gkc(k, z;S) if ξ ≥ gξ∗(k, z;S).

That is, if a fixed cost shock, ξ is less than the threshold, a firm makes a large-scale investment.

4.4 Recursive competitive equilibrium

In this section, I define the recursive competitive equilibrium in the economy.

(gc, ga, glH , gk∗ , gkc , gξ∗ , gnd , Ṽ , J̃ , R̃
∗, R̃c, p, w) is a recursive competitive equilibrium if the fol-

lowing conditions are satisfied.
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1. gc, glH , Ṽ and ga, solves the household’s problem.

2. gk∗ , gkc , gξ∗ , gnd , J̃ , R̃
∗, and R̃c solve a firm’s problem.

3. Market Clearing:

(Labor Market) glH(Φ;S) =

∫ (
gnd(k, z;S) +

(
gξ∗(k, z;S)

ξ

)(
gξ∗(k, z;S)

2

)
kζ
)
dΦ

(Product Market) gc(Φ;S) =

∫ (
zAkαgnd(k, z;S)γ

−
(

(gk∗(k, z;S)− (1− δ)k) + c(k, gk∗(k, z;S))

)
gξ∗(k, z;S)

ξ

−
(

(gkc(k, z;S)− (1− δ)k) + c(k, gkc(k, z;S))

)
1− gξ∗(k, z;S)

ξ

)
dΦ

4. Consistency Condition21:

(Consistency) GΦ(Φ) = H(Φ) = Φ′, where for ∀K ′ ⊆ K and z′ ∈ Z,

Φ′(K ′, z′) =

∫
Γz,z′

(
I{gk∗(k, z;S) ∈ K ′}gξ

∗(k, z;S)

ξ

+ I{gkc(k, z;S) ∈ K ′}1− gξ∗(k, z;S)

ξ

)
dΦ

4.5 Solution method: The repeated transition method

This section explains the solution method I use to compute the recursive competitive equi-

librium. I use the repeated transition method, which I concurrently developed for the com-

putation of nonlinear aggregate dynamics under aggregate uncertainty in Lee (2021). As

highlighted in Bachmann et al. (2013), the strong general equilibrium effect significantly con-

tributes to the linearity in the dynamics of aggregate allocations. However, once the model

captures realistic interest elasticity, the general equilibrium effect is necessarily weakened,

leaving the aggregate dynamics highly nonlinear. Due to this highly nonlinear aggregate

dynamics in general equilibrium, there are two layers of difficulties in using the algorithm

of Krusell and Smith (1998). The first is difficulty in choosing a sufficient statistics for the

aggregate dynamics. The model’s nonlinear aggregate dynamics might not be sufficiently

explained by the moves in aggregate capital stocks, unlike Khan and Thomas (2008). The

second difficulty is in setting the parametric form in the law of motion. This problem inter-

acts with the former difficulty because even correctly chosen sufficient statistics would not

give accurate computation results due to the wrong functional specification. Therefore, it is

21K and Z are the supports of the marginal distributions of capital and productivity induced from Φ.
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almost impossible to jointly identify the correct sufficient statistics and functional form in

the law of motion.

In the repeated transition method, I simulate a long series of aggregate shocks and com-

pute the dynamics of prices and aggregate allocations at each point in the simulation, in the

spirit of Boppart et al. (2018). However, in contrast to Boppart et al. (2018), the repeated

transition method departs from the certainty equivalence.22 As the prices and predicted fu-

ture path of allocations are directly computed at each point on the path, the method does

not require a parametric form of the law of motion.

Using this method, I compute the predicted aggregate allocations, which the time series

of the simulated aggregate allocations almost perfectly converges to. And this time series of

the predicted aggregate allocations is not based on a parametric form of the law of motion

in a state-space representation. Figure E.4 compares the time series of the predicted alloca-

tions and the simulated allocations.23 In the figure, panel (a) shows the predicted aggregate

dynamics and the simulated dynamics of the marginal utility, pt. These two dynamics con-

verged to each other with an extremely small error, as can be seen in the solid line in panel

(c). However, if the dynamics of simulated marginal utility are fitted into the log-linear law

of motion in the contemporaneous capital stock Kt, the prediction error can become substan-

tially large as in the dashed line in panel (c). A similar pattern is observed in the aggregate

dynamics of aggregate capital stock Kt in panel (b). The simulated and predicted paths for

Kt are computed at extremely high accuracy with the repeated transition method, while the

log-linear fitting leads to a significant prediction error as in panel (d).

Then, I compare the fitness of different specifications of the law of motion by fitting the

equilibrium dynamics into each of them.24 Table E.7 and Table E.8 report the fitness of the

different laws of motion of pt and Kt, respectively. When the law of motion includes only

a log of contemporaneous capital stock Kt (specification (1)), the prediction errors remain

large, indicating the nonlinear nature of the equilibrium dynamics.25 However, once the law

of motion includes the fragility index in the law of motion (specification (2)), which I define

in Section 5.3, the fitness significantly improves for the dynamics of pt. However, it does not

make a significant change in the fitness for the dynamics of Kt. Finally, if the law of motion

includes contemporaneous and lagged capital stocks up to three lags in a non-parametric form

(specification (3)), the fitness substantially improves from the basic log-linear specification

for both pt and Kt.

22The algorithm of Boppart et al. (2018) can be applied for the case of an MIT shock and the perfect
foresight.

23This figure is the fundamental accuracy plot suggested in Den Haan (2010).
24I compare only the fitness of the law of motion to the converged dynamics of equilibrium allocations.

Therefore, if the model is solved based on each of the laws of motion, the implied dynamics might display
even greater prediction errors than the reported level.

25Den Haan (2010) points out that a slight deviation in R2 from unity such as R2 = 0.995 can imply a
substantially large prediction error and significant nonlinearity.

26



5 Quantitative analysis

This section quantitatively analyzes the macroeconomic implications of large firms’ lumpy

investments. First, I train the baseline model to fit the data moments using the method of

simulated moments. Especially, the different interest elasticities between small and large firms

are the key moments to be fitted, which are hardly captured in alternative models. Second,

I study the nonlinear dynamics of lumpy investments using impulse response analysis. The

nonlinear dynamics arise from the synchronization of large-scale investment timing. Lastly,

I quantitatively analyze how the large firms’ synchronization pattern affects the response

of aggregate investment to a one-standard-deviation TFP shock and the aggregate interest

elasticity.

5.1 Calibration

In this section, I elaborate on how the model is fitted to the data and compare the fitness

with alternative models. Table 4 reports the target and untargeted moments from the data

and the simulated moments in the model. Table 5 reports the calibrated parameters given

the fixed parameters reported in Table B.4. In the simulation step, I use the non-stochastic

method in Young (2010).

Table 4: Fitted Moments

Moments Data Model Reference

Targeted moments
Semi-elasticity of investment (%) 7.20 6.63 Zwick and Mahon (2017)
Cross-sectional semi-elasticity ratio (%) 1.95 2.13 Zwick and Mahon (2017)
Cross-sectional average of it/kt ratio 0.10 0.10 Zwick and Mahon (2017)
Cross-sectional dispersion of it/kt (s.d.) 0.16 0.16 Zwick and Mahon (2017)
Cross-sectional average spike ratio 0.14 0.14 Zwick and Mahon (2017)
Positive investment rate 0.86 0.86 Winberry (2021)
sd(log(Yt)) 0.06 0.07 NIPA data (Annual)

Untargeted moments (all in yrs.)
Average inaction periods 6.38 7.72 Compustat data
Dispersion of inaction periods 4.87 5.50 Compustat data
Average of lag difference of inaction periods 0.27 0.67 Compustat data
Dispersion of lag difference of inaction periods 6.47 8.36 Compustat data

Notes: The data moments are from the sources specified in the reference column. The same sample restriction
as in the empirical analysis applies to Compustat data. I use linearly detrended real GDP from the National
Income and Product Accounts at the annual frequency for the aggregate output volatility.

The target semi-elasticity of average investment is from Zwick and Mahon (2017). This

target is interpreted as an upper bound rather than a point estimate, as not all the possible
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idiosyncrasies or frictions are accounted for in the calculation as pointed out by Koby and

Wolf (2020). The simulated aggregate semi-elasticity in the baseline model is also similar

to the level in Winberry (2021). The cross-sectional semi-elasticity ratio is from Zwick and

Mahon (2017), which documents that small firms’ investments are around twice elastic as

large firms towards the interest rate change. In the paper, large and small firms are defined

as the top 30% and bottom 30% of firms in terms of size, respectively. I define large and small

firms in the model consistent with their definition. The cross-sectional average and dispersion

of the investment-to-capital ratio and the average spike ratio are targeted to match the levels

in Zwick and Mahon (2017) as in Winberry (2021). Consistent with the literature, I define

the spike ratio as the fraction of firms investing greater than 20% of the existing capital stock.

The target of positive investment rate is from Winberry (2021). The positive investment rate

is defined as the fraction of firms with an investment that is greater than 1% but smaller than

20% of existing capital stock. Only a negligible fraction of firms make a negative investment in

both data and the model as the average spike ratio and positive investment sum to unity. To

discipline the aggregate TFP-driven fluctuations in the model, I target the output volatility

calculated from annual National Income and Product Accounts (NIPA) data.

Table 5: Calibrated Parameters

Parameters Description Value

Internally calibrated parameters
ζ Fixed cost curvature 3.500

ξ Fixed cost upperbound 0.440
µI Capital adjustment cost 0.780
ν Small investment range 0.041
σ Standard deviation of idiosyncratic TFP 0.130
σA Standard deviation of aggregate TFP shock 0.025

Externally estimated parameters
ρ Persistence of idiosyncratic TFP 0.750

Notes: Parameters in the upper part of the table are calibrated to match the moments in Table
4. The persistence of idiosyncratic TFP is directly computed from fitting the estimated firm-level
TFP (Compustat) into AR(1) process. The firm-level TFP is estimated following Ackerberg et al.
(2015) using US Compustat data.

In the model, variations in the fixed cost parameter and convex adjustment cost parameter

lead to a sharply divergent effect on the dispersion of investment rate (investment-to-capital

ratio), while both lowers the average investment rate. For a higher fixed cost parameter

(still in a moderate range), the dispersion of investment rate is higher as the difference in

the investment rate between extensive margin adjusters and non-adjusters increases.26 On

the other hand, a higher convex adjustment cost uniformly mutes down the investment rate,

26If a fixed cost is too high, the fraction of adjusters become too small to have a meaningful contribution
to the investment rate dispersion.
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leading to a lower dispersion in the investment rate. These two divergent effects, together

with the average investment rate, identify the fixed and convex adjustment cost parameters.

The fixed cost curvature parameter ζ is identified from the cross-sectional semi-elasticity

ratio between small and large firms. As ζ increases beyond unity, the large firms’ interest elas-

ticity decreases through both the extensive and the intensive margins. The extensive margin

channel operates by making it harder for larger firms to make a large-scale investment even

if the interest rate decreases. The intensive margin channel operates through the selection

effect on the adjusting large firms: those who remain to adjust the capital even when a fixed

cost increases are on average less interest elastic firms than those marginal firms that change

their adjusting stance when a fixed cost increases. The calibrated level of ζ is 3.5, which I

interpret 3.5 establishments are involved per production line on average.

As can be seen from Table 4, the baseline model (column 1) can correctly capture the

cross-sectional elasticity ratio between small and large firms. Therefore, the baseline model

provides an appropriate framework for analyzing the role of large firms’ investment on the

dynamic stochastic general equilibrium. This is a novel contribution to the literature as the

cross-section of the interest elasticity is not well-captured in the existing model framework.

Figure 3: Semi-elasticities of investments across different models
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(a) Baseline
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(b) Fixed cost only
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(c) Convex + Fixed

Notes: The figure plots the deviation of investment from the steady-state level when the interest rate changes
for each different model. The vertical axis is the interest rate in per cent, and the horizontal axis is the
percentage deviation from the steady-state investment. The horizontal dotted line indicates the equilibrium
interest rate.

Figure 3 visualizes the large and small firms’ interest elasticities for the baseline model

(panel (a)), for a model with fixed cost only (panel (b)), and for a model with convex and

fixed cost (panel (c)).27 In each panel, the vertical axis is the interest rate in per cent, and the

horizontal axis is the percentage deviation from the steady-state investment. The horizontal

dotted line indicates the equilibrium interest rate. As the interest rate decreases, all models’

average deviation of investment from the steady-state increases. However, in the model with

convex and fixed adjustment cost (panel (c)), the large firms’ average deviation of investment

27The model with convex and fixed adjustment cost is a prototype of the models in Winberry (2021) and
Koby and Wolf (2020).
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from the steady-state increases faster than small firms as the interest rate decreases. In the

model with a fixed cost only, the interest elasticities of all groups are significantly higher than

the ones in the other two models, as can be checked from the large-scale variation along the

horizontal axis.

Table 6 compares the semi-elasticities of investment to the interest rate change for different

models. The first column is the result from the calibrated baseline model; the second is from

the model with fixed adjustment cost only; the third is from the model with convex adjustment

cost only; the fourth is from the benchmark model with convex and fixed adjustment costs;

the fifth is from the model with convex and linearly size-dependent fixed adjustment costs;

the last is from the model with convex and linearly size-dependent fixed adjustment costs.28

The first four rows of the table report the elasticities of investment conditional on Iijt > 0

where i is a firm index, j is a size group indicator, and t is the time subscript; the next

four rows report the extensive margin elasticities; the following four rows report the intensive

margin elasticities; the last four rows report the spike ratio elasticities.29 The elasticity of

investment is as defined in section 3.3. I calculate the average between the elasticity measured

when the interest rate increases by 1% and the one measured when the interest rate decreases

by 1% to address the asymmetry in the responses to the positive and negative interest rate

shocks.

In the table, there are two additional interest elasticities to be defined. The extensive

margin elasticity of group j ∈ {All, Small, Large} is defined as the average contemporaneous

change in the firm-level investment driven by extensive margin probability changes in per cent

from the steady-state when the interest rate changes by 1%. Therefore, the investment policy

functions are fixed at the steady-state level, while the extensive margin probabilities deviate

from the steady-state:

Elasticityextjt =

∫
{Iijt>0}∆log(Issijtψijt + Iss,cijt (1− ψijt))dΦj

∆rt

where ψijt is the extensive margin adjustment probability; Iijt is then investment after fixed

cost is paid and Icijt is the investment when the fixed cost is unpaid; Φj is the joint distribution

of firms conditional on group j. The intensive margin elasticity of group j is defined as the

average contemporaneous change in the firm-level investment driven by investment magnitude

changes in per cent from the steady-state when the interest rate changes by 1%. Therefore,

the extensive margin probability is fixed at the steady-state level, while the investment policy

28Each model is calibrated to match the same moments as in the baseline calibration, except for the cross-
sectional elasticity ratio. For the models with fixed adjustmet cost only and with a convex adjustment costs
only, I did not match the cross-setional dispersion of iit/kit as these models have one fewer parameter than
the others.

29Following Zwick and Mahon (2017), I define the elasticty conditional on Iijt > 0 as investment elasticity.
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functions deviate from the steady-state.

Elasticityintjt =

∫
{Iijt>0}∆log(Iijtψ

ss
ijt + Icijt(1− ψssijt))dΦj
∆rt

.

According to Table 6, the aggregate investment elasticity of 6.63 is consistent with the

empirical findings in Zwick and Mahon (2017); the small-to-large elasticity ratio of 2.13 is

also close to the empirical level. The response of investment is further decomposed into the

extensive and intensive margins. Each margin accounts for an almost identical portion of the

total response in the baseline model. However, the small-to-large elasticity ratios are greater

in the extensive margin response than the intensive margin.

Table 6: Semi-elasticity of investment across the models and the decomposition

Baseline Fixed Convex Benchmark Linear-Fixed Quadratic-Fixed

Investment
All 6.63 382.73 18.18 5.01 5.49 5.87
Small 9.85 313.76 14.8 4.32 5.41 7.06
Large 4.62 481.93 21.79 6.99 6.38 4.65
S/L ratio 2.13 0.65 0.68 0.62 0.85 1.52

Ext. margin
All 3.34 84.63 2.58 2.94 3.37
Small 4.63 90.72 2.89 3.6 4.38
Large 1.99 74.28 2.27 2.29 2.35
S/L ratio 2.32 1.22 1.27 1.57 1.86

Int. margin
All 3.28 152.6 18.18 2.43 2.54 2.5
Small 5.21 95.89 14.8 1.43 1.81 2.67
Large 2.62 244.77 21.79 4.71 4.09 2.29
S/L ratio 1.99 0.39 0.68 0.3 0.44 1.17

Spike ratio
All 1.3 25.61 1.97 1.04 1.27 1.33
Small 2.36 37.97 0.74 1.24 1.67 2.42
Large 0.98 16.39 1.35 1.14 0.91 1.06
S/L ratio 2.4 2.32 0.55 1.09 1.84 2.29

Notes: The semi-elasticities of investment variables are computed from contemporaneous response to an
interest rate change in the partial equilibrium. To address the asymmetry between responses to the positive
and negative interest rate shocks, I report the average responses to the positive 1% and negative 1% interest
rate changes.

As can be seen from the columns other than the second and the third in Table 6, the

aggregate investment elasticities are well-matched with the empirical level once we consider

both convex and fixed adjustment costs. Especially, the inclusion of convex adjustment cost
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dramatically dampens the aggregate elasticity, as can be seen from the aggregate elasticity in

the third column compared to that of the second column (Winberry, 2021; Koby and Wolf,

2020). Again, this is consistent with the theoretical prediction of Proposition 2.

The cross-sectional elasticity ratio between small and large in other models than the base-

line cannot match the empirical estimate of 1.95 from Zwick and Mahon (2017). However,

as the fixed cost becomes size-dependent and as the intra-firm interdependence across estab-

lishments rises, the cross-sectional elasticity ratio increases. From the middle and lower part

of the table, the size-dependence and the intra-firm linkages increase not only the extensive

margin S/L ratio but the intensive margin S/L ratio. This is due to the selection effect on

those large firms that remain to adjust despite the higher fixed cost.

Finally, I compare the business cycle statistics implied in the baseline model with the

aggregate-level data. The aggregate-level data at the annual frequency is from NIPA data,

and the sample period starts from 1955. All the variables are logged and linearly detrended.

Figure 7 reports the business cycle statistics from the data and the model. Among the

statistics, the time-series volatility of the logged output is the targeted moment.

The correlations across the aggregate variables in the baseline model are well-matched

with the observed level in the data. Especially, the autocorrelation of aggregate investment

and the cross-correlation between the aggregate investment and output are sharply matched

even if they are not the targeted moment. For the relative volatilities of consumption and

investment, the model’s moments are slightly lower than the observed level.

Table 7: Business cycle statistics

Data Model

corr(Yt, Yt−1) 0.941 0.843
corr(It, It−1) 0.742 0.742
corr(Ct, Ct−1) 0.954 0.903
corr(It, Yt) 0.795 0.796
corr(Lt, Yt) 0.898 0.771
corr(Ct, Yt) 0.978 0.980
sd(Yt) 0.060 0.065
sd(It)/sd(Yt) 1.976 1.809
sd(Ct)/sd(Yt) 0.945 0.823

Notes: The business cycle statistics are obtained from the simulated data using the dynamic
stochastic general equilibrium allocations. 5,000 firms are simulated for 1,000 periods (years). All
the variables are logged and linearly detrended. The data counterpart is from NIPA data.

5.2 Synchronization

In this section, I analyze how the large and small firms respond to the same productivity

shock using the impulse response analysis. Figure 4 plots the impulse responses of the spike
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ratios of all, large, medium, and small firms to the one-standard deviation negative aggregate

TFP shock.30 The medium firms are those in the 30th to 70th percentile range in the capital

distribution. The impulse response is obtained from the method that computes the transition

path to the stationary allocation after an unexpected negative one-standard deviation TFP

shock, as described in Boppart et al. (2018). All the responses are expressed in percentage

deviation from the steady-state level.

Figure 4: Impulse response of spike ratio
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Notes: The impulse response of spike ratios are obtained from the transition dynamics
to the stationary equilibrium allocations after an unexpected negative one-standard-
deviation TFP shock.

Upon the arrival of the negative aggregate TFP shock, all the firms’ extensive margin

investment timings are synchronized. It is because firms realize it is not a good idea to install

new large-scale capital as the business prospect is not promising in the near future. So,

firms that are ready for the extensive margin investment tend to delay the plan, leading to

synchronized timings of large-scale investments. The dynamics of investment timings after

this initial synchronization are starkly different across the different firm sizes.

For large firms, initial synchronization leads to a surge in spiky investments. This is

because the large firms are interest-inelastic in the model and thus strictly less affected by the

general equilibrium effect.31 An aggregate shock that contemporaneously incurs a 7% drop in

the fraction of firms making large-scale investments leads to a 4% surge of the fraction in the

subsequent period. The surge of large firms’ lumpy investment is a consistent phenomenon

with the empirical patterns observed in post-recession periods as in Figure 1.32

On the other hand, the synchronized investment timings of small and large firms are

30The shock is assumed to be as persistent as the calibrated aggregate TFP shock.
31The synchronization of large firms’ investment timings is not the unique feature of the baseline model as

it is observed in the benchmark model. This is because the extensive margin elasticity is still greater for large
firms than small firms in the benchmark, as can be seen in Table 6. However, the magnitude of the surge is
around 80% greater in the baseline model than in the benchmark model.

32It is worth noting that after the peak of the synchronized investments, the spike ratio moves in the
opposite direction to the TFP dynamics.
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spread out over the post-shock period. This is because the general equilibrium effect makes

the small and large firms deviate from the concentrated period for large-scale investment. In

other words, the general equilibrium effect strongly smooths their investment timings.

In the following section, I study how the nonlinearity in the large firms’ spiky investments

affects the business cycle under aggregate uncertainty.

5.3 Fragility after a surge of lumpy investments

In this section, I study how the synchronized investment timings of large firms affect the

aggregate investment dynamics over the business cycle. First, I define a fragility index that

captures how large fraction of large firms have just finished large-scale investments as follows:

Fragilityt :=

∑
I{sit ≤ s}I{kit > k}∑

I{kit > k}

where sit is the time from the last lumpy investment; s is the threshold where any firm i

with sit below the level has recently adjusted its capital in the extensive margin; k is the

size threshold of large firms. If a great fraction of large firms have just finished a large-

scale investment, a relatively small fraction of large firms are willing to make a large-scale

investment due to the presence of the fixed adjustment cost. Over the business cycle, the

fluctuations in this index interplay with the exogenous TFP fluctuations, as the following

analyses will conclude.

In both the model and the data, the median duration between two lumpy investments is

6 years. I set s as the half of this period, three years. In the regression that includes the

fragility index, reported in Table 9, I found s = 3 maximizes the fitness of the regression.

The size cutoff k is set at the top 30th percentile of capital distribution in the simulated data

and at the top 60th percentile in the Compustat data.33

It is worth noting that the fragility index is constructed from the readily observable

micro-level variables. Especially, the measure is based on the past investment history of large

firms, which are mostly listed and subject to financial reporting regulations. Therefore, the

index can be measured in a timely manner and can contribute to predicting the near future

of aggregate investment. This is a stark contribution to the existing responsiveness indices

defined in the literature (Bachmann et al., 2013; Caballero and Engel, 1993).

Figure 5 shows the time series of fragility index and spike ratio in the simulation (panel

(a))and the data (panel (b)), where each series is normalized by the standard deviation. In

both panels, the time-series of spike ratio leads the fragility index by two to three years.

As the average inaction takes around six years, around three years after a surge of lumpy

investment (spike ratio), a trough is expected to arrive. By the definition of the fragility

index, during this trough of lumpy investment, the index will rise, indicating only a small

33From the note in Table B.1 of Zwick and Mahon (2017), I check that the top 60% Compustat firms
correspond to the top 30% firms in Zwick and Mahon (2017). In the model of this paper, large firms are
defined as top 30% firms in terms of capital.
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Figure 5: Time-series of fragility indices in simulation and data
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Notes: Using the histogram method in Young (2010), firms are simulated for 1,000 periods (years) based on
the dynamic stochastic general equilibrium allocations. Panel (a) plots a part of the simulated allocations.
The solid line plots the aggregate investment growth rate (%). The dotted line plots the fragility indices
normalized by the standard deviation. The fragility indices are calculated based on the distribution of large
firms.

fraction of firms are willing to make a lumpy investment. Therefore, the growth rate of spike

ratio and the fragility index comove in the opposite direction. Figure 6 is the scatter plot of

the simulated time-series where the horizontal axis is the fragility index normalized by the

standard deviation, and the vertical axis is the growth rate of large firms’ spike ratio.34 By

fitting the relationship between the fragility and the growth rate of spike ratio into linear

regression, I find the following relationship:

∆log(SpikeRatiot)(%) =− 1.8936 ∗ Fragilityt (s.d.) + εt, R2 = 0.828

(0.0274)

The relationship indicates that one standard deviation increase in fragility is associated with

the growth rate of the large firms’ spike ratio by 1.89%. As can be seen from the high R2, these

two variables are tightly related over the business cycle. While the growth rate of the large

firms’ spike ratio is not known before period t, the fragility index is known ahead of period

t. This implies the growth rate of the large firms’ spike ratio features a state-dependence;

the fragility index has predictability for the one-period-ahead growth rate of the large firms’

spike ratio.

Then, I study how the fluctuations in the fragility index affect the growth of aggregate

investment combined with the TFP fluctuations. Table 8 reports the regression result of the

following specification in both the model and the data:

∆log(It) = α + βOutputShockOutputShockt + βFragilitylog(Fragilityt) + εt

34The past aggregate shock At−1 and the contemporaneous shock At are controlled by taking out fixed
effects. The different colors of the dots are for different combinations of At−1 and At.
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Figure 6: Fragility index and the growth rate of the large firms’ spike ratio
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Notes: The vertical axis of the scatter plot is the spike ratio in percentage deviation from the
average, and the horizontal axis is the fragility index in the standard deviation from the average.
Using the histogram method in Young (2010), firms are simulated for 1,000 periods (years) based
on the dynamic stochastic general equilibrium allocations. The fragility indices are calculated
based on the distribution of large firms.

where ∆log(It) is the aggregate investment. OutputShockt is a shock in the logged output,

obtained from the residuals in the AR(1) fitting of the logged output process. The aggregate

investment and output data are from NIPA data. For the simulated result, I proxy the output

shock by the TFP shock as this is the only exogenous source of the output variation and can

be explicitly measured. In this specification, OutputShockt exogenously arrives at t, while

the Fragilityt is determined at t− 1. Therefore two variables are independent of each other.

As reported in Table 8, the coefficient estimates from the model and data are statistically

indifferent. When the fragility index increases by 1%, aggregate investment decreases by

0.175% and 0.140% in the model and the data. The negative effect of the fragility index on

the aggregate investment growth is due to the lack of lumpy investments from large firms.

In Table D.6, I report the full regression results under different fragility indices and different

specifications. In the fourth column of the full table, when the output shock is the only

independent variable in the regression, around 51% of the investment growth rate variation

is explained. Once the fragility fluctuation is considered, R2 increases to 63%.

Using the estimate from the data in 8, I quantify the portion of the investment growth

rate that is accounted for by the fluctuations in the fragility index. From the total standard

deviation comparison, around 36% of aggregate investment volatility can be explained by

the fragility fluctuations (0.36 u 0.022/0.060). Table 9 compares the investment growth rate

and the fragility-adjusted investment growth rate in the recent three recessions of the sample

period. The fragility is adjusted by deducting the predicted variation by the fragility index

from the investment growth rate. In stark contrast to the other recessions, the recession in

2001 was greatly explained by the fragility fluctuations. Without the fragility fluctuations,

the investment growth rate is mitigated to -4.340% instead of 7.627%, which is around a 43%
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Table 8: Regressions of investment growth rate on fragility indices

Dependent variable: ∆log(It)

Model Data

OutputShockt 2.868 3.231
(0.025) (0.477)

log(Fragilityt) -0.175 -0.140
(0.005) (0.047)

Constant Yes Yes
Observations 1,001 32
R2 0.936 0.628
Adjusted R2 0.935 0.602

Notes: The dependent variable is the growth rate of aggregate investment. The independent
variables are TFP shocks obtained from fitting TFP series into AR(1) process, log of lagged fragility
indices, and the growth rates of the fragility indices. The first column reports the regression
coefficients from the simulated data. The fragility index is based on the years from the last lumpy
investment of large firms. The second column reports the regression coefficients using a measure
based on the years from the last lumpy investment of large firms in Compustat data. Output shock
process is from NIPA. The numbers in the brackets are standard errors.

deduction in terms of magnitude. This is consistent with the well-known facts around the

dot-com bubble crash, which caused the recession in 2001. Just before the crash, a great

fraction of firms had jumped into a large-scale investment. This surge of lumpy investments

increased the U.S. economy’s fragility in the subsequent period.

Table 9: Investment growth rates during the recessions

Investment growth rate (%):∆log(It)

Raw data (NIPA) Fragility-adjusted Adjusted portion (%)

Recession-1991 -2.140 -1.889 11.729
Recession-2001 -7.627 -4.340 43.097
Recession-2009 -16.359 -16.551 -1.174

Notes: The first column reports the investment growth rate (%) at recession years of 1991, 2001,
and 2009. The second column reports the adjusted investment growth rate after removing the
predicted component from the fragility indices using the coefficients of the third column in Table
8. The third column reports the adjusted portion (%).

The recession in 1991 was the mildest recession among the recent recessions, and the

component explained by fragility is not large (11.7%). The recession in 2009 is different

from the others as the fragility index does not even predict the drop in investment growth.

Despite the sharp rise in the fraction of lumpy investments in the prior years to the event, the

fragility index did not rise much because the rise was concentrated into only a short period.
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In contrast, the drop in the investment rate was the largest among the recent three recessions.

There are two possible explanations for this inconsistency. The first is that the nature of the

aggregate shock in 2009 was different from the ones in the prior recessions. The shock in 2009

originated from the financial sector, and the first-hand effect was likely through the financial

constraint. Therefore, the firms most affected were small firms (Fort et al., 2013). As fragility

fluctuations affect the aggregate investment through large firms’ lumpy investments, it cannot

sufficiently explain financial crisis. Second, the financial crisis was the largest recession after

the Great Depression before the recent Covid recessions. Therefore, the magnitude of the

exogenous shock might have been greater than the ones in the prior recessions.

To quantify the extra-response of aggregate investment coming from the fragility fluc-

tuations at each time on the business cycle, I hit the economy with an unexpected one-

standard-deviation TFP shock and compute the contemporaneous response under the general

equilibrium. Figure 7 shows the state-dependent contemporaneous responses of aggregate in-

vestment.35 The horizontal axis is the fragility index normalized by the standard deviation.

The vertical axis is the deviation of aggregate investment response from the response at the

steady-state in a percentage point. The prior aggregate shock At−1 is controlled by teasing

out the fixed effect, and the different colors of dots represent the different fixed-effect groups.

Here the fragility index at t is a state of the economy at t as the index is determined before

the beginning of period t.

Figure 7: State-dependent instantaneous responses to a negative aggregate TFP shock
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Notes: The vertical axis of the scatter plot is the instantaneous response of aggregate investment
to a negative one-standard-deviation TFP shock in percentage deviation from the average, and
the horizontal axis is the fragility index in the standard deviation from the average. In each
responses, contemporaneous and one-period-prior aggregate TFP fixed effects are controlled. Using
the histogram method in Young (2010), firms are simulated for 1,000 periods (years) based on the
dynamic stochastic general equilibrium allocations. The fragility indices are calculated based on
the distribution of large firms.

35Figure 2 can be understood as a data counterpart of this figure, as the residualized investment variation
increases in the average of the recent spike ratio of large firms.
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As can be seen from the figure, there is a significant negative relationship between the

contemporaneous response of aggregate investment and the fragility index. By fitting the

relationship into linear regression, I obtain the following result:

g(It) (p.p.) =− 0.5605 ∗ Fragilityt (s.d.) + εt, R2 = 0.580

(0.0151)

When the fragility index increases by one standard deviation, the contemporaneous response

of the aggregate investment to the negative one-standard-deviation shock decreases by 0.56

percentage points. This result shows that the fragility fluctuations amplify the productivity-

driven aggregate fluctuations.

5.4 Policy implication: State-dependent interest elasticity of ag-

gregate investment

In this section, I discuss the policy implications of the fluctuations of the fragility index over

the business cycle. In the economy captured in the baseline model, the aggregate investment

features a strong history-dependence. This history-dependence not only affects the aggregate

investment’s response to the TFP shock but affects its elasticity to the interest rate change.

To study how the aggregate investment responds differently to the same interest shock

depending on the fragility state, I hit the economy with an unexpected interest rate shock

and compute the contemporaneous response under the partial equilibrium.36 In particular,

I compare the contemporaneous average change in the investment when the interest rate

unexpectedly changes and returns immediately in the subsequent period to the level where

the interest is supposed to be without the exogenous shock. The benchmark investment level

is the contemporaneous investment when the interest rate is assumed to be staying at the

same level. I calculate the average between the elasticity measured when the interest rate

increases by 1% and the one measured when the interest rate drops by 1% to address the

asymmetry in the responses to the positive and negative interest rate shocks.37

Figure 8 is the scatter plot of the interest elasticities of the aggregate investment in relation

to the fragility state. The horizontal axis is the fragility index normalized by the standard

deviation; the vertical axis is the interest elasticity in percentage point deviation from the

steady-state.38 According to the figure, there is a significant negative relationship between

the fragility and the interest elasticity of aggregate investment. By fitting the relationship

36Therefore, the analysis is measuring the semi-elasticity of investment at each timing on the business cycle.
37For example, if the interest is 0.03 at period t, I first compute the firm-level investment in three cases: i)

when the interest rate jumps up to 0.04 only in period t and then stays in 0.03; ii) when the interest rate drops
down to 0.02 only in period t and then stays in 0.03; iii) when the interest rate stays at 0.03 forever. Then,
I obtain the mean of the investment difference between case iii) and case i) and the investment difference
between case iii) and case ii).

38The prior aggregate shock At−1 is controlled by teasing out the fixed effect, and the different colors of
dots represent the different fixed-effect groups.
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Figure 8: State-dependent semi-elasticities of aggregate investment
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Notes: The vertical axis of the scatter plot is the semi-elasticity of aggregate investment in percent-
age point deviation from the average, and the horizontal axis is the fragility index in the standard
deviation from the average. For each elasticity, contemporaneous and one-period-prior aggregate
TFP fixed effects are controlled. Using the histogram method in Young (2010), firms are simu-
lated for 1,000 periods (years) based on the dynamic stochastic general equilibrium allocations.
The fragility indices are calculated based on the distribution of large firms.

into linear regression, I obtain the following result:

∆Elasticityt (p.p) =− 0.2689 ∗ Fragilityt (s.d) + εt, R2 = 0.497

(0.0086)

One standard deviation increase in the fragility index decreases the interest elasticity of

aggregate investment by around 0.27 percentage points. The intuitive explanation for the

result is that when the fragility index is high, there are not many large firms that can flexibly

participate in and out of the large-scale investment. This decreases the interest elasticity of

aggregate investment in a high fragility state.

To verify the interest elasticity fluctuations in the aggregate investment are driven by

large firms, I separately compute the interest elasticities of large and small firms’ investments.

Figure 9 is the scatter plots of interest elasticities along with the fragility variation for large

(panel (a)) and small firms (panel (b)). The negative relationship the fragility index and the

elasticity is significantly stronger in large firms. When two different elasticities are fitted into

linear regression, the following relationship is obtained:

∆ElasticityLarget (p.p) =− 0.3992 ∗ Fragilityt (s.d) + εt, R2 = 0.484

(0.0130)

∆ElasticitySmallt (p.p) =− 0.1403 ∗ Fragilityt (s.d) + εt, R2 = 0.569

(0.0039)
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Figure 9: State-dependent semi-elasticities of investments: Decomposition
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(a) Large firms
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(b) Small firms

Notes: The vertical axis of the scatter plots is the semi-elasticity of large (panel (a)) and small
(panel (b)) firms’ investment in percentage point deviation from the average, and the horizontal
axis is the fragility index in the standard deviation from the average. For each elasticity, contem-
poraneous and one-period-prior aggregate TFP fixed effects are controlled. Using the histogram
method in Young (2010), firms are simulated for 1,000 periods (years) based on the dynamic
stochastic general equilibrium allocations. The fragility indices are calculated based on the distri-
bution of large firms.

When the fragility index increases by one standard deviation, large firms’ investment elastic-

ity decreases by around 0.40 percentage points. On the other hand, the same variation in the

fragility index decreases small firms’ elasticity by 0.14 percentage points, and the difference

is statistically significant. The time-series correlation between the elasticities of the aggre-

gate investment and the large firms’ elasticities is 0.99. This result shows that large firms

dominantly drive the stark negative relationship between the average interest elasticities (of

all firms) and the fragility index. Although large firms are interest-inelastic, the time-series

variation in their interest elasticities is greater than those of small firms. This is because

large firms’ responses are highly state-dependent, while small firms are flexible to adjust at

all times, possibly due to their small fixed adjustment cost.

An important policy implication of the simulated result is that if the fragility index is

high, the monetary policy would not effectively operate through the firm-level investment

channel. Given there were recessions in the recent periods that happened in the time of

high fragility, the policy implication echoes Tenreyro and Thwaites (2016) that monetary

policies are less powerful during recessions. However, this paper adds to the findings by

suggesting an endogenous mechanism of state dependence in monetary policy effectiveness.

And importantly, the fragility index is a forward-looking variable and can be measured in a

timely manner using readily observable large firms’ data. Therefore, the fragility index can

contribute to the optimal monetary policy design in the practical margin.

41



6 Conclusion

This paper develops a heterogeneous-firm real business cycle model in which the cross-section

of the semi-elasticities of firm-level investment is matched with the empirical estimates. I

theoretically and quantitatively point out that the cross-sectional ranking of the interest

elasticities of investment between large and small firms is counterfactually flipped in existing

model frameworks. Then, I incorporate a size-dependent fixed adjustment cost along with

the convex adjustment cost into the model, which is conceptually based on the aggregated

fixed adjustment cost at the production line level. These two adjustment costs help the model

capture the cross-section of the elasticities consistent with the empirical estimates.

In the calibrated model, I show that the timings of large firms’ lumpy investments are

significantly synchronized following a negative TFP shock due to their low elasticity to the

general equilibrium effect. This pattern is consistent with the firm-level data, as there have

been synchronized lumpy investments of large firms in the post-shock periods. Then, from the

state-dependent variation in the contemporaneous responses to the same negative aggregate

TFP shock, I conclude that TFP-induced recessions are especially severe after a surge of large

firms’ lumpy investments. Also, the model features significant state-dependence in the interest

elasticities driven by fragility index fluctuations. This implies that after a synchronized

lumpy investment of large firms, the effectiveness of monetary policy falls due to the inelastic

aggregate investment.
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A Appendix: Tables and figures

A.1 Conditional heteroskedasticity: Regression result

Table A.1: Residual volatility of aggregate investment and spike ratios

Dependent variable: log(σ̂t)
Large Non-large

spiket−1 (%) 0.337 0.077
(0.138) (0.074)

Constant −4.131 −2.317
(1.290) (1.270)

Observations 35 35
R2 0.154 0.032
Adjusted R2 0.128 0.002

Notes: The dependent variable is the logged absolute value of the residuals from fitting the ag-
gregate investment to capital ratio into AR(4) process. The independent variables are the past
average spike ratio, spiket−1, and the intercept.

spiket−1 is defined as follows:

spiket−1 :=
1

J

J−1∑
j=0

SpikeRatiot−1−j

SpikeRatiot :=
#Extensive margin adjustmentt

#Firmst

where J is the number of past years to be included in the average. In the reported result, I

use J = 3. The result is robust over J = 1, 2, 4.
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B A theory of the interest elasticity and the firm size:

The cross-section of interest elasticity

B.1 A model with convex adjustment cost : Propositions

Proposition 1 (Size-monotonicity in the interest elasticity).

Given µ > 0, the following inequalities holds:

(i)
∂

∂k

(
∂k∗

∂q

)
> 0 for ∀k > 0

(ii)
∂

∂k

(
∂logk∗

∂q

)
> 0 for ∀k > 0

(iii)
∂

∂k

(
∂I∗

∂q

)
> 0 for ∀k > 0

(iv)
∂

∂k

(
∂logI∗

∂q

)
> 0 if I∗ > 0.

Proof.

log

(
1 + µ

(
I∗

k

))
= log (qEz′α) + (α− 1)log ((1− δ)k + I∗)

The equation above holds for all possible k and q. I take a partial derivative with respect to

q for both sides of the equation.(
µ

k + µI∗

)
∂I∗

∂q
=

1

q
+ (α− 1)

1

(1− δ)k + I∗
∂I∗

∂q

Rearranging the terms, I get the following equations:(
µ

k + µI∗
+

1− α
(1− δ)k + I∗

)
∂I∗

∂q
=

1

q(
µ

k + µI∗
+

1− α
k∗

)
∂I∗

∂q
=

1

q
(6)

where k∗ = (1− δ)k + I∗. Then, I take a log for both sides.

log

(
µ

k + µI∗
+

1− α
k∗

)
+ log

(
∂I∗

∂q

)
= −log(q)

The equation above holds for all possible k and q. I take a partial derivative with respect to
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k for both sides of the equation.

1
µ

k+µI∗
+ 1−α

k∗

(
− µ

(k + µI∗)2

(
1 + µ

∂I∗

∂k

)
− 1− α

k∗2
∂k∗

∂k

)
+

∂

∂k
log

(
∂I∗

∂q

)
= 0

Therefore,

∂

∂k
log

(
∂I∗

∂q

)
=

1
µ

k+µI∗
+ 1−α

k∗

(
µ

(k + µI∗)2

(
1 + µ

∂I∗

∂k

)
+

1− α
k∗2

∂k∗

∂k

)
.

Due to Lemma 1, all the terms on the right-hand side are positive except for
(
1 + µ∂I

∗

∂k

)
.

Thus, the following statement holds:(
1 + µ

∂I∗

∂k

)
> 0 =⇒ ∂

∂k
log

(
∂I∗

∂q

)
> 0.

Going back to the inter-temporal optimality condition, I multiply k in the both sides to have

k + µI∗ = qEz′α(k∗)α−1k.

Then, I take a log and a partial derivative with respective to k. It leads to

1 + µ∂I
∗

∂k

k + µI∗
=

(α− 1)

k∗
∂k∗

∂k
+

1

k

=
1

k

(
(α− 1)

k

k∗
∂k∗

∂k
+ 1

)
=

1

k

(
1− (1− α)

∂logk∗

∂logk

)
.

From Lemma 2, ∂logk∗

∂logk
< 1. Also I assume α < 1. Therefore, the right-hand side is positive.

The denominator on the left-hand side is also positive because k+µI∗ = qEz′α(k∗)α−1k > 0.

Therefore, ∂
∂k
log
(
∂I∗

∂q

)
> 0. Then,

(iii)
∂

∂k

(
∂I∗

∂q

)
=

(
∂I∗

∂q

)
∂

∂k
log

(
∂I∗

∂q

)
> 0.

The right-hand side is positive because ∂I∗

∂q
> 0 from equation (6). This result is formally

stated in Lemma 3. As ∂I∗

∂q
= ∂k∗

∂q
, I conclude (i) ∂

∂k

(
∂k∗

∂q

)
> 0 for ∀k > 0.

Now I will prove (ii) ∂
∂k∂q

log(k∗) > 0 and (iv) ∂
∂k∂q

log(I∗) > 0.

From Equation (6), the following is true:(
µ

k + µI∗
k∗ +

1− α
k∗

k∗
)

1

k∗
∂k∗

∂q
=

1

q
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As ∂
∂k

(
∂log(k∗)

∂q

)
= ∂

∂k
1
k∗

(
∂k∗

∂q

)
,

(
µ

k
k∗

+ µ I
∗

k∗

+ 1− α

)
∂log(k∗)

∂q
=

1

q
.

From I∗ = k∗ − (1− δ)k, (
µ

k−µ(1−δ)
k∗

+ µ
+ 1− α

)
∂log(k∗)

∂q
=

1

q
.

I take the partial derivatives with respect to k on both sides.

∂

∂k

(
µ

k−µ(1−δ)
k∗

+ µ
+ 1− α

)
∂log(k∗)

∂q
+

(
µ

k−µ(1−δ)
k∗

+ µ
+ 1− α

)
∂

∂k

∂log(k∗)

∂q
= 0.

By rearranging the terms, I obtain(
µ

k−µ(1−δ)
k∗

+ µ
+ 1− α

)
︸ ︷︷ ︸

>0

∂

∂k

∂log(k∗)

∂q
= − ∂

∂k

(
µ

k−µ(1−δ)
k∗

+ µ
+ 1− α

)
∂log(k∗)

∂q︸ ︷︷ ︸
>0

.

From Lemma 3, ∂log(k∗)
∂q

= 1
k∗

∂k∗

∂q
= 1

k∗
∂I∗

∂q
> 0. Also,

(
µ

k−µ(1−δ)
k∗ +µ

+ 1− α
)
> 0. Therefore,

the sign of ∂
∂k

∂log(k∗)
∂q

is equal to the sign of − ∂
∂k

(
µ

k−µ(1−δ)
k∗ +µ

+ 1− α
)

. Then, I investigate

the sign of − ∂
∂k

(
µ

k−µ(1−δ)
k∗ +µ

+ 1− α
)

as follows:
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− ∂

∂k

(
µ

k−µ(1−δ)
k∗

+ µ
+ 1− α

)
=

 µ(
k−µ(1−δ)

k∗
+ µ
)2

( 1

k∗
−

(k − µ(1− δ))∂k∗
∂k

(k∗)2

)

=

 µ(
k−µ(1−δ)

k∗
+ µ
)2

 1

k∗

(
1−

(k − µ(1− δ))∂k∗
∂k

k∗

)

=

 µ(
k−µ(1−δ)

k∗
+ µ
)2

 1

k∗

(
1−

(
1− µ(1− δ)1

k

)
k

k∗
∂k∗

∂k

)

=

 µ(
k−µ(1−δ)

k∗
+ µ
)2

 1

k∗︸ ︷︷ ︸
>0

1−

<1︷ ︸︸ ︷(
1− µ(1− δ)1

k

) >0,<1︷ ︸︸ ︷
∂logk∗

∂logk


︸ ︷︷ ︸

>0

> 0.

From Lemma 1 and Lemma 2, 0 < ∂logk∗

∂logk
< 1. Thus,

(ii)
∂

∂k

∂log(k∗)

∂q
> 0.

Similarly, we can derive the following equation from Equation (6),(
µ

k
I∗

+ µ
+ (1− α)

I∗

k∗

)
︸ ︷︷ ︸

>0

∂

∂k

∂log(I∗)

∂q
= − ∂

∂k

(
µ

k
I∗

+ µ
+ (1− α)

I∗

k∗

)
∂log(I∗)

∂q︸ ︷︷ ︸
>0

.

As I∗ > 0, ∂log(I∗)
∂q

= 1
I∗
∂I∗

∂q
> 0 from Lemma 3. And

(
µ

k
I∗+µ

+ (1− α) I
∗

k∗

)
> 0, as I∗ > 0.

49



Thus, the sign of ∂
∂k

∂log(I∗)
∂q

is equal to the sign of − ∂
∂k

(
µ

k
I∗+µ

+ (1− α) I
∗

k∗

)
.

− ∂

∂k

(
µ

k
I∗

+ µ
+ (1− α)

I∗

k∗

)
= − ∂

∂k

(
µ

k
I∗

+ µ
+

(1− α)

1 + (1−δ)k
I∗

)

=

(
µ(

k
I∗

+ µ
)2

)(
∂

∂k

k

I∗

)
+

1− α(
1 + (1−δ)k

I∗

)2 (1− δ)
(
∂

∂k

k

I∗

)

=

( µ(
k
I∗

+ µ
)2

)
+

1− α(
1 + (1−δ)k

I∗

)2 (1− δ)


︸ ︷︷ ︸

>0

(
∂

∂k

k

I∗

)

And we can drive the sign of
(
∂
∂k

k
I∗

)
as follows:(

∂

∂k

k

I∗

)
=

1

I∗

(
1− k

I∗
∂I∗

∂k

)
=

1

I∗

(
1− k

I∗

(
∂k∗

∂k
− (1− δ)

))
>

1

I∗

(
1− k

I∗

(
k∗

k
− (1− δ)

)) (
∵
∂logk∗

∂logk
< 1, Lemma 2

)
=

1

I∗

(
1− k

I∗

(
I∗

k

))
= 0

Thus,
(
∂
∂k

k
I∗

)
> 0, so − ∂

∂k

(
µ

k
I∗+µ

+ (1− α) I
∗

k∗

)
> 0. Therefore,

(iv)
∂

∂k

(
∂logI∗

∂q

)
> 0 if I∗ > 0.

�

Proposition 2 (Elasticity dampening effect).

Given µ > 0, if I∗ > 0, the following statements hold:

(i)
∂

∂µ

(
∂k∗

∂q

)
< 0

(ii)
∂

∂µ

(
∂logk∗

∂q

)
< 0

(iii)
∂

∂µ

(
∂I∗

∂q

)
< 0

(iv)
∂

∂µ

(
∂logI∗

∂q

){≤ 0 if 1
1−δ ≥ µ

> 0 if 1
1−δ < µ

.
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Proof.

Taking partial derivative with respect to µ on Equation (6), I obtain(
µ

k + µI∗
+

1− α
k∗

)
︸ ︷︷ ︸

>0

∂

∂µ

∂I∗

∂q
= − ∂

∂µ

(
µ

k + µI∗
+

1− α
k∗

)
∂I∗

∂q︸︷︷︸
>0

.

From Lemma 3, ∂I∗

∂q
> 0. And

(
µ

k+µI∗
+ 1−α

k∗

)
> 0, as k + µI∗ = qEz′α(k∗)α−1k > 0. Thus,

the sign of ∂
∂µ

∂I∗

∂q
is equal to the sign of − ∂

∂µ

(
µ

k+µI∗
+ 1−α

k∗

)
.

− ∂

∂µ

(
µ

k + µI∗
+

1− α
k∗

)
= −

k + µI∗ − µ
(
I∗ + µ∂I

∗

∂µ

)
(k + µI∗)2

+ (1− α)
−∂k∗

∂µ

(k∗)2


= −

k − µ∂I∗
∂µ

(k + µI∗)2︸ ︷︷ ︸
>0

+
(1− α)

(k∗)2

∂k∗

∂µ︸ ︷︷ ︸
<0

< 0

From Lemma 4, ∂I∗

∂µ
= ∂k∗

∂µ
< 0. Thus the first term is positive and the second term is

negative. Thus, the sign of the left-hand side is negative. Therefore, (i) and (iii) are proved.

(i)
∂

∂µ

(
∂k∗

∂q

)
< 0

(iii)
∂

∂µ

(
∂I∗

∂q

)
< 0
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From the similar logic, the sign of ∂
∂µ

(
∂logk∗

∂q

)
is equivalent to the sign of − ∂

∂µ

(
µk∗

k+µI∗

)
.

− ∂

∂µ

(
µk∗

k + µI∗

)
= −

(µ∂k
∗

∂µ
+ k∗)(k + µI∗)− µk∗

(
µ∂k

∗

∂µ
+ I∗

)
(k + µI∗)2


= −

(
k∗k + kµ∂k

∗

∂µ
+ µ2 ∂k∗

∂µ
(I∗ − k∗)

(k + µI∗)2

)

= −


k2
(

(1− δ) + I∗

k
+ µ

k
∂I∗

∂µ

)
− µ2

<0 (∵Lemma 4)︷︸︸︷
∂k∗

∂µ
(1− δ)k

(k + µI∗)2


< −

k2
(
I∗

k
+ µ

k
∂I∗

∂µ

)
(k + µI∗)2

 < 0

The last inequality holds because I∗

k
+ µ

k
∂I∗

∂µ
= α(α− 1)qEz′(k∗)α−2 ∂k∗

∂µ
> 0, which is obtained

from taking a partial derivative with respect to µ on the first-order optimality condition.

Therefore, (ii) is proved.

(ii)
∂

∂µ

(
∂logk∗

∂q

)
< 0

From the similar logic, the sign of ∂
∂µ

(
∂logI∗

∂q

)
is equal to the sign of− ∂

∂µ

(
µI∗

k+µI∗
+ (1− α) I

∗

k∗

)
.

− ∂

∂µ

(
µI∗

k + µI∗
+ (1− α)

I∗

k∗

)

= −

(µ∂I
∗

∂µ
+ I∗)(k + µI∗)− µI∗

(
µ∂k

∗

∂µ
+ I∗

)
(k + µI∗)2

+
1− α
(k∗)2

(
k∗
∂I∗

∂µ
− I∗∂k

∗

∂µ

)
= −

(
(µ
k
∂I∗

∂µ
+ I∗

k
)k2

(k + µI∗)2
+

1− α
(k∗)2

(
∂k∗

∂µ

)
(1− δ)k

)

= −

(
(α(α− 1)qEz′(k∗)α−2 ∂k∗

∂µ
)k2

(k + µI∗)2
+

1− α
(k∗)2

(
∂k∗

∂µ

)
(1− δ)k

)

= −1− α
(k∗)2

(
−(αqEz′(k∗)α)k2

(k + µI∗)2
+ (1− δ)k

)(
∂k∗

∂µ

)
From the first-order condition αqEz′(k∗)α−1 = 1 +µ

(
I∗

k

)
. Substituting this into the equation

52



above, I obtain

− ∂

∂µ

(
µI∗

k + µI∗
+ (1− α)

I∗

k∗

)
= −1− α

(k∗)2

(
−

(1 + µ
(
I∗

k

)
)k∗k2

(k + µI∗)2
+ (1− δ)k

)(
∂k∗

∂µ

)
= −1− α

(k∗)2
k

(
−(k + µI∗)k∗

(k + µI∗)2
+ (1− δ)

)(
∂k∗

∂µ

)
=

1− α
(k∗)2

k

(
k∗

k + µI∗
− (1− δ)

)(
∂k∗

∂µ

)
=

1− α
(k∗)2

k(k + µI∗) (k∗ − (1− δ)(k + µI∗))

(
∂k∗

∂µ

)
=

1− α
(k∗)2

k(k + µI∗)I∗ (1− (1− δ)µ)︸ ︷︷ ︸
(∗)

(
∂k∗

∂µ

)
︸ ︷︷ ︸

<0

.

Therefore, depending on the sign of the term (∗) above, the sign of ∂
∂µ

(
∂logI∗

∂q

)
is determined.

(iv)
∂

∂µ

(
∂logI∗

∂q

){≤ 0 if 1
1−δ ≥ µ

> 0 if 1
1−δ < µ

�
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B.2 A model with convex adjustment cost: Lemmas

Lemma 1 (Size-monotonicity in future capital stock).

For ∀k > 0,
∂k∗

∂k
> 0

Proof.

From the inter-temporal optimality condition,

1 + µ

(
k∗

k
− (1− δ)

)
= qEz′α(k∗)α−1.

I take a partial derivative with respect to k:

µ
1

k

∂k∗

∂k
− µk

∗

k
= qEz′α(α− 1)((1− δ)k + I∗)α−2∂k

∗

∂k
.

By rearranging the terms,

∂k∗

∂k
=

µk
∗

k(
µ 1
k
− qEz′α(α− 1)((1− δ)k + I∗)α−2

) > 0.

The last line is from qEz′α(α− 1)((1− δ)k + I∗)α−2 < 0, as α− 1 < 0. �

Lemma 2 (Size-elasticity of future capital stock).

For ∀k > 0,
∂log(k∗)

∂log(k)
< 1

Proof.

By taking log in the both sides of the inter-temporal optimality condition,

log

(
1 + µ

(
k∗

k
− (1− δ)

))
= log(qEz′α(k∗)α−1).

Then, I take a partial derivative with respect to log(k) to obtain

µ ∂
∂logk

(
k∗

k

)
1 + µ

(
k∗

k
− (1− δ)

) = (α− 1)
∂logk∗

∂logk
.

Thus,

µ

∂logk∗

∂logk
k∗

k
− k∗

k

1 + µ
(
k∗

k
− (1− δ)

) = (α− 1)
∂logk∗

∂logk
.
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By rearranging terms, I get(
µ

1 + µ
(
k∗

k
− (1− δ)

) k∗
k
− (α− 1)

)
∂logk∗

∂logk
=

µk
∗

k

1 + µ
(
k∗

k
− (1− δ)

) .
By multiplying 1 + µ

(
k∗

k
− (1− δ)

)
, I get(

µ
k∗

k
− (α− 1)

(
1 + µ

(
k∗

k
− (1− δ)

)))
∂logk∗

∂logk
= µ

k∗

k
.

The, it leads to

∂logk∗

∂logk
=

µk
∗

k

µk
∗

k
− (α− 1)

(
1 + µ

(
k∗

k
− (1− δ)

)) .
From Lemma 1, ∂logk∗

∂logk
> 0 and k∗

k
> 0. Thus the denominator on the right-hand side is also

positive. Therefore, I have the following equivalence:

∂logk∗

∂logk
< 1 ⇐⇒ µ

k∗

k
< µ

k∗

k
− (α− 1)

(
1 + µ

(
k∗

k
− (1− δ)

))
⇐⇒ 0 < (1− α)

(
1 + µ

(
k∗

k
− (1− δ)

))
⇐⇒ 0 < 1 + µ

(
k∗

k
− (1− δ)

)
⇐⇒ 0 < qEz′α(k∗)α−1.

Because the last inequality is true, I conclude ∂logk∗

∂logk
< 1. �

Lemma 3 (Investment monotonicity in discount factor ).

∂I∗

∂q
> 0

Proof. From Equation (6), I have(
µ

k + µI∗
+

1− α
k∗

)
∂I∗

∂q
=

1

q

By rearranging terms, I get

∂I∗

∂q
=

1
q(

µ
k+µI∗

+ 1−α
k∗

) .
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Therefore, the following statement holds:

k + µI∗ > 0 =⇒ ∂I∗

∂q
> 0.

Going back to the inter-temporal optimality condition, I multiply k in the both sides to have

k + µI∗ = qEz′α(k∗)α−1k > 0.

Therefore, ∂I∗

∂q
> 0. �

Lemma 4 (Investment and convex adjustment parameter).

For µ > 0,

∂I∗

∂µ
=
∂k∗

∂µ
< 0 if I∗ > 0.

Proof. From the first-order condition,

1 + µ

(
I∗

k

)
= αqEz′(k∗)α−1

Taking a partial derivative w.r.t µ, I obtain

I∗

k
+
µ

k

∂I∗

∂µ
= α(1− α)qEz′(k∗)α−2∂k

∗

∂µ
.

From I∗ = k∗ − (1− δ)k, ∂I∗

∂µ
= ∂k∗

∂µ
. Then, by rearranging terms, I get

∂I∗

∂µ
=

I∗

kα(1− α)qEz′(k∗)α−2︸ ︷︷ ︸
<0

−µ
k

 < 0.

�

B.3 A model with fixed adjustment cost: Proposition

Proposition 3 (The effect of the firm size and the price on the adjustment probability).

For ∀k s.t. ξ∗(k, q) < ξ(q),

∂ψ(k, q)

∂k

∂ψ(k, q)

∂q
< 0 and

∂

∂k

∂

∂q
ψ(k, q) < 0.

Proof.

As ξ∗(k, q) < ξ, ψ(k, q) = ξ∗(k, q)/ξ. By taking the cross-derivative with respect to q and k
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on ξ∗(k, q), I obtain

∂2ξ∗(k, q)

∂q∂k
= −αEzz′((1− δ)k)α−1(1− δ) < 0.

Thus, ∂
∂k

∂
∂q
ψ(k, q) < 0.

From Proposition 5, ∂ξ∗(k,q)
∂k

< 0 for ∀k < k̂, and ∂ξ∗(k,q)
∂k

> 0 for ∀k > k̂.

By taking a partial derivative with respect to q on F , I obtain

∂ξ∗(k, q)

∂q
= Ez′(k∗)α − Ez′((1− δ)k)α.

Thus, ∂ξ∗(k,q)
∂q

> 0 for ∀k < k∗

(1−δ) = k̂, and ∂ξ∗(k,q)
∂q

< 0 for ∀k > k∗

(1−δ) = k̂.

Therefore, ∂ξ∗(k,q)
∂k

and ∂ξ∗(k,q)
∂q

always take the opposite sign: ∂ξ∗(k,q)
∂k

∂ξ∗(k,q)
∂q

< 0. And the

equality holds when k = k̂. �
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B.4 A model with fixed adjustment cost: Lemmas

Lemma 5 (U-shaped probability of the extensive margin investment).

Given q > 0, there uniquely exist k̂ and k such that

F (k, q) = ξ, ξ∗(k, q) > ξ for ∀k > k, and

∂F

∂k

∣∣∣
k=k̂

= 0

Proof.

ξ∗(k, q) := −I∗ + qEzz′((1− δ)k + I∗)α − qEzz′((1− δ)k)α

After taking a partial derivative with respect to k, I get the following equation:39

∂ξ∗(k, q)

∂k
= (1− δ)− αqEzz′((1− δ)k)α−1(1− δ).

Then, at k = k̂ := (αqEzz′)
1

1−α

1−δ , ∂ξ∗(k,q)
∂k

∣∣∣
k=k̂

= 0. From the first order condition, we can check

(αqEzz′)
1

1−α = k∗. Therefore, k̂ = k∗

1−δ .

Taking another partial derivative with respect to k, I obtain

∂2ξ∗(k, q)

∂k2
= α(1− α)qEzz′((1− δ)k)α−2(1− δ)2 > 0.

Thus, for ∀k < k̂, ∂ξ∗(k,q)
∂k

< 0, and for ∀k > k̂, ∂ξ∗(k,q)
∂k

> 0. Therefore, ξ∗(k, q) > F (k̂, q), for

∀k > k̂.

Then, I consider a limit case where k →∞.

lim
k→∞

ξ∗(k, q) = lim
k→∞
−k∗ + (1− δ)k + qEzz′(k∗)α − qEzz′((1− δ)k)α

= lim
k→∞

(
1

α
− 1

)
k∗ + (1− δ)k − qEzz′((1− δ)k)α︸ ︷︷ ︸

→∞

→∞.

ξ∗(k, q) is continuous. Thus, if ξ ≥ F (k̂, q), from the intermediate value theorem, there exists

k such that F (k) = ξ ≥ F (k̂, q). Then, ξ∗(k, q) > ξ for ∀k > k. If ξ < F (k̂, q), then,

ξ∗(k, q) > ξ for ∀k > 0. �

Lemma 6 (The extensive margin response to interest rate change).

For ∀k ∈ (0, k̂(q))

∂

∂q
ξ∗(k, q) > 0

39The first order condition is applied after taking the partial derivative.
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Proof.

By taking a partial derivative with respect to q on F , I obtain

∂ξ∗(k, q)

∂q
= Ez′(k∗)α − Ez′((1− δ)k)α.

Thus, ∂ξ∗(k,q)
∂q

> 0 for ∀k < k∗

(1−δ) = k̂. �

Lemma 7 (Size-monotonicity of the interest elasticity in a fixed-cost model).

∂

∂k

(
∂I∗

∂q

)
= 0 for ∀k > 0

If I∗ > 0, then

∂

∂k

(
∂logI∗

∂q

)
> 0 for ∀k > 0

Proof.

From the first order condition,

1 = αqEzz′(k∗)α−1.

This implies that the future capital stock does not depend on the current size of the firm.

∂k∗

∂k
= 0

From I∗ = k∗ − (1− δ)k, the following equations hold

∂I∗

∂k
= −(1− δ),

∂logI∗

∂k
= −(1− δ)

I∗
for I∗ > 0.

Taking a partial derivative with respect to q,

∂2I∗

∂q∂k
= 0,

∂2logI∗

∂q∂k
=

(1− δ)
I∗2

∂I∗

∂q
for I∗ > 0.

Going back to the first order condition, the following equation holds after taking the partial

derivative with respect to q.

0 = αEz′(k∗)α−1 + α(α− 1)qEz′(k∗)α−2∂I
∗

∂q
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Thus,

∂I∗

∂q
=

αEz′(k∗)α−1

α(1− α)qEz′(k∗)α−2
> 0.

Therefore,

∂2logI∗

∂q∂k
=

(1− δ)
I∗2

∂I∗

∂q
> 0 for I∗ > 0.

�
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B.5 Monetary policy shock

Figure B.1: One-year moving average monetary policy shock: March 1990 ∼ December 2009
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Notes: The monetary policy shocks are obtained by time aggregating high-frequency monetary policy shocks
identified from the unexpected jump (drop) in the federal funds rate during 30-minutes (Tight) and one-hour
(Wide) windows around the FOMC announcement. To capture the unexpected component in the federal
funds rate, I use the change in the rate implied by the current-month federal funds futures contract. All the
data on the timings of the FOMC announcement and the high-frequency surprise are from Gurkaynak et al.
(2005) and Gorodnichenko and Weber (2016).
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B.6 Investment elasticities to the monetary policy shocks: Full

tables

Table B.2: Investment sensitivity to the monetary policy shocks with the narrow window

Dependent variables:

log(Iit) I{ Iitkit
> 0.1} I{ Iitkit

> 0.2} log(Iit)
∣∣
Iit
kit

>0.1
log(Iit)

∣∣
Iit
kit

>0.2

L S L S L S L S L S

MPTight,t -2.201 -7.025 -0.656 -2.993 -0.870 -2.072 -0.936 -2.317 -0.246 -3.512
(0.606) (2.41) (0.363) (0.688) (0.366) (0.676) (0.676) (1.668) (0.912) (2.187)

Obs. 29,400 7,903 29,400 7,903 29,400 7,903 19,524 5,039 11,181 3,643
R2 0.929 0.791 0.596 0.562 0.603 0.558 0.954 0.865 0.96 0.895
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sect.-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm-level ctrl. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Two-way cl. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The dependent variable of the probit regression is the indicator of lumpy investment. The independent
variables include monetary policy shocks, fixed effects (sector, year, and sector-year), and firm-level control
variables (lagged total debt (DT), lagged current account (ACT), lagged size (AT), and sales (Sale) growth).
The numbers in the bracket are the standard errors. The standard errors are clustered two-way by sector
and year.

Table B.3: Investment sensitivity to the monetary policy shocks with the wide window

Dependent variables:

log(Iit) I{ Iitkit
> 0.1} I{ Iitkit

> 0.2} log(Iit)
∣∣
Iit
kit

>0.1
log(Iit)

∣∣
Iit
kit

>0.2

L S L S L S L S L S

MPWide,t -2.178 -6.583 -0.643 -2.856 -0.762 -1.870 -0.850 -1.703 -0.333 -3.400
(0.662) (2.604) (0.383) (0.73) (0.377) (0.728) (0.698) (1.835) (0.956) (2.44)

Obs. 29,400 7,903 29,400 7,903 29,400 7,903 19,524 5,039 11,181 3,643
R2 0.929 0.791 0.596 0.562 0.603 0.558 0.954 0.865 0.96 0.895
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sect.-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm-level ctrl. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Two-way cl. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: The dependent variable of the probit regression is the indicator of lumpy investment. The independent
variables include monetary policy shocks, fixed effects (sector, year, and sector-year), and firm-level control
variables (lagged total debt (DT), lagged current account (ACT), lagged size (AT), and sales (Sale) growth).
The numbers in the bracket are the standard errors. The standard errors are clustered two-way by sector
and year.
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B.7 Fixed parameters

Table B.4: Fixed Parameters

Parameters Description Value

Firm-side Fundamentals
α Capital share 0.2800
γ Labor share 0.6400
δ Depreciation rate 0.0900

Household
β Discount factor 0.9770
η Labor disutility parameter 2.4000

Aggregate TFP Process
ρA Persistence of aggregate TFP 0.8145

Notes: The fixed parameters are chosen at the level widely used in the relevant literature. The
household labor disutility parameter is set at the level where the total labor supply becomes
around one-third in the equilibrium. The persistence of aggregate TFP is fixed at 0.8145 following
Bachmann et al. (2013).
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C Additional model validation

Figure C.2: Distribution of inaction durations
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Notes: Based on the stationary equilibrium allocations, 5,000 firms are simulated for 1,000 periods (years).
The inaction durations are obtained from the time gap between two neighboring firm-level lumpy investments.

Table C.5: Regression of inaction durations on the lagged terms

Dependent variable: log(t2Invi,j)

Compustat Stationary equilibrium

All Large Non-large All Large Non-large

log(t2Invi,j−1) 0.900 0.908 0.877 0.846 0.864 0.852
(s.e.) (0.012) (0.014) (0.023) (0.001) (0.002) (0.001)

Observations 2,070 1,501 569 587,041 59,110 508,841

Notes: Based on the stationary equilibrium, 5,000 firms are simulated for 1,000 periods (years).
The inaction durations are obtained from the time gap between two neighboring firm-level lumpy
investments. The dependent variable is inaction duration, and the independent variable is the
lagged inaction duration from the simulated data.
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Figure C.3: Distribution of lag differences of inaction durations
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Notes: Based on the stationary equilibrium allocations, 5,000 firms are simulated for 1,000 periods (years).
The lag differences of inaction durations are obtained from the difference between two neighboring inaction
durations.
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D Regressions of investment growth rate on fragility

indices

Table D.6: Regressions of investment growth rate on fragility indices

Dependent variable: ∆log(It)

Model Data

Yshock B30 T30 Yshock T40 T50 T60 T70

OutputShockt 2.873 2.860 2.868 2.846 3.223 3.211 3.231 3.236
(0.036) (0.032) (0.025) (0.518) (0.473) (0.475) (0.477) (0.479)

log(Fragilityt) -0.097 -0.175 -0.133 -0.136 -0.140 -0.139
(0.006) (0.005) (0.043) (0.045) (0.047) (0.047)

Constant Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,000 1,001 1,001 31 32 32 32 32
R2 0.866 0.892 0.936 0.510 0.633 0.629 0.628 0.626
Adjusted R2 0.865 0.891 0.935 0.493 0.607 0.603 0.602 0.599

Notes: The dependent variable is the growth rate of aggregate investment. The independent variables are
output shocks obtained from fitting output series into AR(1) process, log of lagged fragility indices, and the
growth rates of the fragility indices. The first column reports the regression coefficients from the simulated
data. The fragility index is based on the years from the last lumpy investment of large firms. The second
column reports the regression coefficients using a measure based on the years from the last lumpy investment
of large firms in Compustat data. TFP process is the output-based productivity from Bureau of Labor
Statistics. The numbers in the brackets are standard errors.
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E Solution method: The repeated transition method

Figure E.4: Aggregate fluctuations in the marginal utility and the aggregate capital stock
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(c) Prediction error in marginal utility
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(d) Prediction error in aggregate capital stock

Notes: Panel (a) plots the rationally expected path and the simulated path of the marginal utility. Panel (b)
plots the rationally expected path and the simulated path of the aggregate capital stock. Panel (c) plots the
prediction errors in the marginal utility path from the repeated transition method and the log-linear fitting.
Panel (d) plots the prediction errors in the aggregate capital stock path from the repeated transition method
and the log-linear fitting.
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Table E.7: The fitness comparison across the different law of motions: pt

Dependent variables: log(pt)

R2 max(|error|)(%) mean(|error|)(%)

(1) (2) (3) (1) (2) (3) (1) (2) (3)

A1 0.9965 0.9995 0.9999 0.1960 0.0722 0.0393 0.0619 0.0225 0.0098
A2 0.9951 0.9994 0.9999 0.2613 0.0936 0.0423 0.0756 0.0235 0.0117
A3 0.9958 0.9993 0.9999 0.2793 0.1394 0.0676 0.0662 0.0263 0.0128
A4 0.9945 0.9994 0.9999 0.3261 0.0900 0.0468 0.0657 0.0248 0.0115
A5 0.9966 0.9992 0.9999 0.1954 0.1146 0.0669 0.0532 0.0266 0.0084

Notes: The table reports R2, the maximum absolute prediction error, and the mean absolute pre-
diction error by different law of motion (columns) and aggregate states (rows). Specification (1)
includes a constant and log of contemporaneous capital stock as a independent variable; Specifi-
cation (2) includes a constant, log of contemporaneous capital stocks, and log of fragility index as
independent variables; Specification (3) includes constant and contemporaneous and lagged capital
stocks up to three lags in a non-parametric form as independent variables.

Table E.8: The fitness comparison across the different law of motions: Kt+1

Dependent variables: log(Kt+1)

R2 max(|error|)(%) mean(|error|)(%)

(1) (2) (3) (1) (2) (3) (1) (2) (3)

A1 1.0000 1.0000 1.0000 0.0793 0.0785 0.0233 0.0150 0.0141 0.0057
A2 0.9999 0.9999 1.0000 0.1253 0.1295 0.0402 0.0230 0.0237 0.0082
A3 0.9999 0.9999 1.0000 0.2286 0.2248 0.0481 0.0210 0.0207 0.0090
A4 0.9999 0.9999 1.0000 0.2503 0.2508 0.0784 0.0254 0.0244 0.0095
A5 0.9998 0.9998 1.0000 0.1994 0.1886 0.0409 0.0259 0.0227 0.0076

Notes: The table reports R2, the maximum absolute prediction error, and the mean absolute pre-
diction error by different law of motion (columns) and aggregate states (rows). Specification (1)
includes a constant and log of contemporaneous capital stock as a independent variable; Specifi-
cation (2) includes a constant, log of contemporaneous capital stocks, and log of fragility index as
independent variables; Specification (3) includes constant and contemporaneous and lagged capital
stocks up to three lags in a non-parametric form as independent variables.
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