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Abstract
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call “structured models” that have explicit substantive motivations. The decision maker

confronts uncertainty through the lens of these models, but also views these models as

simplifications, and hence, as misspecified. We extend the max-min analysis under model

ambiguity to incorporate the uncertainty induced by acknowledging that the models used

in decision-making are simplified approximations. Formally, we provide an axiomatic

rationale for a decision criterion that incorporates model misspecification concerns.
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Come l’araba fenice:

che vi sia, ciascun lo dice;

dove sia, nessun lo sa.1

1 Introduction

The consequences of a decision may depend on exogenous contingencies and uncertain out-

comes that are outside the control of a decision maker. This uncertainty takes on many forms.

Economic applications typically feature risk, where the decision maker knows the correct prob-

abilistic model governing the contingencies but not necessarily the decision outcomes. Yet, this

is a demanding assumption. As a result, statisticians and econometricians have long wrestled

with how to confront ambiguity over models or unknown parameters within a model. Each

model is itself a simplification or an approximation designed to guide or enhance our under-

standing of some underlying phenomenon of interest. Thus, the model, by its very nature, is

misspecified, but in typically uncertain ways. How should a decision maker acknowledge model

misspecification in a way that guides the use of purposefully simplified models sensibly? This

concern has certainly been on the radar screen of statisticians and control theorists, but it has

been largely absent in formal approaches to decision theory.2 Indeed, the statisticians Box and

Cox have both stated the challenge succinctly in complementary ways:

Since all models are wrong, the scientist must be alert to what is importantly wrong.

It is inappropriate to be concerned about mice when there are tigers abroad. Box

(1976).

... it does not seem helpful just to say that all models are wrong. The very word

“model” implies simplification and idealization. The idea that complex physical,

biological or sociological systems can be exactly described by a few formulae is

patently absurd. The construction of idealized representations that capture impor-

tant stable aspects of such systems is, however, a vital part of general scientific

analysis and statistical models, especially substantive ones ... Cox (1995).

While there are formulations of decision and control problems that intend to confront model

misspecification, the aim of this paper is: (i) to develop an axiomatic approach that will

provide a rigorous guide for applications and (ii) to enrich formal decision theory when applied

to environments with uncertainty through the guise of models.

1“Like the Arabian phoenix: that it exists, everyone says; where it is, nobody knows.” A passage from a
libretto of Pietro Metastasio.

2In Hansen (2014) and Hansen and Marinacci (2016) three kinds of uncertainty are distinguished based on
the knowledge of the decision maker, the most challenging being model misspecification viewed as uncertainty
induced by the approximate nature of the models under consideration.
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The protagonist of our analysis is a decision maker who is able to formulate models – for

instance a policy maker having to decide a climate policy based on existing alternative climate

models – but is concerned about their misspecification and wants to use a decision criterion

which accounts for that. Our axiomatic analysis, which has a normative nature, aims to derive

a criterion of this kind to help the decision maker to cope with model misspecification in a

principled way. In this endeavour, we follow Hansen and Sargent (2022) by referring to the for-

mulated models as “structured models.” These structured models are ones that are explicitly

motivated or featured, such as ones with substantive motivation or scientific underpinnings,

consistent with the use of the term “models” by Box and Cox. They may be based on scientific

knowledge relying on empirical evidence and theoretical arguments or on revealing parameter-

izations of probability models with parameters that are interpretable to the decision maker. In

posing decision problems formally, it is often assumed, following Wald (1950), that the correct

model belongs to the set of models that decision makers posit. The presumption that a decision

maker identifies, among their hypotheses, the correct model is often questionable – recalling

the initial quotation, the correct model is often a decision maker phoenix. We embrace, rather

than push aside, the “models are approximations” perspective of many applied researchers,

as articulated by Box, Cox and others. To explore misspecification formally, we introduce a

potentially rich collection of probability distributions that depict possible representations of

the data without formal substantive motivation. We refer to these as “unstructured models.”

We use such alternative models as a way to capture how models could be misspecified.3

This distinction between structured and unstructured is central to the analysis in this paper

and is used to distinguish aversion to ambiguity over models and aversion to potential model

misspecification. At a decision-theoretic level, a proper analysis of misspecification concerns has

remained elusive so far. Indeed, many studies dealing with economic agents confronting model

misspecification still assume that they are conventional expected utility decision makers who

do not address formally potential model misspecification concerns in their preference ordering.4

We extend the analysis of Hansen and Sargent (2022) by providing an axiomatic underpinning

for a corresponding decision theory along with a representation of the implied preferences that

can guide applications. In so doing, we show an important connection with the analysis of

subjective and objective rationality of Gilboa et al. (2010).

Criterion This paper proposes a first decision-theoretic analysis of decision making under

model misspecification. We consider a classic setup in the spirit of Wald (1950), but relative

to his seminal work we explicitly remove the assumption that the correct model belongs to

the set of posited models and we allow for nonneutrality toward this feature. More formally,

in our purely normative approach we assume that decision makers posit a set Q of structured

3Such a distinction is also present in earlier work by Hansen and Sargent (2007) and Hansen and Miao (2018)
but without specific reference to the terms “structured” and “unstructured.”

4See, e.g., Esponda and Pouzo (2016) and Fudenberg et al. (2017).
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(probabilistic) models q on states, motivated by their information, but they are afraid that

none of them is correct and so face model misspecification. For this reason, decision makers

contemplate what we call unstructured models in ranking acts f , according to a conservative

decision criterion5

V (f) = min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
(1)

To interpret this criterion, let

C (p,Q) = min
q∈Q

c (p, q)

where we presume that C(q,Q) = 0 when q ∈ Q. In this construction, C (p,Q) is what we call a

Hausdorff statistical set distance between a model p and the posited set Q of structured models.

This distance is nonzero if and only if p is unstructured, that is, p /∈ Q. More generally, p’s

that are closer to the set of structured models Q have a less adverse impact on the preferences,

as is evident by rewriting (1) as:

V (f) = min
p∈∆

{∫
u (f) dp+ C (p,Q)

}
This representation is a special case of the variational representation axiomatized by Mac-

cheroni et al. (2006). The unstructured models are statistical artifacts that allow the decision

maker to assess formally the potential consequences of misspecification as captured by the con-

struction of C (·, Q). In this paper we provide a formal interpretation of C (·, Q) as an index of

misspecification fear: the lower the index, the higher the fear.6

It is because of the ability to posit a set Q that the decision maker confronts uncertainty in

the guise of models, so what we may call a decision problem under model uncertainty. In our

normative approach, it is natural to enrich the standard decision-theoretic setting by taking Q

as a given, a datum of the decision problem. For instance, in the climate policy problem, Q is

the set of climate models that the policy maker considers. In this regard, observe that we are not

after detecting which choice behavior of the decision maker may reveal model misspecification

concerns, a different revealed preference exercise that would indeed require an endogenous Q.7

In line with standard practice in applied economics, we imagine that the substantive modeling

that underlies the construction of elements of Q is simplified with an explicit structure imposed

to facilitate interpretation. Applied researchers commonly avoid reducing model building to

the construction of the complex black boxes that a purely nonparametric exercise might well

involve, especially in multivariate settings.

5Throughout the paper ∆ denotes the set of all probabilities (Section 2.1).
6To ease terminology, we often refer to “misspecification” rather than “model misspecification.”
7In this exercise, the findings of Denti and Pomatto (2022) may be useful.
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A protective belt When c takes the entropic form λR(p||q), with λ > 0, criterion (1) takes

the form

min
p∈∆

{∫
u (f) dp+ λmin

q∈Q
R(p||q)

}
(2)

proposed by Hansen and Sargent (2022). It is the most tractable version of criterion (1), which

for a singleton Q further reduces to a standard multiplier criterion a la Hansen and Sargent

(2001, 2008). By exchanging orders of minimization, we preserve this tractability and provide

a revealing link to this earlier research,

min
q∈Q

{
min
p∈∆

{∫
u (f) dp+ λR(p||q)

}}
(3)

The inner minimization problem gives rise to the minimization problem featured by Hansen and

Sargent (2001, 2008) to confront the potential misspecification of a given probability model q.8

Unstructured models lack the substantive motivation of structured models, yet in (1) they act

as a protective belt against model misspecification. The importance of their role is proportional

– as quantified by λ in (2) – to their proximity to the set Q, a measure of their plausibility in

view of the decision maker information. The outer minimization over structured models is the

counterpart to the Wald (1950) and the more general Gilboa and Schmeidler (1989) max-min

criterion.

Our analysis provides a decision-theoretic underpinning for incorporating misspecification

concerns in a distinct way from ambiguity aversion. Observe that misspecification fear is absent

when the index minq∈Q c (p, q) equals the indicator function δQ of the set of structured models

Q, that is,

min
q∈Q

c (p, q) =

{
0 if p ∈ Q

+∞ else

In this case, which corresponds to λ = +∞ in (2), criterion (1) takes a max-min form:

V (f) = min
q∈Q

∫
u (f) dq

This max-min criterion thus characterizes decision makers who confront model misspecification

but are not concerned by it, so are misspecification neutral (see Section 4.1). The criterion in

(1) may thus be viewed as representing decision makers who use a more prudential variational

criterion (1) than if they were to max-minimize over the set of structured models which they

posited. In particular, the farther away an unstructured model is from the set Q (so the less

plausible it is), the less it is weighted in the minimization.

8The Hansen and Sargent (2001, 2008) formulation of preferences builds on extensive literature in control
theory starting with Jacobson (1973)’s deterministic robustness criterion and a stochastic extension given by
Petersen et al. (2000), among several others.
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Axiomatics We use the entropic case (2) to outline our axiomatic approach. Start with

a singleton Q = {q}. Decision makers, being afraid that the reference model q might not

be correct, contemplate also unstructured models p ∈ ∆ and rank acts f according to the

multiplier criterion

Vλ,q (f) = min
p∈∆

{∫
u (f) dp+ λR(p||q)

}
(4)

Here the positive scalar λ is interpreted as an index of misspecification fear. When decision

makers posit a nonsingleton set Q of structured models, but are concerned that none of them

is correct, the multiplier criterion (4) then gives only an incomplete dominance relation:

f ≿∗ g ⇐⇒ Vλ,q (f) ≥ Vλ,q (g) ∀q ∈ Q (5)

With (5), decision makers can safely regard f better than g. Through this ranking, the domi-

nance relation provides a preferential account of the probabilistic information that Q represents.

The dominance relation thus naturally arises when the set Q is posited.

Yet, the ranking (5) has little traction because of the incomplete nature of ≿∗. Nonetheless,

the burden of choice will have decision makers select between alternatives, be they rankable

by ≿∗ or not. A cautious way to complete the binary relation ≿∗ is given by the preference

≿ represented by (2), or equivalently by (3). This criterion thus emerges in our analysis as a

cautious completion of a multiplier dominance relation ≿∗. In this way, the probabilistic infor-

mation gets embedded in the behavioral preference. Suitably extended to a general preference

pair (≿∗,≿), we support this approach by axiomatizing criterion (1) as the representation of

the behavioral preference ≿ and the unanimity criterion

f ≿∗ g ⇐⇒ min
p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q

as the representation of the incomplete dominance relation ≿∗.

To sum up, our two-preference approach is motivated by the natural way with which the

dominance relation arises when the set Q is posited. In this approach, we then connect the

dominance and behavioral preferences to derive their desired representations.

2 Preliminaries

2.1 Mathematics

Basic notions We consider a non-trivial event σ-algebra Σ in a state space S. We denote

by ∆ the set of finitely additive probabilities and endow ∆ and any of its subsets with the

weak* topology (see Appendix B for further details). In particular, ∆σ denotes the subset of

∆ formed by the countably additive probability measures. Given a subset Q in ∆, we denote
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by ∆≪ (Q) the collection of all probabilities p which are absolutely continuous with respect to

Q, that is, if A ∈ Σ and q (A) = 0 for all q ∈ Q, then p (A) = 0. Moreover, ∆σ (q) denotes

the set of elements of ∆σ which are absolutely continuous with respect to a single q ∈ ∆σ, i.e.,

∆σ (q) = {p ∈ ∆σ : p≪ q}. Unless otherwise specified, all the subsets of ∆ are to be intended

non-empty.

The (convex analysis) indicator function δC : ∆ → [0,∞] of a convex subset C of ∆ is

defined by

δC (p) =

{
0 if p ∈ C

+∞ else

Throughout we adopt the convention 0 · ±∞ = 0.

The effective domain of f : C → (−∞,∞], denoted by dom f , is the set {p ∈ C : f (p) <∞}
where f takes on a finite value. The function f is grounded if the infimum of its image is 0,

i.e., infp∈C f (p) = 0.

Statistical distances Consider a given collection Q of compact subsets Q of ∆σ that con-

tains, as singletons {q}, all the elements q of the sets Q. Denote by S the set of all these

singletons.9 For instance, we have S = ∆σ when Q covers the space ∆σ.

We say that a function C : ∆×Q → [0,∞] is a statistical set distance if:

(C.i) for each Q ∈ Q,

C (p,Q) = 0 ⇐⇒ p ∈ Q

(C.ii) for each Q,Q′ ∈ Q,

Q ⊇ Q′ =⇒ C (·, Q) ≤ C (·, Q′)

(C.iii) C (·, {q}) is lower semicontinuous for all q ∈ S.

The first two properties make possible to interpret the quantity C (p,Q) as a distance

between the probability p and the set Q of probabilities. The last property is a basic regularity

condition whose usefulness will become clear momentarily.

A statistical set distance C induces a function c : ∆× S → [0,∞] defined by

c (p, q) = C (p, {q})

The value c (p, q) of this function is a distance between two probabilities p and q.10 The induced

function c has the following properties:

9That is, S =
⋃
Q∈Q

Q. Different collections Q may share the same set S. The smallest such collection is

{{q} : q ∈ S}.
10This distance is not a metric as, for instance, symmetry is not required.
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(c.i) for each q ∈ S,
c (p, q) = 0 ⇐⇒ p = q

(c.ii) c (·, q) : ∆ → [0,∞] is lower semicontinuous for all q ∈ S.

Through the function c we can characterize an important class of statistical set distances.

Specifically, we say that a statistical set distance C : ∆×Q → [0,∞] is Hausdorff if:

(C.iv) C (·, Q) = minq∈Q c (·, q) for all Q ∈ Q.

This property defines a Hausdorff-type distance between p and Q, in which the distance

between points and sets is subsumed by that between points. This important class of statistical

set distances will be the protagonist of our analysis. In this class, there is a duality between c

and C. Indeed, we say that a function c : ∆× S → [0,∞] is a statistical distance if it satisfies

(c.i) and (c.ii), now taken as defining properties, and if it induces a well-defined Hausdorff

statistical set distance C : ∆×Q → [0,∞] given by

C (·, Q) = min
q∈Q

c (·, q)

This final property is automatically satisfied when c is jointly lower semicontinuous, which is

an important case in our analysis.

Statistical distances and Hausdorff statistical set distances are thus dual notions that can

be defined one in terms of the other. It is sometimes convenient to denote by cQ the section

C (·, Q) : ∆ → [0,∞] at Q of the Hausdorff statistical set distance C induced by c, that is,

cQ (·) = min
q∈Q

c (·, q)

An important special case is when Q consists of a fixed set Q along with its elements (as

singletons), so that S = Q. In this case, to ease notation we just write

c : ∆×Q→ [0,∞]

This function is, for instance, the protagonist of Theorem 1. In this result we also consider a

pseudo-statistical distance, which is a function c : ∆×Q→ [0,∞] that satisfies all the properties

of a statistical distance except (c.i), which is weakened to: for each q ∈ S there is p ∈ ∆ such

that c (p, q) = 0.11

Divergences We say that a statistical distance c : ∆× S → [0,∞] is a divergence if:

11In other words, (C.i) is satisifed for sets which are not singletons while, when Q is a singleton, (C.i) is
weakened to groundedness.
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(c.iii) for each q ∈ S,
c (p, q) <∞ =⇒ p≪ q

Divergences thus assign an infinite penalty when p is not absolutely continuous with respect

to q. In the important “universal” case S = ∆σ, there is a well-known class of divergences. To

introduce it, given a continuous strictly convex function ϕ : [0,∞) → [0,∞), with ϕ (1) = 0

and limt→∞ ϕ (t) /t = +∞, define Dϕ : ∆×∆σ → [0,∞] by

Dϕ (p||q) =


∫
ϕ

(
dp

dq

)
dq if p ∈ ∆σ (q)

+∞ otherwise
(6)

under the conventions 0/0 = 0 and ln 0 = −∞.12 It can be proved that Dϕ : ∆×∆σ → [0,∞]

is a convex divergence, called ϕ-divergence.13 The most important example of ϕ-divergence is

the relative entropy given by ϕ (t) = t ln t− t+1 and denoted by R (p||q).14 Another important

example is the Gini relative index given by the quadratic function ϕ (t) = (t− 1)2 /2 and

denoted by χ2 (p||q).
Given a coefficient λ ∈ (0,∞], the function λDϕ : ∆ × ∆σ → [0,∞] is also a convex

divergence. In particular, when λ = ∞ we have

(∞)Dϕ (p||q) = δ{q} (p) =

{
0 if p = q

∞ else

because of the convention 0 · ∞ = 0.

Variational statistical distances We say that a statistical set distance C : ∆×Q → [0,∞]

is variational if:

(C.v) C (·, Q) is lower semicontinuous and convex for all Q ∈ Q.

This is a regularity condition that, when assumed, strengthens property (C.iii). We say

that a (pseudo-)statistical distance c is variational when it induces a variational Hausdorff

statistical set distance. For instance, when Q consists of compact and convex subsets of ∆σ,

a statistical distance is variational if it is convex and lower semicontinuous (see Lemma 12).

Thus, ϕ-divergences are variational with such a Q.

2.2 Decision theory

Setup We consider a generalized Anscombe and Aumann (1963) setup where a decision maker

chooses among uncertain alternatives described by (simple) acts f : S → X, which are Σ-

12The function dp/dq is any version of the Radon-Nikodym derivative of p with respect to q.
13See Chapter 1 of Liese and Vajda (1987). We refer to this book for properties of ϕ-divergences.
14Given the conventions 0/0 = 0 · ±∞ = 0, it holds ϕ (0) = 1.
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measurable simple (i.e., finite-valued) functions from a state space S to a consequence space X.

This latter set is assumed to be a non-empty convex subset of a vector space (for instance, X

is the set of all simple lotteries defined on a prize space). The triple

(S,Σ, X) (7)

forms an (Anscombe-Aumann) decision framework.

Let us denote by F the set of all acts. Given any consequence x ∈ X, we denote by x ∈ F
also the constant act that takes value x. Thus, with a standard abuse of notation, we identify

X with the subset of constant acts in F . Given a function u : X → R, we denote by Imu its

image. Observe that u ◦ f is a simple real-valued Σ-measurable function.

A preference ≿ is a binary relation on F that satisfies the so-called basic conditions (cf.

Gilboa et al., 2010), i.e., it is:

(i) reflexive and transitive;

(ii) monotone: for all f, g ∈ F , if f (s) ≿ g (s) for all s ∈ S, then f ≿ g;

(iii) continuous : for all f, g, h ∈ F , the sets

{α ∈ [0, 1] : αf + (1− α) g ≿ h} and {α ∈ [0, 1] : h ≿ αf + (1− α) g}

are closed;

(iv) non-trivial : there exist f, g ∈ F such that f ≻ g.

Moreover, a preference ≿ is unbounded if, for each x, y ∈ X with x ≻ y, there exist z, z′ ∈ X

such that
1

2
z +

1

2
y ≿ x ≻ y ≿

1

2
x+

1

2
z′

Bets are binary acts that play a key role in decision theory. Formally, given any two prizes

x ≻ y, a bet on an event A is the act xAy defined by

xAy (s) =

{
x if s ∈ A

y else

In words, a bet on event A is a binary act that yields a more preferred consequence if A obtains.

Comparative uncertainty aversion As in Ghirardato and Marinacci (2002), given two

preferences ≿1 and ≿2 on F , we say that ≿1 is more uncertainty averse than ≿2 if, for each

consequence x ∈ X and act f ∈ F ,

f ≿1 x =⇒ f ≿2 x

9



In words, a preference is more uncertainty averse than another one if, whenever this preference

is “bold enough” to prefer an uncertain alternative over a sure one, so does the other one.

Decision criteria A complete preference ≿ on F is variational if it is represented by a

decision criterion V : F → R given by

V (f) = min
p∈∆

{∫
u (f) dp+ c (p)

}
(8)

where the affine utility function u is non-constant and the index of uncertainty aversion c :

∆ → [0,∞] is grounded, lower semicontinuous and convex. In particular, given two unbounded

variational preferences ≿1 and ≿2 on F that share the same u, but different indexes c1 and c2,

we have that ≿1 is more uncertainty averse than ≿2 if and only if c1 ≤ c2 (see Maccheroni et

al., 2006, Propositions 6 and 8).

When the function c has the entropic form c (p, q) = λR (p||q) with respect to a reference

probability q ∈ ∆σ, criterion (8) takes the multiplier form

Vλ,q (f) = min
p∈∆

{∫
u (f) dp+ λR(p||q)

}
analyzed by Hansen and Sargent (2001, 2008).15 If, instead, the function c has the indicator

form δC , with C compact and convex, criterion (8) takes the max-min form

V (f) = min
p∈C

∫
u (f) dp

axiomatized by Gilboa and Schmeidler (1989).

All these criteria are here considered in their classical interpretation, so Waldean for the

max-min criterion, in which the elements of ∆ are interpreted as models.

3 Models and preferences

3.1 Models

The consequences of the acts among which decision makers have to choose depend on exogenous

states that are outside their control. They know that states obtain according to a probabilistic

model described by a probability measure in ∆, the so-called true or correct model. If decision

makers knew the true model, they would confront only risk, which is the randomness inherent

to the probabilistic nature of the model. Our decision makers, unfortunately, may not know the

15Strzalecki (2011) provides the behavioral assumptions that characterize multiplier preferences among vari-
ational preferences.
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true model. Yet, they are able to posit a set of structured probabilistic models Q, based on their

information (which might well include existing scientific theories, say economic or physical),

that form a set of alternative hypotheses regarding the true model. It is a classical assumption,

in the spirit of Wald (1950), in which Q is a set of posited hypotheses about the probabilistic

behavior of a, natural or social, phenomenon of interest.

A classical decision framework is described by a quartet:

(S,Σ, X,Q) (9)

in which a set Q of models is added to a standard decision framework (7), as discussed in the

Introduction. The true model might not be in Q, that is, the decision makers information may

be unable to pin it down. Throughout the paper we assume that decision makers know this

limitation of their information and so confront model misspecification.16 This is in contrast

with Wald (1950) and most of the subsequent decision-theoretic literature, which assumes that

decision makers either know the true model and so face risk or, at least, know that the true

model belongs to Q and so face model ambiguity.17

In Theorem 1, but not in Theorem 2, we assume that Q is a convex subset of ∆σ. As

usual, convexity significantly simplifies the analysis. Yet, conceptually it is not an innocuous

property: a hybrid model that mixes two structured models can only be less well motivated

than either of them. Decision criterion (1), however, accounts for the lower appeal of hybrid

models when c (p, q) is also convex in q (as, for instance, when c is a ϕ-divergence). To see

why, observe that minp∈∆
{∫

u (f) dp+ c (p, q)
}
is, for each act f , convex in q. In turn, this

implies that hybrid models negatively affect criterion (1). This negative impact of mixing thus

features an “aversion to model hybridization” attitude, behaviorally captured by axiom A.9.

Remarkably, the relative entropy criterion (2) turns out to be neutral to model hybridization.

In this important special case, the assumption of convexity of Q is actually without any loss of

generality (as Appendix B.2 clarifies).

Convexity of Q can be also justified in a robust Bayesian interpretation of our analysis

that regards Q as the set of the so-called predictive distributions, which are combinations of

“primitive” models (typically extreme points of Q) weighted according to alternative priors µ

over them. For instance, if the primitive models describe states through i.i.d. processes, the

elements of Q describe them via exchangeable processes that combine primitive models and

priors (as in the Hewitt and Savage, 1955, version of the de Finetti Representation Theorem).

Under this interpretation, the p’s are introduced to provide a protective shield for each of the

predictive distributions constructed from the alternative priors that are considered.

In this robust Bayesian vein, a second approach to constructing a convex Q is based on the

16Aydogan et al. (2018) propose an experimental setting that reveals the relevance of model misspecification
for decision making.

17The model ambiguity (or uncertainty) literature is reviewed in Marinacci (2015).
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potential misspecification of the likelihood along with uncertainty over the choice of a prior

distribution. Let Q0 = {qθ}θ∈Θ be a parameterized family where each θ denotes an alternative

structured model. For simplicity, we consider the case of a finite collection of such models, that

is, Θ has n elements. When needed, we identify Qo with the vector (qθ)θ∈Θ of the Cartesian

product ∆n of simplexes. Each prior µ on Θ induces a predictive probability:

q =
∑
θ∈Θ

qθµθ (10)

We consider a convex family of priors µ ∈ Π. The set of predictive probabilities, Q, formed

in this manner inherits the convexity of Π. One possible choice of Π is the set of all possible

prior distributions over Θ giving rise to Q = coQo (we include our more general construction

of Q ⊆ coQo to capture the perspective of a robust Bayesian with prior uncertainty). Assume

that the reductive map µ 7→
∑

θ∈Θ qθµθ is injective (so bijective).18 Each predictive q is thus

represented with a unique prior µq ∈ Π that quantifies a possible belief of the decision maker

over the structured models of substantive interest.

The decision maker entertains misspecified likelihoods denoted pθ over θ using, to fix ideas,

a ϕ-divergence Dϕ(pθ∥qθ). This calculation depends on θ. Alternative priors in Π provide

alternative ways to average across the θ-specific divergences. For a given prior µ, we construct

the composite divergence as: ∑
θ∈Θ

Dϕ(pθ∥qθ)µθ (11)

This formula, considered in Hansen and Sargent (2022, 2022b), gives a measure of potential

likelihood misspecification for a pre-specified predictive q given by (10). For implementing the

decision formulation in practice, it would suffice to stop here while letting the decision maker

investigating prior sensitivity by searching over misspecified likelihoods and priors in the set

Π. Moreover, notice that for a given family of pθ, minimizing (11) over all possible priors

will result in a degenerate prior putting all the weight on the structured model θ that is least

misspecified according to Dϕ(pθ∥qθ). Only when multiple models have the same low measure

of misspecification will the minimization include non-degenerate priors over models.

The weighted divergence (11) implies a divergence between q and a predictive p formed with

the same prior µq as q:

p =
∑
θ∈Θ

pθµ
q
θ

There will be multiple ways to represent this predictive distribution. For instance, pθ = p for all

θ ∈ Θ is one obvious choice. Thus, there is an induced distance between predictive distributions

18For instance, this is the case when the structured models qθ are suitably orthogonal. Lemma 1 of Cerreia-
Vioglio et al. (2013) characterizes the injectivity of the reductive map.
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given, for each (p, q) ∈ ∆×Q, by

c(p, q) = min
(pθ)θ∈Θ∈∆n:p=

∑
θ∈Θ pθµ

q
θ

∑
θ∈Θ

Dϕ(pθ∥qθ)µqθ (12)

This distance is a lower semicontinuous and convex variational divergence, as detailed in Lemma

14 of Appendix B.1 with a general statistical distance playing the role of Dϕ here.

3.2 Preferences

We consider a two-preference setup, as in Gilboa et al. (2010), with a mental preference ≿∗

and a behavioral preference ≿.

Definition 1 A preference ≿ is ( subjectively) rational if it is:

a. complete;

b. risk independent: for all x, y, z ∈ X and α ∈ (0, 1), if x ∼ y then αx + (1− α) z ∼
αy + (1− α) z.

The behavioral preference ≿ governs the decision maker choice behavior and so it is natural

to require it to be complete because, eventually, the decision maker has to choose between

alternatives (burden of choice). It is subjectively rational because, in an “argumentative”

perspective, the decision maker cannot be convinced that it leads to incorrect choices. Risk

independence ensures that ≿ is represented on the space of consequences X by an affine utility

function u : X → R, for instance an expected utility functional when X is the set of simple

lotteries. So, risk is addressed in a standard way and we abstract from non-expected utility

issues.

The mental preference ≿∗ on F represents the decision maker’s “genuine” preference over

acts, so it has the nature of a dominance relation for the decision maker. As such, it might well

not be complete because of the decision maker inability to compare some pairs of acts.

Definition 2 A preference ≿∗ is a dominance relation (or is objectively rational) if it is:

a. c-complete: for all x, y ∈ X, x ≿∗ y or y ≿∗ x;

b. completeness: when Q is a singleton, for all f, g ∈ F , f ≿∗ g or g ≿∗ f ;

c. weak c-independent: for all f, g ∈ F , x, y ∈ X and α ∈ (0, 1),

αf + (1− α)x ≿∗ αg + (1− α)x =⇒ αf + (1− α)y ≿∗ αg + (1− α)y
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d. convex: for all f, g, h ∈ F and α ∈ (0, 1),

f ≿∗ h and g ≿∗ h =⇒ αf + (1− α) g ≿∗ h

If f ≿∗ g we say that f dominates g (strictly if f ≻∗ g). It is objectively rational because the

decision maker can convince others of its reasonableness, for instance through arguments based

on scientific theories (a case especially relevant for our purposes). Momentarily, axiom A.3 will

further clarify its nature. The dominance relation is, axiomatically, a variational preference

which is not required to be complete, unless Q is a singleton.19 When Q is a singleton, the

dominance relation is complete and yet, because of model misspecification, satisfies only a

weak form of independence. In other words, in our approach model misspecification may

cause violations of the independence axiom for the dominance relation. Later in the paper,

Proposition 6 will show that relaxing independence to weak c-independence is conceptually

necessary as, otherwise, the behavioral preference would be misspecification neutral. This is a

key observation for our analysis.

Along with the classical decision framework (9), the preferences ≿∗ and ≿ form a two-

preference classical decision environment

(S,Σ, X,Q,≿∗,≿) (13)

The next two assumptions, which we take from Gilboa et al. (2010), connect the two preferences

≿∗ and ≿.

A.1 Consistency : for all f, g ∈ F ,

f ≿∗ g =⇒ f ≿ g

Consistency asserts that, whenever possible, the mental ranking informs the behavioral one.

The next condition says that the decision maker opts, by default, for a sure alternative x over

an uncertain one f , unless the dominance relation says otherwise.

A.2 Caution: for all x ∈ X and f ∈ F ,

f ̸≿∗ x =⇒ x ≿ f

Unlike the previous assumptions, the next two are peculiar to our analysis. They both link

the posited set Q to the two preferences ≿∗ and ≿ of the decision maker. We begin with the

19Convexity is stronger than uncertainty aversion a la Schmeidler (1989), which merely requires that f ∼∗ g
implies αf+(1− α) g ≿∗ g for all α ∈ (0, 1). Yet, convexity and uncertainty aversion coincide under completeness
(see, e.g., Lemma 56 of Cerreia-Vioglio et al., 2011b). Nascimento and Riella (2011) study incomplete variational
preferences, but their result is not applicable to our setting because their axioms are over lotteries of acts (and
their state space is finite).
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dominance relation ≿∗. Here we write f
Q
= g when q (f = g) = 1 for all q ∈ Q, i.e., f and g are

equal almost everywhere according to each structured model.

A.3 Objective Q-coherence: for all f, g ∈ F ,

f
Q
= g =⇒ f ∼∗ g

This axiom provides a preferential translation of the special status of structured models over

unstructured ones: if they all regard two acts to be almost surely identical, the decision maker’s

“genuine” preference ≿∗ follows suit and ranks them indifferent.

Previously, we noted that for some applications it may be important to allow the set of

structured models, Q, not to be convex. Nevertheless, the closed convex hull, coQ, of Q will

play an important role in our next axiom.20 Even when Q is not convex, we assign a special

role to the probabilities in its convex hull relative to other unstructured models. Our rationale

is that hybrid models retain an epistemic status and are more than just statistical artifacts

used to assess model misspecification.21

To introduce our next axiom, recall that a rational preference ≿ satisfies risk independence

and thus admits an affine utility function u : X → R that can be used to represent it over

consequences as an expected utility.22 Given a model p ∈ ∆ and an act f , we define an

indifference class Xp
f ⊆ X of consequences xpf via the equality

u(xpf ) =

∫
u (f) dp (14)

We can interpret each xpf as a consequence that would be indifferent, so equivalent, to act f if

p were the correct model. By constructing these equivalent consequences for alternative acts

and models, our next axiom relates the posited set of models Q with the behavioral preference

≿.

A.4 Subjective Q-coherence: for all f ∈ F and x ∈ X, we have

x ≻∗ xpf =⇒ x ≻ f

if and only if p ∈ coQ.

In words, p ∈ ∆ is a structured or hybrid model, so belongs to coQ, if and only if decision

makers take it seriously, that is, they never choose an act f that would be strictly dominated

20The need to consider the weak*-closure of the convex hull is a technical detail (with a finite set Q we can
just consider convex hulls).

21In the robust Bayesian perspective previously discussed, the elements of coQ are the predictive distributions
determined by alternative priors over Q.

22Under the usual identification of constant acts with consequences.
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if p were the correct model. Such a salience of p for the decision makers’ preference is the

preferential footprint of a structured or hybrid model that decision makers take seriously under

consideration because of its epistemic status – as opposed to a purely unstructured model,

which they regard as a mere statistical artifact with no epistemic content.

More can be said in the original Anscombe-Aumann setting with lottery-valued acts. For

a given model p ∈ ∆ and act f , we construct the integral
∫
fdp, which is a lottery that

describes the prize distribution induced by act f when states are generated by model p ∈ ∆.23

If u : X → R is any affine utility function that represents ≿ on X, then this integral obviously

satisfies (14). This particular construction adds further clarity to axiom A.4 because it identifies

one lottery in the indifference class Xp
f that depends directly on the model p. This axiom can

now be written as

x ≻∗
∫
fdp =⇒ x ≻ f

As an additional benefit, this formulation makes it clear that the definition of xpf is independent

of the choice in (14) of the specific utility u that represents ≿ on X.

To conclude, observe that in the traditional purely subjective axiomatizations, there is

no way (actually, no language) to embed the probabilistic information that Q represents in

the decision maker preference.24 The last two axioms provide the needed embedding, as the

representation theorems will show momentarily.

4 Representation with given structured information

We now show how the assumptions on the mental and behavioral preferences permit to char-

acterize criterion (1) for a given set Q in ∆σ, that is, for a DM’s given structured information.

To this end, throughout this section we assume that Q is a compact and convex set and we

say that a function c : ∆×Q→ [0,∞] is uniquely null if, for all (p, q) ∈ ∆×Q, the sets c−1
p (0)

and c−1
q (0) are at most singletons. For instance, statistical distances are uniquely null because

of the distance property (c.i).

We are now ready to state our first representation result.

Theorem 1 Let (S,Σ, X,Q,≿∗,≿) be a two-preference classical decision environment, where

(S,Σ) is a standard Borel space. The following statements are equivalent:

(i) ≿∗ is an unbounded dominance relation and ≿ is a rational preference that are both Q-

coherent and jointly satisfy consistency and caution;

23For the simple act f =
∑
i 1Aixi, by definition

(∫
fdp

)
(z) is the probability

∑
i p (Ai)xi (z) of obtaining

prize z by choosing f under p.
24For instance, in the Gilboa and Schmeidler (1989) seminal axiomatization the derived set of probabilities

C is purely subjective. There is no formal connection with any underlying probabilistic information, something
left to the decision maker personal, unmodelled, elaborations. A notable exception is Gajdos et al. (2008),
which considers probabilistic information. Its analysis proceeds along lines very different from ours.
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(ii) there exist an onto affine function u : X → R and a variational pseudo-statistical distance

c : ∆×Q→ [0,∞], with dom cQ ⊆ ∆≪ (Q), such that, for all acts f, g ∈ F ,

f ≿∗ g ⇐⇒ min
p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q (15)

and

f ≿ g ⇐⇒ min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+min

q∈Q
c (p, q)

}
(16)

If, in addition, c is uniquely null, then it can be chosen to be a variational statistical distance.

This result identifies, in particular, the main preferential assumptions underlying a repre-

sentation of the type

V (f) = min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
(17)

for the preference ≿ when a set Q of structured models is given. While this representation

is of interest for a general variational pseudo-statistical distance c, it is of particular interest

when c is a variational statistical distance. In this case, the partial ordering ≿∗ is more easily

interpreted. Though a technical condition of “unique nullity” is imposed to pin down statis-

tical distances, our representation arguably has more general applicability and captures the

preferential underpinning of criterion (17).

The Hausdorff statistical set distance minq∈Q c (p, q) between p and Q is strictly positive if

and only if p is an unstructured model, i.e., p /∈ Q. In particular, the more distant from Q is

an unstructured model, the more it is penalized as reflected in the minimization problem that

criterion (17) features. In terms of uniqueness of the representation, the variational represen-

tation (u, cQ) is unique, up to scaling, as in Maccheroni et al. (2006). As to the uniqueness of

c, it will be established in the richer framework of Theorem 2.

A misspecification index A behavioral preference ≿ represented by (17) is variational with

index minq∈Q c (p, q). So, if two unbounded preferences ≿1 and ≿2 represented by (17) share

the same u but feature different statistical distances minq∈Q c1 (p, q) and minq∈Q c2 (p, q), then

≿1 is more uncertainty averse than ≿2 if and only if

min
q∈Q

c1 (p, q) ≤ min
q∈Q

c2 (p, q)

In the present “classical” setting we interpret this comparative result as saying that the lower is

minq∈Q c (p, q), the higher is the fear of misspecification. Indeed, Q is fixed and the differences
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in behavior cannot be due to model ambiguity. We thus regard the section cQ, i.e., the map

p 7→ min
q∈Q

c (p, q) (18)

as an index of aversion to model misspecification and we call it, for short, a misspecification

index. The lower is this index, the higher is the fear of misspecification. The index is maximal

when

cQ (p) = δQ (p) =

{
0 if p ∈ Q

+∞ else

Later we will interpret this maximal case as representing a neutral attitude toward model

misspecification (cf. Definition 4). In this case, the decision maker does not care about un-

structured models and maximally penalizes them, so they play no role in the decision criterion.

In contrast, unstructured models are penalized less, so play a bigger role in the criterion, when

the decision maker wants to keep them on the table to express a concern about model misspec-

ification. Comparing two indexes, when

c1,Q ≤ c2,Q

we interpret the lower penalization of unstructured models in c1,Q as modelling a higher concern

for model misspecification.

Specifications and computability Two specifications of our representation are noteworthy.

First, when c is the entropic statistical distance λR(p||q), with λ ∈ (0,∞], we have the following

important special case of our representation

V (f) = min
p∈∆

{∫
u (f) dp+ λmin

q∈Q
R(p||q)

}
(19)

which gives tractability to our decision criterion under model misspecification. Specifically, for

λ ∈ (0,∞),25

min
p∈∆

{∫
u (f) dp+ λmin

q∈Q
R(p||q)

}
= min

q∈Q
−λ log

∫
e−

u(f)
λ dq (20)

This result is well known when Q is a singleton, that is, when (19) is a standard multiplier

criterion.

A second noteworthy special case of our representation is the Gini criterion

V (f) = min
p∈∆

{∫
u (f) dp+ λmin

q∈Q
χ2(p||q)

}
(21)

25When λ = ∞, we have minp∈∆

{∫
u (f) dp+ λminq∈QR(p||q)

}
= minq∈Q

∫
u (f) dq. See Appendix B.2 for

the simple proof of (20).
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Remarkably, we have

min
p∈∆

{∫
u (f) dp+ λmin

q∈Q
χ2(p||q)

}
= min

q∈Q

{∫
u (f) dq − 1

2λ
Varq (u (f))

}
(22)

for all acts f for which the mean-variance (in utils) criteria on the r.h.s. are monotone. So,

the Gini criterion is a monotone version of the max-min mean-variance criterion.26

As to computability, in the important case when criterion (1) features a ϕ-divergence, like

the specifications just discussed, we need only to know the set Q to compute it, no integral

with respect to unstructured models is needed. This is proved in the next result which is a

consequence of a duality formula of Ben-Tal and Teboulle (2007).27

Proposition 1 Given Q ⊆ ∆σ and λ ∈ (0,∞), for each act f ∈ F it holds

V (f) = min
p∈∆

{∫
u (f) dp+ λmin

q∈Q
Dϕ(p||q)

}
= λmin

q∈Q
sup
η∈R

{
η −

∫
ϕ∗

(
η − u (f)

λ

)
dq

}
The r.h.s. formula computes criterion (1) for ϕ-divergences by using only integrals with

respect to structured models. This formula substantially simplifies computations and thus

confirms the analytical tractability of the previous specifications.

4.1 Interpretation of the decision criterion

In the Introduction we outlined a “protective belt” interpretation of decision criterion (17), i.e.,

V (f) = min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
To elaborate, we begin by observing that the misspecification index (18) has the following

bounds

0 ≤ min
q∈Q

c (p, q) ≤ δQ (p) ∀p ∈ ∆ (23)

So, fear of misspecification is absent when the misspecification index is δQ – e.g., when λ = +∞
in (19) – in which case criterion (17) takes a Wald (1950) max-min form

V (f) = min
q∈Q

∫
u (f) dq (24)

This max-min criterion characterizes a decision maker who confronts model misspecification,

but is not concerned by it, and exhibits only aversion to model ambiguity. In other words, this

Waldean decision maker is a natural candidate to be (model) misspecification neutral. The next

26At the end of Appendix B.2 we further discuss this point.
27Here ϕ∗ denotes the convex Fenchel conjugate of ϕ, once extended to R by setting ϕ (t) = +∞ if t < 0. In

particular, ϕ∗ is increasing.
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limit result further corroborates this insight by showing that, when the fear of misspecification

vanishes, the decision maker becomes Waldean.28

Proposition 2 For each act f ∈ F , we have

lim
λ↑∞

min
p∈∆

{∫
u (f) dp+ λmin

q∈Q
R (p||q)

}
= min

q∈Q

∫
u (f) dq

These observations, via bounds and limits, call for a proper decision-theoretic analysis of

misspecification neutrality. To this end, note that structured models may be incorrect, yet

useful as Box (1976) famously remarked. This motivates the next notion. Recall that act xAy,

with x ≻ y, represents a bet on event A.

Definition 3 A preference ≿ is bet-consistent if, given any x ≻ y,

q (A) ≥ q (B) ∀q ∈ Q =⇒ xAy ≿ xBy

for all events A,B ∈ Σ.

Under bet-consistency, a decision maker may fear model misspecification yet regards struc-

tured models as good enough to choose to bet on events that they unanimously rank as more

likely. Preferences that are bet-consistent can be classified as exhibiting a mild form of fear

of model misspecification. The following result shows that an important class of preferences,

which includes the ones represented by criterion (19), are bet-consistent.

Proposition 3 If λ ∈ (0,∞] and c = λDϕ, then a preference ≿ represented by (17) is bet-

consistent.

Next we substantially strengthen bet-consistency by considering all acts, not just bets.

Definition 4 A preference ≿ is (model) misspecification neutral if∫
u (f) dq ≥

∫
u (g) dq ∀q ∈ Q =⇒ f ≿ g

for all acts f, g ∈ F .

In this case, a decision maker trusts models enough so to follow them when they unanimously

rank pairs of acts. Fear of misspecification thus plays no role in the decision maker preference,

so it is decision-theoretically irrelevant. For this reason, the decision maker attitude toward

model misspecification can be classified as neutral. The next result shows that this may happen

if and only if the decision maker adopts the max-min criterion (24).

28To ease matters, we state the result in terms of criterion (19). A general version can be easily established
via an increasing sequence of misspecification indexes.
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Proposition 4 A preference ≿ represented by criterion (17) is misspecification neutral if and

only if it is represented by the max-min criterion (24).

This result provides the sought-after decision-theoretic argument for the interpretation of the

max-min criterion as the special case of decision criterion (17) that corresponds to aversion to

model ambiguity, with no fear of misspecification.29 As remarked in the Introduction, it suggests

that a decision maker using criterion (17) may be viewed as a decision maker who, under

model ambiguity, would max-minimize over the set of structured models which she posited but

that, for fear of misspecification, ends up using the more prudential variational criterion (17).

Unstructured models lack the informational status of structured models, yet in the criterion

(17) they act as a “protective belt” against model misspecification.

Under this interpretation of the criterion (17), the special multiplier case of a singleton

Q = {q} corresponds to a decision maker who, with no fear of misspecification, would adopt

the expected utility criterion
∫
u (f) dq to confront the risk inherent to q. In other words, a

singleton Q in (17) corresponds to an expected utility decision maker who fears misspecification.

Summing up, in our analysis decision makers adopt the max-min criterion (24) if they either

confront only model ambiguity (an information trait) or are averse to model ambiguity with no

fear of model misspecification (a taste trait).

4.2 Interpretation of the dominance relation

As just argued, the singleton Q = {q} special case

min
p∈∆

{∫
u (f) dp+ c (p, q)

}
(25)

of decision criterion (17) is an expected utility criterion under fear of misspecification (of the

unique posited q). Via the relation

f ≿∗ g ⇐⇒ min
p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q (26)

the representation theorem thus clarifies the interpretation of ≿∗ as a dominance relation under

model misspecification by showing that it amounts to uniform dominance across all structured

models with respect to criterion (25). The preference ≿∗ thus arises naturally when a set Q is

posited by providing a preferential account of the decision maker’s probabilistic information that

this set represents. In the two-preference setting that we adopted, the axiomatic connections

between ≿∗ and ≿, via consistency and caution, then allow us to embed this information in

the behavioral preference.

29This result actually holds without any convexity assumption on Q. The same applies to Propositions 1, 3
and 5 of this section.
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It is easy to see that strict dominance amounts to (26), with strict inequality for some q ∈ Q.

This observation raises a question: is there a notion of dominance that corresponds to strict

inequality for all q ∈ Q? To address this question, we introduce a strong dominance relation

by writing f ≻≻∗ g if, for all acts h, l ∈ F ,

(1− δ) f + δh ≻∗ (1− δ) g + δl

for all small enough δ ∈ [0, 1].30 By taking h = f and l = g, we have the basic implication

f ≻≻∗ g =⇒ f ≻∗ g

Strong dominance is a strengthening of strict dominance in which the decision maker can

convince others “beyond reasonable doubt.” The next characterization corroborates this inter-

pretation and, at the same time, answers the previous question in the positive.31

Proposition 5 Let c : ∆×Q→ [0,∞] be a variational statistical distance, u : X → R an onto

and affine function and ≿∗ an unbounded dominance relation represented by (26). For all acts

f, g ∈ F , we have f ≻≻∗ g if and only if there exists ε > 0 such that

min
p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
+ ε ∀q ∈ Q (27)

This characterization shows that ≻∗ and ≻≻∗ agree on consequences and, more importantly,

that

f ≻≻∗ g =⇒ min
p∈∆

{∫
u (f) dp+ c (p, q)

}
> min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q

At the same time, (27) implies

f ≻≻∗ g =⇒ f ≻ g (28)

We can diagram the relationships among the different dominance notions as follows:

≻≻∗ =⇒ ≻∗ ̸=⇒ ≻
⇓ ⇓
≻ =⇒ ≿

An instance when

f ≻∗ g =⇒ f ≻ g (29)

may fail is the max-min criterion (24).

30Strong dominance has been introduced by Cerreia-Vioglio et al. (2020).
31Up to an ε that ensures a needed uniformity of the strict inequality across structured models.
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We close by discussing misspecification neutrality, which in view of Proposition 4 is charac-

terized by the misspecification index minq∈Q c (p, q) = δQ (p).

Lemma 1 Let c be a variational statistical distance c : ∆×Q→ [0,∞]. We have minq∈Q c (p, q) =

δQ (p) if and only if, for each q ∈ Q, c (p, q) = ∞ for all p /∈ Q.

Misspecification neutrality is thus characterized by a statistical distance that maximally

penalizes unstructured models, which end up playing no role. From a statistical distance angle,

this confirms that misspecification neutrality is the attitude of a decision maker who confronts

model misspecification, but does not care about it (and so has no use for unstructured models).

This angle becomes relevant here because it shows that, under misspecification neutrality,

the representation (26) of the dominance relation becomes

f ≿∗ g ⇐⇒ min
q′∈Q

{∫
u (f) dq′ + c (q′, q)

}
≥ min

q′∈Q

{∫
u (g) dq′ + c (q′, q)

}
∀q ∈ Q (30)

Unstructured models play no role here. This is shown by the next result which also demon-

strates how relaxing independence to weak c-independence is conceptually necessary. For, if the

dominance relation ≿∗ satisfies the stronger assumption of c-independence, then the behavioral

preference ≿ is necessarily misspecification neutral.

A.5 C-independence. For all f ∈ F , x, y ∈ X and α ∈ (0, 1],

f ≿∗ x ⇐⇒ αf + (1− α) y ≿∗ αx+ (1− α) y

When the dominance relation ≿∗ is complete, our version is equivalent to the original version

of Gilboa and Schmeidler (1989). Otherwise, ours is weaker.

Proposition 6 Let (S,Σ, X,Q,≿∗,≿) be a two-preference classical decision environment, where

(S,Σ) is a standard Borel space. The following statements are equivalent:

(i) ≿∗ is an unbounded dominance relation that satisfies c-independence and ≿ is a rational

preference that are both Q-coherent and jointly satisfy consistency and caution;

(ii) there exist an onto affine function u : X → R and a variational pseudo-statistical distance

c : ∆×Q→ [0,∞], with cQ = δQ, such that, for all acts f, g ∈ F , it holds (30) and

f ≿ g ⇐⇒ min
q∈Q

∫
u (f) dq ≥ min

q∈Q

∫
u (g) dq (31)

Moreover, ≿∗ satisfies independence if and only if c : ∆× Q → [0,∞] can be chosen to be the

variational statistical distance c (p, q) = δ{q} (p) for all (p, q) ∈ ∆×Q.

23



To sum up, only a genuine variational dominance relation can accommodate fear of model

misspecification and an approach where structured models always have a different and more

relevant status than unstructured models.

The last part of the statement,32 which is the version for our setting of the main result of

Gilboa et al. (2010), shows that also statistical distances play no role, so (30) reduces to

f ≿∗ g ⇐⇒
∫
u (f) dq ≥

∫
u (g) dq ∀q ∈ Q

when the dominance relation satisfies the independence axiom.

5 Representation with varying structured information

So far, we carried out our analysis for a given set Q of structured models. Indeed, a two-

preference classical decision environment (13) should be more properly written as(
S,Σ, X,Q,≿∗

Q,≿Q

)
with the dependence of preferences on Q highlighted. Decision environments, however, may

share common state and consequence spaces, but differ on the posited sets of structured models

because of different information that decision makers may have. It then becomes important to

ensure that decision makers use decision criteria that, across such environments, are consistent.

To address this issue, in this section we consider a family{(
S,Σ, X,Q,≿∗

Q,≿Q

)}
Q∈Q

of classical decision environments that differ in the set Q of posited models and we introduce

axioms on the family
{
≿∗
Q

}
Q∈Q that connect these environments. We assume that Q is a

collection of compact subsets of ∆σ that contains all singletons and that covers all doubletons,

that is, for each q, q′ ∈ ∆σ there exists some Q ∈ Q such that {q, q′} ⊆ Q. These assumptions

are satisfied, for example, by the collection of finite sets of ∆σ as well as by the collection K of

its compact and convex sets.

A.6 Monotonicity (in model ambiguity): for all f, g ∈ F , if Q′ ⊆ Q then

f ≿∗
Q g =⇒ f ≿∗

Q′ g

According to this axiom, if the “structured” information underlying a set Q is good enough for

the decision maker to establish that an act dominates another one, a better information which

32In proving this last part, we can dispense with the assumption of (S,Σ) being a standard Borel space.
Similarly, (i) would still imply (31), again without any assumption on (S,Σ).
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decreases model ambiguity can only confirm such judgement. Its reversal would be, indeed, at

odds with the objective rationality spirit of the dominance relation.

Next we consider a separability assumption.

A.7 Q-separability : for all f, g ∈ F ,

f ≿∗
q g ∀q ∈ Q =⇒ f ≿∗

Q g

In words, an act dominates another one when it does, separately, through the lenses of each

structured model. In this axiom the incompleteness of ≿∗
Q arises as that of a Paretian order over

the, complete but possibly misspecification averse, preferences ≿∗
q determined by the elements

of Q.

We close with a continuity axiom. To state it, we need a last piece of notation: we denote

by xf,q the consequence indifferent to act f for preference ≿∗
q.

33

A.8 Lower semicontinuity : for all x ∈ X and f ∈ F , the set
{
q ∈ ∆σ : x ≿∗

q xf,q
}
is closed.

The next class of two-preference families PQ =
{(

≿∗
Q,≿Q

)}
Q∈Q builds on the properties

that we have introduced.

Definition 5 A two-preference family PQ is (misspecification) robust if:

(i)
{
≿∗
Q

}
Q∈Q is monotone, separable, and lower semicontinuous;

(ii) for each Q ∈ Q, ≿∗
Q is an unbounded dominance relation, ≿Q is a rational preference,

both are Q-coherent and jointly satisfy caution and consistency.

We can now state our first representation result.

Theorem 2 Let PQ be a two-preference family. The following statements are equivalent:

(i) PQ is robust;

(ii) there exist an onto affine u : X → R and a lower semicontinuous divergence c : ∆×∆σ →
[0,∞], convex in p, such that, for each Q ∈ Q,

f ≿∗
Q g ⇐⇒ min

p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q

and

f ≿Q g ⇐⇒ min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+min

q∈Q
c (p, q)

}
for all acts f, g ∈ F .

33In symbols, f ∼∗
q xf,q. In particular, xf,q should not be confused with xqf as in (14).
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Moreover, u is cardinal and, given u, c is unique.

A robust PQ is thus characterized by a utility and divergence pair (u, c) that, consistently

across decision environments, represents each ≿∗
Q via the unanimity rule (15) and each ≿Q via

the decision criterion

VQ (f) = min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
(32)

An unstructured model p may play a role in this criterion when c (p, q) <∞ for some structured

model q, that is, when it has a finite distance from a structured model.

In this representation theorem we do not make any convexity assumption on the sets of

structured models. Next we sharpen this result by assuming that they are compact and convex

subsets of ∆σ. We introduce a new axiom based on this added structure on sets of models.

Under the hypotheses of Theorem 2, all dominance relations ≿∗
Q agree on X and so we can just

write ≿∗, dropping the subscript Q.

A.9 Model hybridization aversion: for all q, q′ ∈ ∆σ, λ ∈ (0, 1) and f ∈ F ,

λxf,q + (1− λ)xf,q′ ≿
∗ xf,λq+(1−λ)q′

According to this axiom, the decision maker dislikes, ceteris paribus, facing a hybrid struc-

tured model λq + (1− λ) q′ that, by mixing two structured models q and q′, could only have a

less substantive motivation (cf. Section 3.1).

The next result extends Theorem 1 to families of decision environments. It also sharpens

Theorem 2 by dealing with sets of structured models that are also convex; in particular, here

we get a variational divergence.

Proposition 7 Let PK be a two-preference family. The following statements are equivalent:

(i) PK is robust and model hybridization averse;

(ii) there exist an onto affine u : X → R and a lower semicontinuous and convex variational

divergence c : ∆×∆σ → [0,∞] such that, for each Q ∈ K,

f ≿∗
Q g ⇐⇒ min

p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q

and

f ≿Q g ⇐⇒ min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+min

q∈Q
c (p, q)

}
for all acts f, g ∈ F .
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Moreover, u is cardinal and, given u, c is unique.

This result ensures that the decision maker uses consistently criterion (1) across decision

environments. In particular, the same statistical distance function is used (e.g., the relative

entropy). Moreover, axioms A.6-A.9 further clarify the nature of structured models and their

connection with the dominance relation.

Besides its broader scope, Proposition 7 improves Theorem 1 on two counts. First, it features

a statistical distance without the need of a unique nullity condition. Second, it contains a sharp

uniqueness part. The cost of these improvements is a less parsimonious setting in which the

set Q is permitted to vary across the collection K of compact and convex subsets of ∆σ.

6 Admissibility

A two-preference classical decision problem is a septet(
F, S,Σ, X,Q,≿∗

Q,≿Q

)
(33)

where F ⊆ F is a non-empty choice set formed by the acts among which a decision maker has

actually to choose, and the preferences ≿∗
Q and ≿Q are represented as in Theorem 2-(ii).

Given a set Q in Q, the decision maker chooses the best act in F according to ≿Q. In

particular, the value function v : Q → (−∞,∞] is given by

v (Q) = sup
f∈F

min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
(34)

Yet, it is the dominance relation ≿∗
Q that permits to introduce admissibility.

Definition 6 An act f ∈ F is (weakly) admissible if there is no act g ∈ F that (strongly)

strictly dominates f .

To relate this notion to the usual notion of admissibility,34 observe that g ≻∗
Q f amounts to

min
p∈∆

{∫
u (g) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (f) dp+ c (p, q)

}
∀q ∈ Q

with strict inequality for some q ∈ Q. We are thus purposefully defining admissibility in terms

of the structured models Q, not the larger class of models ∆, with a model-by-model adjustment

for misspecification that makes our notion different from the usual one.

The next result relates optimality and admissibility.

34See, e.g., Ferguson (1967) p. 54. Weak admissibility is, mutatis mutandis, related via formula (27) to the
notion of extended admissibility studied in Blackwell and Girschick (1954), Heath and Sudderth (1978) and,
more recently, in Duanmu and Roy (2021). This connection was pointed out to us by Jesse Shapiro. A statistical
risk version of Proposition 5 provides a preferential foundation for extended admissibility.
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Proposition 8 Consider a decision problem (33).

(i) Optimal acts are weakly admissible. They are admissible provided (29) holds.

(ii) Unique optimal acts are admissible.

Optimal acts (if exist) might not be admissible because the max-min nature of decision

criterion (1) may lead to violations of (29). Yet, the last result ensures that they belong to the

collection of weakly admissible acts

F ∗
Q =

{
f ∈ F : ∄g ∈ F, g ≻≻∗

Q f
}

Next we build on this property to establish a comparative statics exercise across decision

problems (33) that differ on the posited set Q of structured models.

Proposition 9 We have

Q ⊆ Q′ =⇒ v (Q) ≥ v (Q′)

and

v (Q) = max
f∈F ∗

Q

min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
provided the sup in (34) is achieved.

Smaller sets of structured models are, thus, more valuable. Indeed, in decision problems

that feature a larger set of structured models – so, a more discordant information – the decision

maker exhibits, ceteris paribus, a higher uncertainty aversion due to a larger model ambiguity:

Q ⊆ Q′ =⇒ min
q∈Q

c (p, q) ≥ min
q∈Q′

c (p, q) (35)

In turn, this easily implies v (Q) ≥ v (Q′), as the proof shows.

In the comparison (35), the divergence c is invariant as we change the set of structured

models. For this reason, in Proposition 9 a larger set of structured models implies a higher

uncertainty aversion due to model ambiguity and aversion to it (as is the case for max-min util-

ity).35 This invariance, however, is not an innocuous assumption as it rules out the possibility

that the divergence becomes larger when an enlarged set of structured models reduces misspec-

ification concerns.36 For instance, the entropic divergence may feature a higher λ when Q gets

larger, something that may reverse the inequality (35) by making more valuable larger sets of

structured models. Nevertheless, with an invariant c any probability measure outside the set of

structured models will necessarily be closer to a larger set of such models, as captured by the

divergence. In this sense, increasing the set of structured models may diminish misspecification

concerns even under the maintained invariance.
35See Ghirardato and Marinacci (2002).
36We thank Tim Christensen for having alerted us on this issue.
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7 Beyond caution

Caution is the axiom behind the prudential nature of our representations results: Theorems

1 and 2. It is natural to wonder about what happens when we remove this assumption. We

formally establish a representation result that extends Theorem 2. A similar version can be

discussed within the setup of Section 4. To discuss our more general result, we introduce a new

class of two-preference families.

Definition 7 A two-preference family PQ is (misspecification) sensitive if:

(i)
{
≿∗
Q

}
Q∈Q is monotone, separable, and lower semicontinuous;

(ii) for each Q ∈ Q, ≿∗
Q is an unbounded dominance relation, ≿Q is a monotone binary

relation, both are Q-coherent when restricted to singletons and jointly satisfy consistency.

Compared to the notion of robust family (cf. Definition 5), we made three changes. The

most important is that we removed caution. Moreover, we require ≿Q to be only a monotone

binary relation and Q-coherence to hold only if Q is a singleton.37 These two latter changes

are immaterial as we will later discuss, when caution is present. Thus, given a sensitive PQ and

Q, this implies that the dominance relation ≿∗
Q keeps on being represented as before, that is,

f ≿∗
Q g ⇐⇒ min

p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q

In particular, given an act f , we have an evaluation map q 7→ minp∈∆
{∫

u (f) dp+ c (p, q)
}

which belongs to B (Q): the collection of all real-valued bounded functions on Q. Our criterion

(32) emerges when these evaluations are aggregated via the minimum on Q. But, a priori, less

extreme stances are conceivable. This would require dropping caution as the next two results

shows.

Proposition 10 Let PQ be a two-preference family. The following statements are equivalent:

(i) PQ is sensitive;

(ii) there exist an onto affine u : X → R, a lower semicontinuous divergence c : ∆ ×∆σ →
[0,∞], convex in p, and a normalized and monotone functional JQ : B (Q) → R such that

for each Q ∈ Q,

f ≿∗
Q g ⇐⇒ min

p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q

(36)

37A binary relation ≿ over acts F is a monotone binary relation if it is a non-trivial complete preorder which
satisfies monotonicity, continuity and independence over X, and is solvable, that is, for each f ∈ F there exists
x ∈ X such that f ∼ x. In particular, a monotone binary relation is a rational preference if and only if it
satisfies continuity over F .
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and

f ≿Q g ⇐⇒ JQ

(
min
p∈∆

{∫
u (f) dp+ c (p, ·)

})
≥ JQ

(
min
p∈∆

{∫
u (g) dp+ c (p, ·)

})
(37)

for all acts f, g ∈ F .

Moreover, u is cardinal and, given u, c is unique.

Decision-theoretically, Theorem 2 is the special case of this result when ≿∗
Q and ≿Q jointly

satisfy caution for all Q ∈ Q, as Corollary 1 below shows. Analytically, it corresponds to the

special case where JQ is the minimum over Q of the maps

q 7−→ min
p∈∆

{∫
u (f) dp+ c (p, q)

}
(38)

In this case, by exchanging the order of minima, (37) reduces to the decision criterion (32).

An altogether different case is when JQ is a quasi-arithmetic mean over the maps (38), so

that (37) now becomes

VQ (f) = ϕ−1
Q

(∫
Q

ϕQ

(
min
p∈∆

{∫
S

u (f (s)) dp (s) + c (p, q)

})
dµQ (q)

)
(39)

where ϕQ : R → R is strictly increasing and continuous and µQ ∈ ∆(Q).38 Momentarily, this

criterion will be the protagonist of the next section. We conclude by observing that the leading

assumption driving our representation results is indeed caution while continuity of ≿Q and

Q-coherence could have been dispensed with.

Corollary 1 Let PQ be a two-preference family. The following statements are equivalent:

(i) PQ is robust;

(ii) PQ is sensitive and ≿∗
Q and ≿Q jointly satisfy caution for all Q ∈ Q;

(iii) there exist an onto affine u : X → R and a lower semicontinuous divergence c : ∆×∆σ →
[0,∞], convex in p, such that, for each Q ∈ Q,

f ≿∗
Q g ⇐⇒ min

p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q

38Here, with a small abuse of notation, the set ∆ (Q) denotes the set of all Borel probability measures over
Q. In particular, in order to discuss this functional form, we need the maps defined as in (38), to be Borel
measurable: a property which is guaranteed by the joint lower semicontinuity of c.
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and

f ≿Q g ⇐⇒ min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+min

q∈Q
c (p, q)

}
for all acts f, g ∈ F .

Moreover, u is cardinal and, given u, c is unique.

8 A Bayesian approach

With the exception of the robust Bayesian interpretation of models outlined to interpret convex

sets of models (Section 3.1), so far we conducted our analysis in a classic Waldean setting

where the DM’s beliefs over the likelihood of models, in particular their quantification via prior

probabilities, play no role. In contrast, in this section we outline a Bayesian approach based

on them.

Under model ambiguity, the DM has a prior probability µQ over the set of structured models

Q. In particular, the prior probability µQ (q) of a structured model q ∈ Q quantifies the DM

belief that q is the correct model. Under model misspecification, this interpretation is no longer

possible because the DM no longer regards structured models as alternative correct models, one

of them being correct. So, they no longer form an exhaustive collection of mutually exclusive

uncertain alternatives – a logical partition – over which a meaningful belief can be expressed.

We thus face two possibilities. The first one is to content ourselves with the interpretation

of the prior µQ as an averaging device which specifies the quasi-arithmetic aggregator in (39).

The second, better, one is to find a meaningful logical partition that gives µQ a proper Bayesian

interpretation. In both cases, one could argue that the prior µQ, compared to the standard

case, might quantify a fragile belief which might need to be robustified (cf. Hansen and Sargent,

2007). We begin by introducing a Bayesian criterion under the average view of the prior µQ. We

then discuss a possible interpretation of this prior that gives the criterion a genuine Bayesian

flavor.

8.1 A Bayesian criterion

Consider the quasi-arithmetic specification (39), that is,

VQ (f) = ϕ−1
Q

(∫
Q

ϕQ

(
min
p∈∆

{∫
S

u (f (s)) dp (s) + c (p, q)

})
dµQ (q)

)
(40)

where µQ ∈ ∆(Q) and ϕQ : R → R is strictly increasing and continuous. This is, formally,

a Bayesian criterion with the prior probability µQ interpreted as an averaging device over the
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structured models. The variational criteria, indexed by Q,

min
p∈∆

{∫
S

u (f (s)) dq (s) + c (p, q)

}
and the corresponding dominance relation account for fear of model misspecification about the

posited models q, while the function ϕQ addresses the fear of prior misspecification.

The Bayesian criterion (40) generalizes to model misspecification the smooth ambiguity

criterion

VQ (f) = ϕ−1
Q

(∫
Q

ϕQ

(∫
S

u (f (s)) dq (s)

)
dµQ (q)

)
under model ambiguity, which is the special case c (p, q) = δ{q} (p) for all (p, q) ∈ ∆×∆σ that

corresponds to model misspecification neutrality. When each ϕQ is the identity, the criterion

(40) further specializes to a standard subjective expected utility criterion

VQ (f) =

∫
Q

(∫
S

u (f (s)) dq (s)

)
dµQ (q)

An important entropic specification of criterion (40) is

V λ,ξ
Q (f) = ϕ−1

ξ

(∫
Q

ϕξ

(
min
p∈∆

{∫
S

u (f (s)) dp (s) + λR (p||q)
})

dµQ (q)

)
(41)

where µQ ∈ ∆(Q) and ϕξ (t) = −e−
1
ξ
t has an exponential form (common across the sets of

models Q). The parameter ξ > 0 captures fear of (reference) prior misspecification, while

the parameter λ > 0 is a fear of model misspecification index. The lower the parameter, the

higher the fear. Next we show that, as fear of either model or prior misspecification vanishes

or explodes, we get the criteria that one would expect. This provides an analytical consistency

check for criterion (40). In deriving, this result we focus on the entropic formulation, but the

result can be generalized in different directions, for example, by replacing the relative entropy

with a general divergence as in (6) and by replacing the conditions on ξ with similar conditions

on the Arrow-Pratt index of ϕQ.

Proposition 11 If suppµQ = Q and f ∈ F , then

lim
ξ→0+

V λ,ξ
Q (f) = min

p∈∆

{∫
S

u (f (s)) dp (s) + λmin
q∈Q

R (p||q)
}

∀λ ∈ (0,∞] (42)

and

lim
ξ→∞

V λ,ξ
Q (f) =

∫
Q

(
min
p∈∆

{∫
S

u (f (s)) dp (s) + λR (p||q)
})

dµQ (q) ∀λ ∈ (0,∞] (43)
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Moreover,

lim
ξ→∞

lim
λ→∞

V λ,ξ
Q (f) = lim

λ→∞
lim
ξ→∞

V λ,ξ
Q (f) =

∫
Q

(∫
S

u (f (s)) dq (s)

)
dµQ (q) (44)

In words, the limit (42) shows that, as fear of prior misspecification explodes, criterion (40)

gets closer and closer to our criterion (19). In contrast, the limit (43) shows that, when such

fear vanishes, we end up with a criterion that averages, via the prior µQ, multiplier criteria

(one per structured model q). Finally, the limit (44) shows that, when both fear vanish, at the

limit we have a standard subjective expected utility criterion.

8.2 On the interpretation of priors

As we previously remarked, under model misspecification a set Q of structured models is no

longer a set of exhaustive and mutually exclusive alternatives, so a logical partition upon which

to define a prior probability. What might be a new partition of this kind?

To address this question, denote by p∗ ∈ ∆ the correct model. The agents do not know

whether or not it belongs to Q. Let q∗ be the structured model, assumed to uniquely exist,

such that

c (p∗, q∗) = min
q∈Q

c (p∗, q)

Model q∗ best approximates, or best fits, the correct model p∗ according to the variational

statistical distance c that decision makers adopt. If they know that p∗ is inQ (model ambiguity),

we have p∗ = q∗ and so q∗ itself is the correct model.

Decision makers are uncertain about q∗, that is, about which structured model q ∈ Q best

fits the correct model. But, they know that one of them is, indeed, the best fit. Under this

interpretation of its elements, Q thus forms a collection of exhaustive and mutually exclusive

alternatives. Decision makers now regard each element q of Q as a “candidate best fitting

model”: this is how they interpret q and what they are uncertain about. The meaning of prior

µQ (q) is then clear: it quantifies the DM belief that q is the best fit of the correct model (see

Walker, 2013, for an insightful discussion).

This interpretation of µQ reduces to the standard one under model ambiguity because, as

previously remarked, in this case the best fit coincides with the correct model itself. In the rest

of the section, we make more rigorous this discussion.

To this end, let c : ∆×∆σ → [0,∞] be a lower semicontinuous statistical distance. Consider

a compact set of structured models Q. For each q ∈ Q, define the set

Bc (q,Q) =

{
p ∈ ∆ : c (p, q) = min

q̃∈Q
c(p, q̃)

}
If decision makers believe that a structured model q ∈ Q best fits the correct model, then
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they consistently believe that the correct model belongs to a subset Bc (q,Q) of ∆. So, for a

structured model q ∈ Q, the set Bc (q,Q) consists of all unstructured models that, if correct,

make q their best fit.

We can thus regard Bc (q,Q) as the partial identification set that corresponds to the agents

belief that the structured model q best fits the correct one. They can construct, at least in

principle, this set by solving the minimization problem that it features. Next we report some

basic properties of these partial identification sets. Let

∆c,Q = {p ∈ ∆ : c (p, ·) is proper and strictly convex on Q}

For instance, by Lemma 13 we have ∆Dϕ,Q ⊇ {p ∈ ∆σ : p ∼ Q} for a ϕ-divergence Dϕ when

Q ∈ K.

Lemma 2 If Q ∈ K, then

(i) ∆ =
⋃
q∈Q

Bc (q,Q);

(ii) Bc (q,Q) ∩Q = {q} for all q ∈ Q;

(iii) Bc (q,Q) ∩Bc (q
′, Q) ∩ (Q ∪∆c,Q) = ∅ for all distinct q, q′ ∈ Q.

Properties (i) and (iii) ensure that the family of the partial identification sets

{Bc (q,Q)}q∈Q

forms a partition of Q∪∆c,Q. As long as the correct model belongs to Q∪∆c,Q, this permits to

interpret µQ (q) as the probability that the structured model q ∈ Q is the best fit of the correct

model. In particular, we can interpret in this way the prior µQ that the Bayesian criterion (40)

features, thus giving this criterion a genuine Bayesian status. Property (ii) ensures that under

model ambiguity we go back to the traditional interpretation of priors.

9 Conclusion

Quantitative researchers use models to enhance their understanding of economic phenomena

and to make policy assessments. In essence, each model tells its own quantitative story. We

refer to such models as “structured models.” Typically, there are more than just one such type of

model, with each giving rise to a different quantitative story. Statistical and economic decision

theories have addressed how best to confront the ambiguity among structured models. Such

structured models are, by their very nature, misspecified. Nevertheless, the decision maker seeks

to use such models in sensible ways. This problem is well recognized by applied researchers,
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but it is typically not part of formal decision theory. In this paper, we extend decision theory to

confront model misspecification concerns. In so doing, we recover a variational representation

of preferences that includes penalization based on discrepancy measures between “unstructured

alternatives” and the set of structured probability models.

In terms of future research, a natural generalization of our criterion is

V (f) = min
p∈∆

{∫
u (f) dp+ C (p,Q)

}
where C is a general statistical set distance, not necessarily Hausdorff (so not necessarily

characterized by an underlying statistical distance). This variational criterion still represents

a preference that is more uncertainty averse than the corresponding max-min one. It may

also easily accommodate reversals of the inequality (35), along the lines previously discussed.

Though the analysis of this general criterion is beyond the scope of this paper and left for future

research, we close our exposition with it as its form should help to put our exercise in a final

perspective.

A Proofs and related analysis

In this appendix, we provide the proofs of our main results. We relegate to the Appendix B the

proofs of most of our ancillary results (e.g., Propositions 1, 2, 8 and 9). In the same appendix,

we also formally discuss few results about statistical distances and divergences (Lemmas 11–

13). Appendix A.1 contains the proofs of our representation results (Theorems 1 and 2, and

Proposition 7). Appendix A.2 contains the proofs of the remaining analysis. In both appendices,

we denote by B0 (Σ) the space of Σ-measurable simple functions φ : S → R, endowed with

the supnorm ∥ ∥∞. The dual of B0 (Σ) can be identified with the space ba (Σ) of all bounded

finitely additive measures on (S,Σ).

A.1 Representation results

The proof of Theorem 1 is based on three key steps. We first provide two results regarding

variational preferences which will help isolate the set of structured models Q in the main repre-

sentation (their routine proof is confined to Appendix B). Second, we provide a representation

for an unbounded and objectively Q-coherent dominance relation ≿∗ (Appendix A.1.1). Third,

we prove Theorem 1 (Appendix A.1.2). The proof of Theorem 2 and Proposition 7 instead is

presented as one result (Appendix A.1.3). In what follows, given a function c : ∆×Q→ [0,∞],

where Q is a compact and convex subset of ∆σ, we say that c is variational if cq is grounded,

lower semicontinuous and convex and cQ(= minq∈Q c (·, q)) is well defined, grounded, lower

semicontinuous and convex. The next two lemmas, proved in Appendix B.3, are key in char-
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acterizing subjective and objective Q-coherence.

Lemma 3 Let ≿ be a variational preference represented by V : F → R defined by

V (f) = min
p∈∆

{∫
u (f) dp+ c (p)

}
∀f ∈ F

and let p̄ ∈ ∆. If ≿ is unbounded, then the following conditions are equivalent:

(i) c (p̄) = 0;

(ii) xp̄f ≿ f for all f ∈ F ;

(iii) for each f ∈ F and for each x ∈ X

x ≻ xp̄f =⇒ x ≻ f

Lemma 4 Let ≿ be a variational preference represented by V : F → R defined by

V (f) = min
p∈∆

{∫
u (f) dp+ c (p)

}
∀f ∈ F

If ≿ is unbounded, then the following conditions are equivalent:

(i) For each f, g ∈ F
f

Q
= g =⇒ f ∼ g

(ii) dom c ⊆ ∆≪ (Q).

A.1.1 A Bewley-type representation

The next result is a multi-utility (variational) representation for unbounded dominance rela-

tions.

Lemma 5 Let ≿∗ be a binary relation on F , where (S,Σ) is a standard Borel space. The

following statements are equivalent:

(i) ≿∗ is an unbounded dominance relation which satisfies objective Q-coherence;

(ii) there exist an onto affine function u : X → R and a variational c : ∆×Q→ [0,∞] such

that dom c (·, q) ⊆ ∆≪ (Q) for all q ∈ Q and

f ≿∗ g ⇐⇒ min
p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q (45)
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To prove this result, we need to introduce one mathematical object. Let ⪰∗ be a binary

relation on B0 (Σ). We say that ⪰∗ is convex niveloidal if and only if ⪰∗ is a preorder that

satisfies the following five properties:

1. For each φ, ψ ∈ B0 (Σ) and for each k ∈ R

φ ⪰∗ ψ =⇒ φ+ k ⪰∗ ψ + k

2. If φ, ψ ∈ B0 (Σ) and {kn}n∈N ⊆ R are such that kn ↑ k and φ − kn ⪰∗ ψ for all n ∈ N,
then φ− k ⪰∗ ψ;

3. For each φ, ψ ∈ B0 (Σ)

φ ≥ ψ =⇒ φ ⪰∗ ψ

4. For each k, h ∈ R and for each φ ∈ B0 (Σ)

k > h =⇒ φ+ k ≻∗ φ+ h

5. For each φ, ψ, ξ ∈ B0 (Σ) and for each λ ∈ (0, 1)

φ ⪰∗ ξ and ψ ⪰∗ ξ =⇒ λφ+ (1− λ)ψ ⪰∗ ξ

Lemma 6 If ≿∗ is an unbounded dominance relation, then there exists an onto affine function

u : X → R such that

x ≿∗ y ⇐⇒ u (x) ≥ u (y) (46)

Proof Since ≿∗ is a non-trivial preorder on F that satisfies c-completeness, continuity and

weak c-independence, it is immediate to conclude that ≿∗ restricted to X satisfies weak order,

continuity and risk independence.39 By Herstein and Milnor (1953), it follows that there exists

an affine function u : X → R that satisfies (46). Since ≿∗ is a non-trivial c-complete preorder

on F that satisfies monotonicity, we have that ≿∗ is non-trivial on X. By Lemma 59 of Cerreia-

Vioglio et al. (2011b) and since ≿∗ is non-trivial on X and satisfies unboundedness, we can

conclude that u is onto. ■
39To prove that ≿∗ satisfies risk independence, it suffices to deploy the same technique of Lemma 28 of

Maccheroni et al. (2006) and observe that ≿∗ is a complete preorder on X. This yields that

x ∼∗ y =⇒ 1

2
x+

1

2
z ∼∗ 1

2
y +

1

2
z ∀z ∈ X

By Theorem 2 of Herstein and Milnor (1953) and since ≿∗ satisfies continuity, we can conclude that ≿∗ satisfies
risk independence.
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Since u is affine and onto, note that {u (f) : f ∈ F} = B0 (Σ). In light of this observation,

we can define a binary relation ⪰∗ on B0 (Σ) by

φ ⪰∗ ψ ⇐⇒ f ≿∗ g where u (f) = φ and u (g) = ψ (47)

Lemma 7 If ≿∗ is an unbounded dominance relation, then ⪰∗, defined as in (47), is a well

defined convex niveloidal binary relation. Moreover, if ≿∗ is objectively Q-coherent, then φ
Q
= ψ

implies φ ∼∗ ψ.

We confine the routine proof to Appendix B. The next three results (Lemmas 8 and 9 as

well as Proposition 12) will help us representing ⪰∗. This paired with Lemma 6 and Proposition

13 will yield the proof of Lemma 5.

Lemma 8 Let ⪰∗ be a convex niveloidal binary relation. If ψ ∈ B0 (Σ), then U (ψ) =

{φ ∈ B0 (Σ) : φ ⪰∗ ψ} is a non-empty convex set such that:

1. ψ ∈ U (ψ);

2. if φ ∈ B0 (Σ) and {kn}n∈N ⊆ R are such that kn ↑ k and φ − kn ∈ U (ψ) for all n ∈ N,
then φ− k ∈ U (ψ);

3. if k > 0, then ψ − k ̸∈ U (ψ);

4. if φ1 ≥ φ2 and φ2 ∈ U (ψ), then φ1 ∈ U (ψ);

5. if k ≥ 0 and φ2 ∈ U (ψ), then φ2 + k ∈ U (ψ).

Proof Since ⪰∗ is reflexive, we have that ψ ∈ U (ψ), proving that U (ψ) is non-empty and

point 1. Consider φ1, φ2 ∈ U (ψ) and λ ∈ (0, 1). By definition, we have that φ1 ⪰∗ ψ and

φ2 ⪰∗ ψ. Since ⪰∗ satisfies convexity, we have that λφ1 + (1− λ)φ2 ⪰∗ ψ, proving convexity

of U (ψ). Consider φ ∈ B0 (Σ) and {kn}n∈N ⊆ R such that kn ↑ k and φ − kn ∈ U (ψ) for all

n ∈ N. It follows that φ − kn ⪰∗ ψ for all n ∈ N, then φ − k ⪰∗ ψ, that is, φ − k ∈ U (ψ),

proving point 2. If k > 0, then 0 > −k and ψ = ψ+0 ≻∗ ψ−k, that is, ψ−k ̸∈ U (ψ), proving

point 3. Consider φ1 ≥ φ2 such that φ2 ∈ U (ψ), then φ1 ⪰∗ φ2 and φ2 ⪰∗ ψ, yielding that

φ1 ⪰∗ ψ and, in particular, φ1 ∈ U (ψ), proving point 4. Finally, to prove point 5, it is enough

to set φ1 = φ2 + k in point 4. ■

Before stating the next result, we define few properties that will turn out to be useful later

on. A functional I : B0 (Σ) → R is:

1. a niveloid if I (φ)− I (ψ) ≤ sups∈S (φ (s)− ψ (s)) for all φ, ψ ∈ B0 (Σ);

2. normalized if I (k) = k for all k ∈ R;40

40With the usual abuse of notation, we denote by k both the real number and the constant function taking
value k.
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3. monotone if for each φ, ψ ∈ B0 (Σ)

φ ≥ ψ =⇒ I (φ) ≥ I (ψ)

4. ⪰∗-consistent if for each φ, ψ ∈ B0 (Σ)

φ ⪰∗ ψ =⇒ I (φ) ≥ I (ψ)

5. concave if for each φ, ψ ∈ B0 (Σ) and λ ∈ (0, 1)

I (λφ+ (1− λ)ψ) ≥ λI (φ) + (1− λ) I (ψ)

6. translation invariant if for each φ ∈ B0 (Σ) and k ∈ R

I (φ+ k) = I (φ) + k

Lemma 9 Let ⪰∗ be a convex niveloidal binary relation. If ψ ∈ B0 (Σ), then the functional

Iψ : B0 (Σ) → R, defined by

Iψ (φ) = max {k ∈ R : φ− k ∈ U (ψ)} ∀φ ∈ B0 (Σ)

is a concave niveloid which is ⪰∗-consistent and such that Iψ (ψ) = 0. Moreover, we have that:

1. The functional Īψ = Iψ − Iψ (0) is a normalized concave niveloid which is ⪰∗-consistent.

2. If ⪰∗ satisfies

ψ
Q
= ψ′ =⇒ ψ ∼∗ ψ′

then

ψ
Q
= ψ′ =⇒ Iψ = Iψ′ and Īψ = Īψ′

We confine the routine proof of the previous lemma to Appendix B.

Proposition 12 Let ⪰∗ be a binary relation on B0 (Σ). The following statements are equiva-

lent:

(i) ⪰∗ is convex niveloidal;

(ii) there exists a family of concave niveloids {Iα}α∈A on B0 (Σ) such that

φ ⪰∗ ψ ⇐⇒ Iα (φ) ≥ Iα (ψ) ∀α ∈ A (48)
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(iii) there exists a family of normalized concave niveloids
{
Īα
}
α∈A on B0 (Σ) such that

φ ⪰∗ ψ ⇐⇒ Īα (φ) ≥ Īα (ψ) ∀α ∈ A (49)

Proof (iii) implies (i). It is trivial.

(i) implies (ii). Let A = B0 (Σ). We next show that

φ1 ⪰∗ φ2 ⇐⇒ Iψ (φ1) ≥ Iψ (φ2) ∀ψ ∈ B0 (Σ)

where Iψ is defined as in Lemma 9 for all ψ ∈ B0 (Σ). By Lemma 9, we have that Iψ is

⪰∗-consistent for all ψ ∈ B0 (Σ). This implies that

φ1 ⪰∗ φ2 =⇒ Iψ (φ1) ≥ Iψ (φ2) ∀ψ ∈ B0 (Σ)

Vice versa, consider φ1, φ2 ∈ B0 (Σ). Assume that Iψ (φ1) ≥ Iψ (φ2) for all ψ ∈ B0 (Σ). Let

ψ = φ2. By Lemma 9, we have that Iφ2 (φ1) ≥ Iφ2 (φ2) = 0, yielding that φ1 ≥ φ1 − Iφ2 (φ1) ∈
U (φ2). By point 4 of Lemma 8, this implies that φ1 ∈ U (φ2), that is, φ1 ⪰∗ φ2.

(ii) implies (iii). Given a family of concave niveloids {Iα}α∈A, define Īα = Iα− Iα (0) for all

α ∈ A. It is immediate to verify that Īα is a normalized concave niveloid for all α ∈ A. It is

also immediate to observe that

Iα (φ1) ≥ Iα (φ2) ∀α ∈ A ⇐⇒ Īα (φ1) ≥ Īα (φ2) ∀α ∈ A

proving the implication. ■

Remark 1 Given a convex niveloidal binary relation ⪰∗ on B0 (Σ), we call canonical (resp.,

canonical normalized) the representation {Iψ}ψ∈B0(Σ) (resp.,
{
Īψ
}
ψ∈B0(Σ)

) obtained from Lemma

9 and the proof of Proposition 12. By the previous proof, clearly, {Iψ}ψ∈B0(Σ) and
{
Īψ
}
ψ∈B0(Σ)

satisfy (48) and (49) respectively.

The next result clarifies what is the relation between any representation of ⪰∗ and the

canonical ones. This will be useful in establishing an extra property of
{
Īψ
}
ψ∈B0(Σ)

in Corollary

2.

Lemma 10 Let ⪰∗ be a convex niveloidal binary relation. If B is an index set and {Jβ}β∈B is

a family of normalized concave niveloids such that

φ ⪰∗ ψ ⇐⇒ Jβ (φ) ≥ Jβ (ψ) ∀β ∈ B

then for each ψ ∈ B0 (Σ)

Iψ (φ) = inf
β∈B

(Jβ (φ)− Jβ (ψ)) ∀φ ∈ B0 (Σ) (50)
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and

Īψ (φ) = inf
β∈B

(Jβ (φ)− Jβ (ψ)) + sup
β∈B

Jβ (ψ) ∀φ ∈ B0 (Σ) (51)

Proof Fix φ ∈ B0 (Σ) and ψ ∈ B0 (Σ). By definition, we have that

Iψ (φ) = max {k ∈ R : φ− k ∈ U (ψ)}

Since {Jβ}β∈B represents ⪰∗ and each Jβ is translation invariant, note that for each k ∈ R

φ− k ∈ U (ψ) ⇐⇒ φ− k ⪰∗ ψ ⇐⇒ Jβ (φ− k) ≥ Jβ (ψ) ∀β ∈ B

⇐⇒ Jβ (φ)− k ≥ Jβ (ψ) ∀β ∈ B ⇐⇒ Jβ (φ)− Jβ (ψ) ≥ k ∀β ∈ B

⇐⇒ inf
β∈B

(Jβ (φ)− Jβ (ψ)) ≥ k

By definition of Iψ and since φ−Iψ (φ) ∈ U (ψ), this implies that Iψ (φ) = infβ∈B (Jβ (φ)− Jβ (ψ)).

Since φ and ψ were arbitrarily chosen, (50) follows. Since Īψ = Iψ−Iψ (0), we only need to com-

pute −Iψ (0). Since each Jβ is normalized, we have that −Iψ (0) = − infβ∈B (Jβ (0)− Jβ (ψ)) =

− infβ∈B (−Jβ (ψ)) = supβ∈B Jβ (ψ), proving (51). ■

Corollary 2 If ⪰∗ is a convex niveloidal binary relation, then Ī0 ≤ Īψ for all ψ ∈ B0 (Σ).

Proof By Lemma 10 and Remark 1 and since each Īψ′ is a normalized concave niveloid, we

have that

Ī0 (φ) = inf
ψ′∈B0(Σ)

(
Īψ′ (φ)− Īψ′ (0)

)
+ sup

ψ′∈B0(Σ)

Īψ′ (0) = inf
ψ′∈B0(Σ)

Īψ′ (φ) ≤ Īψ (φ) ∀φ ∈ B0 (Σ)

for all ψ ∈ B0 (Σ), proving the statement. ■

The next result will be instrumental in providing a niveloidal multi-representation of ≿∗

when |Q| ≥ 2. In order to discuss it, we need a piece of terminology. We denote by V the

quotient space B0 (Σ) /M where M is the vector subspace
{
φ ∈ B0 (Σ) : φ

Q
= 0

}
. Recall that

the elements of V are equivalence classes [ψ] with ψ ∈ B0 (Σ) where ψ
′, ψ′′ ∈ [ψ] if and only if

ψ
Q
= ψ′ Q= ψ′′. Recall that Q is convex.

Proposition 13 If (S,Σ) is a standard Borel space and |Q| ≥ 2, then there exists a bijection

f : V → Q.

The routine proof of the previous result is relegated to Appendix B. We next prove our

representation result for incomplete variational preferences.

Proof of Lemma 5 (ii) implies (i). It is trivial.

(i) implies (ii). Since ≿∗ is a dominance relation, if |Q| = 1, that is Q = {q̄}, then ≿∗ is

complete. By Maccheroni et al. (2006) and since ≿∗ is unbounded, it follows that there exists
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an onto and affine u : X → R and a grounded, lower semicontinuous and convex cq̄ : ∆ → [0,∞]

such that V : F → R defined by

V (f) = min
p∈∆

{∫
u (f) dp+ cq̄ (p)

}
∀f ∈ F

represents ≿∗. If we define c : ∆ × Q → [0,∞] by c (p, q) = cq̄ (p) for all (p, q) ∈ ∆ × Q, then

we have that c is variational. By Lemma 4 and since ≿∗ is objectively Q-coherent, it follows

that dom c (·, q) ⊆ ∆≪ (Q) for all q ∈ Q, proving the implication. Assume |Q| > 1. By Lemma

6, there exists an onto affine function u : X → R which represents ≿∗ on X. By Lemma 7, this

implies that we can consider the convex niveloidal binary relation ⪰∗ defined as in (47). By

definition of ⪰∗ and Proposition 12 (and Remark 1), we have that

f ≿∗ g ⇐⇒ u (f) ⪰∗ u (g) ⇐⇒ Īψ (u (f)) ≥ Īψ (u (g)) ∀ψ ∈ B0 (Σ)

where each Īψ is a normalized concave niveloid. As before, consider V = B0 (Σ) /M where M

is the vector subspace
{
φ ∈ B0 (Σ) : φ

Q
= 0

}
. For each equivalence class [ψ], select exactly one

ψ′ ∈ B0 (Σ) such that ψ′ ∈ [ψ]. In particular, let ψ′ = 0 when [ψ] = [0]. We denote this subset

of B0 (Σ) by Ṽ . Clearly, we have that

Īψ (u (f)) ≥ Īψ (u (g)) ∀ψ ∈ B0 (Σ) =⇒ Īψ (u (f)) ≥ Īψ (u (g)) ∀ψ ∈ Ṽ

Vice versa, assume that Īψ (u (f)) ≥ Īψ (u (g)) for all ψ ∈ Ṽ . Consider ψ̂ ∈ B0 (Σ). It follows

that there exists [ψ] in V such that ψ̂ ∈ [ψ]. Similarly, consider ψ′ ∈ Ṽ such that ψ′ ∈ [ψ]. It

follows that ψ̂
Q
= ψ′. By Lemmas 7 and 9 and since ≿∗ is objectively Q-coherent, then Īψ̂ = Īψ′ ,

yielding that Īψ̂ (u (f)) ≥ Īψ̂ (u (g)). Since ψ̂ was arbitrarily chosen Īψ (u (f)) ≥ Īψ (u (g)) for all

ψ ∈ B0 (Σ). By construction, observe that there exists a bijection f̃ : Ṽ → V . By Proposition

13, we have that there exists a bijection f : V → Q. Define f̄ = f ◦ f̃ . By Corollary 2, if we

define Îq = Īf̄−1(q) for all q ∈ Q, then we have that Îf̄(0) ≤ Îq for all q ∈ Q and

f ≿∗ g ⇐⇒ Īψ (u (f)) ≥ Īψ (u (g)) ∀ψ ∈ B0 (Σ) ⇐⇒ Īψ (u (f)) ≥ Īψ (u (g)) ∀ψ ∈ Ṽ

⇐⇒ Îq (u (f)) ≥ Îq (u (g)) ∀q ∈ Q

Since each Îq is a normalized concave niveloid, we have that for each q ∈ Q there exists a

function cq : ∆ → [0,∞] which is grounded, lower semicontinuous, convex and such that

Îq (φ) = min
p∈∆

{∫
φdp+ cq (p)

}
∀φ ∈ B0 (Σ)

Define c : ∆ × Q → [0,∞] by c (p, q) = cq (p) for all (p, q) ∈ ∆ × Q. Clearly, the q-sections of

c are grounded, lower semicontinuous and convex and (45) holds. By Lemma 4 and (45) and
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since ≿∗ is objectively Q-coherent, it follows that dom c (·, q) ⊆ ∆≪ (Q) for all q ∈ Q. Finally,

recall that

c (p, q) = sup
φ∈B0(Σ)

{
Îq (φ)−

∫
φdp

}
∀p ∈ ∆,∀q ∈ Q

Since Îf̄(0) ≤ Îq for all q ∈ Q, we have that for each q ∈ Q

c
(
p, f̄ (0)

)
= sup

φ∈B0(Σ)

{
Îf̄(0) (φ)−

∫
φdp

}
≤ sup

φ∈B0(Σ)

{
Îq (φ)−

∫
φdp

}
= c (p, q) ∀p ∈ ∆

Since c
(
·, f̄ (0)

)
is grounded, lower semicontinuous and convex and f̄ (0) ∈ Q, this implies that

cQ (·) = minq∈Q c (·, q) = c
(
·, f̄ (0)

)
is well defined and shares the same properties, proving that

c is variational. ■

A.1.2 Proof of Theorem 1

(i) implies (ii). We proceed by steps. Before starting, we make one observation. By Lemma

5 and since ≿∗ is an unbounded dominance relation which is objectively Q-coherent there

exist an onto affine function u : X → R and a variational c : ∆ × Q → [0,∞] such that

dom c (·, q) ⊆ ∆≪ (Q) for all q ∈ Q (in particular, dom cQ (·) ⊆ ∪q∈Q dom c (·, q) ⊆ ∆≪ (Q))

and

f ≿∗ g ⇐⇒ min
p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q

We are left to show that cQ : ∆ → [0,∞] is such that

f ≿ g ⇐⇒ min
p∈∆

{∫
u (f) dp+ cQ (p)

}
≥ min

p∈∆

{∫
u (g) dp+ cQ (p)

}
(52)

and c−1
Q (0) = Q. To prove this we consider c as in the proof of (i) implies (ii) of Lemma 5. This

covers both cases |Q| = 1 and |Q| > 1. In particular, for each q ∈ Q define Îq : B0 (Σ) → R by

Îq (φ) = min
p∈∆

{∫
φdp+ c (p, q)

}
∀φ ∈ B0 (Σ)

and recall that there exists q̂(= f̄ (0) ∈ Q when |Q| > 1) such that c (·, q̂) ≤ c (·, q), thus Îq̂ ≤ Îq,

for all q ∈ Q.

Step 1. ≿ agrees with ≿∗ on X. In particular, u : X → R represents ≿∗ and ≿.

Proof of the Step Note that ≿∗ and ≿ restricted to X are continuous weak orders that satisfy

risk independence. Moreover, by the observation above, ≿∗ is represented by u. By Herstein

and Milnor (1953) and since ≿ is non-trivial, it follows that there exists a non-constant and

affine function v : X → R that represents ≿ on X. Since (≿∗,≿) jointly satisfy consistency, it

43



follows that for each x, y ∈ X

u (x) ≥ u (y) =⇒ v (x) ≥ v (y)

By Corollary B.3 of Ghirardato et al. (2004), u and v are equal up to an affine and positive

transformation, hence the statement. We can set v = u. □

Step 2. There exists a normalized, monotone and continuous functional I : B0 (Σ) → R such

that

f ≿ g ⇐⇒ I (u (f)) ≥ I (u (g))

Proof of the Step By Cerreia-Vioglio et al. (2011a) and since ≿ is a rational preference relation,

the statement follows. □

Step 3. I (φ) ≤ infq∈Q Îq (φ) for all φ ∈ B0 (Σ).

Proof of the Step Consider φ ∈ B0 (Σ). Since each Îq is normalized and monotone and u is

onto, we have that Îq (φ) ∈ [infs∈S φ (s) , sups∈S φ (s)] ⊆ Imu for all q ∈ Q. Since φ ∈ B0 (Σ), it

follows that there exists f ∈ F such that φ = u (f) and x ∈ X such that u (x) = infq∈Q Îq (φ).

For each ε > 0 there exists xε ∈ X such that u (xε) = u (x) + ε. Since infq∈Q Îq (φ) = u (x), it

follows that for each ε > 0 there exists q ∈ Q such that Îq (u (f)) = Îq (φ) < u (xε) = Îq (u (xε)),

yielding that f ̸≿∗ xε. Since (≿∗,≿) jointly satisfy caution, we have that xε ≿ f for all ε > 0.

By Step 2, this implies that

u (x) + ε = u (xε) = I (u (xε)) ≥ I (u (f)) = I (φ) ∀ε > 0

that is, infq∈Q Îq (φ) = u (x) ≥ I (φ), proving the step. □

Step 4. I (φ) ≥ infq∈Q Îq (φ) for all φ ∈ B0 (Σ).

Proof of the Step Consider φ ∈ B0 (Σ). We use the same objects and notation of Step 3. Note

that for each q′ ∈ Q

Îq′ (u (f)) = Îq′ (φ) ≥ inf
q∈Q

Îq (φ) = u (x) = Îq′ (u (x))

that is, f ≿∗ x. Since (≿∗,≿) jointly satisfy consistency, we have that f ≿ x. By Step 2, this

implies that

I (φ) = I (u (f)) ≥ I (u (x)) = u (x) = inf
q∈Q

Îq (φ)

proving the step. □

Step 5. I (φ) = minp∈∆
{∫

φdp+ cQ (p)
}
for all φ ∈ B0 (Σ).

Proof of the Step By Steps 3 and 4 and since Îq̂ ≤ Îq for all q ∈ Q, we have that

I (φ) = min
q∈Q

Îq (φ) = Îq̂ (φ) ∀φ ∈ B0 (Σ)

44



Since c (·, q̂) = cQ (·), it follows that for each φ ∈ B0 (Σ)

I (φ) = Îq̂ (φ) = min
p∈∆

{∫
φdp+ c (p, q̂)

}
= min

p∈∆

{∫
φdp+ cQ (p)

}
proving the step. □

Step 6. c−1
Q (0) = Q.

Proof of the Step By Steps 2 and 5, we have that V : F → R defined by

V (f) = min
p∈∆

{∫
u (f) dp+ cQ (p)

}
represents ≿. By Lemma 3 and since ≿ is subjectively Q-coherent and cQ is well defined,

grounded, lower semicontinuous and convex, we can conclude that c−1
Q (0) = Q. □

Thus, (52) follows from Steps 2 and 5 while, by Step 6, c−1
Q (0) = Q. This completes the

proof.

(ii) implies (i). It is routine.

Next, assume that c is uniquely null. Define the correspondence Γ : Q⇒ Q by

Γ (q) = {p ∈ ∆ : c (p, q) = 0} = argmin cq

Since cQ ≤ cq for all q ∈ Q and c−1
Q (0) = Q, we have that Γ is well defined. Since cq is grounded,

it follows that Γ (q) ̸= ∅ for all q ∈ Q. Since c is uniquely null and cq is grounded, we have that

c−1
q (0) is a singleton, that is,

c (p, q) = c (p′, q) = 0 =⇒ p = p′

This implies that Γ (q) is a singleton, therefore Γ is a function. Since c−1
Q (0) = Q, observe that

∪q∈QΓ (q) = ∪q∈Q argmin cq = argmin cQ = Q

that is, Γ is surjective. Since c is uniquely null, we have that c−1
p (0) is at most a singleton, that

is,

c (p, q) = c (p, q′) = 0 =⇒ q = q′

yielding that Γ is injective. To sum up, Γ is a bijection. Define c̃ : ∆ × Q → [0,∞] by

c̃ (p, q) = c (p,Γ−1 (q)) for all (p, q) ∈ ∆×Q. Note that c̃ (·, q) is grounded, lower semicontinuous,

convex and dom c̃ (·, q) ⊆ ∆≪ (Q) for all q ∈ Q and dom c̃Q (·) ⊆ ∆≪ (Q). Next, we show that

c̃Q = cQ. Since cQ is well defined, for each p ∈ ∆ there exists qp ∈ Q such that

c̃ (p,Γ (qp)) = c (p, qp) = min
q∈Q

c (p, q) ≤ c (p, q′) = c̃ (p,Γ (q′)) ∀q′ ∈ Q
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Since Γ is a bijection, we have that c̃ (p,Γ (qp)) ≤ c̃ (p, q) for all q ∈ Q. Since p was arbitrarily

chosen, it follows that

cQ (p) = min
q∈Q

c (p, q) = c̃ (p,Γ (qp)) = min
q∈Q

c̃ (p, q) = c̃Q (p) ∀p ∈ ∆

To sum up, c̃Q = cQ and c̃−1
Q (0) = c−1

Q (0) = Q. In turn, since cQ is grounded, lower semicon-

tinuous and convex, this implies that c̃Q is grounded, lower semicontinuous and convex. Since

Γ is a bijection, we can conclude that (15) holds with c̃ in place of c and (16) holds with c̃Q in

place of cQ.

We are left to show that c̃ (p, q) = 0 if and only if p = q. Since c−1
q (0) is a singleton for all

q ∈ Q and Γ is a bijection, if c̃ (p, q) = 0, then c (p,Γ−1 (q)) = 0, yielding that p = Γ (Γ−1 (q)) =

q. On the other hand, c̃ (q, q) = c (q,Γ−1 (q)) = 0. We can conclude that c̃ (p, q) = 0 if and only

if p = q, proving that c̃ is a statistical distance. ■

A.1.3 Proof of Theorem 2, Propositions 7 and 10

Proof of Theorem 2 We only prove (i) implies (ii), the converse being routine.41 We proceed

by steps.

Step 1. ≿∗
Q agrees with ≿∗

Q′ on X for all Q,Q′ ∈ Q. In particular, there exists an affine and

onto function u : X → R representing ≿∗
Q for all Q ∈ Q.

Proof of the Step Let Q,Q′ ∈ Q be such that Q ⊇ Q′. Note that ≿∗
Q and ≿∗

Q′ , restricted to

X, satisfy weak order, continuity and risk independence. By Herstein and Milnor (1953) and

since ≿∗
Q and ≿∗

Q′ are non-trivial, there exist two non-constant affine functions uQ, uQ′ : X → R
which represent ≿∗

Q and ≿∗
Q′ , respectively. Since

{
≿∗
Q

}
Q∈Q is monotone in model ambiguity,

we have that

uQ (x) ≥ uQ (y) =⇒ uQ′ (x) ≥ uQ′ (y)

By Corollary B.3 of Ghirardato et al. (2004), uQ and uQ′ are equal up to an affine and positive

transformation. Next, fix q̄ ∈ ∆σ. Set u = uq̄. Given any other q ∈ ∆σ, consider Q̄ ∈ Q such

that Q̄ ⊇ {q̄, q}. By the previous part, it follows that uQ̄, uq and uq̄ are equal up to an affine

and positive transformation. Given that q was arbitrarily chosen, we can set u = uq for all

q ∈ Q. Similarly, given a generic Q ∈ Q, select q ∈ Q. Since Q ⊇ {q}, it follows that we can

set u = uQ. Since each ≿∗
Q is unbounded for all Q ∈ Q, we have that u is onto. □

Step 2. For each q ∈ ∆σ there exists a normalized, monotone, translation invariant and concave

functional Iq : B0 (Σ) → R such that

f ≿∗
q g ⇐⇒ Iq (u (f)) ≥ Iq (u (g)) (53)

41The only exception is the proof that the representation implies subjectiveQ-coherence. This is a consequence
of Theorem 2.4.18 in Zalinescu (2002) paired with Lemma 32 of Maccheroni et al. (2006).
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Moreover, there exists a unique grounded, lower semicontinuous and convex function cq : ∆ →
[0,∞] such that

Iq (φ) = min
p∈∆

{∫
φdp+ cq (p)

}
∀φ ∈ B0 (Σ) (54)

Proof of the Step Fix q ∈ ∆σ. Since ≿∗
q is an unbounded dominance relation which is complete,

we have that ≿∗
q is a variational preference. By the proof of Theorem 3 and Proposition 6 of

Maccheroni et al. (2006) and Step 1, there exists an onto and affine function uq : X → R,
which can be set to be equal to u, and, given u, a unique grounded, lower semicontinuous and

convex function cq : ∆ → [0,∞] such that (54) and (53) hold. □

Define c : ∆×∆σ → [0,∞] by c (p, q) = cq (p) for all (p, q) ∈ ∆×∆σ.

Step 3. For each Q ∈ Q we have that f ≿∗
Q g if and only if f ≿∗

q g for all q ∈ Q. In particular,

we have that

f ≿∗
Q g ⇐⇒ min

p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q (55)

Proof of the Step Fix Q ∈ Q. Since
{
≿∗
Q

}
Q∈Q is monotone in model ambiguity, we have that

f ≿∗
Q g =⇒ f ≿∗

q g ∀q ∈ Q

Since
{
≿∗
Q

}
Q∈Q is Q-separable, we can conclude that f ≿∗

Q g if and only if f ≿∗
q g for all q ∈ Q.

By Step 2 and the definition of c, (55) follows. □

Step 4. ≿∗
Q agrees with ≿Q on X for all Q ∈ Q. Moreover, ≿Q is represented by the function

u of Step 1.

Proof of the Step Fix Q ∈ Q. Note that ≿∗
Q and ≿Q, restricted to X, satisfy weak order,

continuity and risk independence. By Herstein and Milnor (1953) and since ≿Q is non-trivial,

there exists a non-constant affine function vQ which represents≿Q. By Step 1, ≿∗
Q is represented

by u. Since
(
≿∗
Q,≿Q

)
jointly satisfy consistency, it follows that for each x, y ∈ X

u (x) ≥ u (y) =⇒ vQ (x) ≥ vQ (y)

By Corollary B.3 of Ghirardato et al. (2004), vQ and u are equal up to an affine and positive

transformation. So we can set vQ = u, proving the statement. □

Step 5. For each Q ∈ Q we have that

f ≿Q g ⇐⇒ inf
p∈∆

{∫
u (f) dp+ inf

q∈Q
c (p, q)

}
≥ inf

p∈∆

{∫
u (g) dp+ inf

q∈Q
c (p, q)

}
(56)

Proof of the Step Fix Q ∈ Q. By Cerreia-Vioglio et al. (2011a) and since ≿Q is a rational pref-

erence relation, there exists a normalized, monotone and continuous functional IQ : B0 (Σ) → R
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such that

f ≿Q g ⇐⇒ IQ (u (f)) ≥ IQ (u (g)) (57)

By the same arguments in Steps 3 and 4 of Theorem 1, we have that IQ = infq∈Q Iq, yielding

that

IQ (φ) = inf
q∈Q

min
p∈∆

{∫
φdp+ c (p, q)

}
= inf

q∈Q
inf
p∈∆

{∫
φdp+ c (p, q)

}
= inf

p∈∆
inf
q∈Q

{∫
φdp+ c (p, q)

}
= inf

p∈∆

{∫
φdp+ inf

q∈Q
c (p, q)

}
∀φ ∈ B0 (Σ)

By (57), this implies that (56) holds. □

Step 6. c (p, q) = 0 if and only if p = q.

Proof of the Step By Steps 2 and 5, we have that ≿∗
q coincides with ≿q on F for all q ∈ ∆σ. By

Lemma 3 and since ≿q is subjectively {q}-coherent, we have that argmin c (·, q) = argmin cq =

{q}. □

Step 7. dom c (·, q) ⊆ ∆≪ (q) ⊆ ∆≪ (Q) for all q ∈ Q and for all Q ∈ Q.

Proof of the Step By the previous part of the proof, we have that ≿∗
q coincides with ≿q on F

for all q ∈ ∆σ. By Lemma 4 and since ≿∗
q is objectively {q}-coherent, we can conclude that

dom c (·, q) ⊆ ∆≪ (q) ⊆ ∆≪ (Q) for all q ∈ Q and for all Q ∈ Q. □

Step 8. c is jointly lower semicontinuous.

Proof of the Step Define the map J : B0 (Σ) × ∆σ → R by J (φ, q) = Iq (φ) for all q ∈ Q.

Observe that, for each (p, q) ∈ ∆×∆σ,

c (p, q) = cq (p) = sup
φ∈B0(Σ)

{
Iq (φ)−

∫
φdp

}
= sup

φ∈B0(Σ)

{
J (φ, q)−

∫
φdp

}
(58)

We begin by observing that J is lower semicontinuous in the second argument. Note that for

each φ ∈ B0 (Σ) and for each q ∈ ∆σ

J (φ, q) = Iq (φ) = u (xf,q) where f ∈ F is s.t. φ = u (f)

Fix φ ∈ B0 (Σ) and t ∈ R. By the axiom of lower semicontinuity, the set

{q ∈ ∆σ : J (φ, q) ≤ t} = {q ∈ ∆σ : u (x) ≥ u (xf,q)} =
{
q ∈ ∆σ : x ≿∗

q xf,q
}

is closed where x ∈ X and f ∈ F are such that u (x) = t as well as u (f) = φ. Since φ and t were

arbitrarily chosen, this yields that J is lower semicontinuous in the second argument. Since

J is lower semicontinuous in the second argument, the map (p, q) 7→ J (φ, q) −
∫
φdp, defined

over ∆×∆σ, is jointly lower semicontinuous for all φ ∈ B0 (Σ). By (58) and the definition of

c, we conclude that c is jointly lower semicontinuous. □
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Step 1 proves that u is affine and onto. Steps 2, 6, 7 and 8 prove that c is a jointly lower

semicontinuous divergence which is convex in the first argument. Steps 1, 3, 5 and 8 yield

the representation of ≿∗
Q and ≿Q for all Q ∈ Q. As for uniqueness, assume that the function

c̃ : ∆ ×∆σ → [0,∞] is a divergence which is jointly lower semicontinuous, convex in the first

argument and that represents ≿∗
Q and ≿Q for all Q ∈ Q. By Proposition 6 of Maccheroni et

al. (2006) and since Imu = R and ≿∗
q is a variational preference for all q ∈ ∆σ, it follows that

c̃ (·, q) = c (·, q) for all q ∈ ∆σ, yielding that c = c̃. ■

Proof of Proposition 7 We only prove (i) implies (ii), the converse being routine. We keep

the notation of the previous proof. Compared to Theorem 2, we only need to prove that c

is jointly convex. By Lemma 12 in Appendix B.1, this will yield that c is variational. Fix

φ ∈ B0 (Σ), q, q
′ ∈ ∆σ and λ ∈ (0, 1). By model hybridization aversion and since u is affine, we

have that

J (φ, λq + (1− λ) q′) = u
(
xf,λq+(1−λ)q′

)
≤ u (λxf,q + (1− λ)xf,q′)

= λu (xf,q) + (1− λ)u (xf,q′) = λJ (φ, q) + (1− λ) J (φ, q′)

where f ∈ F is such that u (f) = φ. Since φ, q, q′ and λ were arbitrarily chosen, this yields

that J is convex in the second argument. Since J is convex in the second argument, the map

(p, q) 7→ J (φ, q) −
∫
φdp, defined over ∆ × ∆σ, is jointly convex for all φ ∈ B0 (Σ). By (58)

and the definition of c, we conclude that c is convex, proving the implication. ■

Proof of Proposition 10 We only prove (i) implies (ii), being (ii) implies (i) routine. We

keep the same notation and terminology as in the proof and statement of Theorem 2. It is then

immediate to notice that Steps 1–4 of that proof continue to hold here. In particular, there

exist an onto and affine utility function and a function c : ∆×∆σ → [0,∞], which is grounded,

convex and lower semicontinuous in the first argument, such that for each Q ∈ Q and for each

f, g ∈ F

f ≿∗
Q g ⇐⇒ min

p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q (59)

and for each x, y ∈ X

x ≿∗
Q y ⇐⇒ x ≿Q y ⇐⇒ u (x) ≥ u (y) (60)

Fix Q ∈ Q. Since ≿Q is solvable, for each f ∈ F there exists xf,Q ∈ X such that xf,Q ∼Q f .

Since Imu = R, define IQ : B0 (Σ) → R by IQ (φ) = u (xf,Q) where f ∈ F is such that u (f) = φ.

By (60) and since ≿Q is a complete, transitive and monotone binary relation, we have that IQ

is well defined and monotone. Moreover, by construction, we have that IQ (k1S) = k for all

k ∈ R. By (60) and construction, note that

IQ (u (f)) ≥ IQ (u (g)) ⇐⇒ u (xf,Q) ≥ u (xg,Q) ⇐⇒ xf,Q ≿Q xg,Q ⇐⇒ f ≿Q g (61)
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Since ≿∗
Qand ≿Q jointly satisfy consistency for all Q ∈ Q,42 this implies that ≿∗

qand ≿q coincide

on F for all q ∈ ∆σ and

Iq (φ) = min
p∈∆

{∫
φdp+ c (p, q)

}
∀φ ∈ B0 (Σ)

In particular, we have that Steps 6–8 of Theorem 2 hold also in this case, proving that c is

a lower semicontinuous divergence, which is convex in the first argument. Given φ ∈ B0 (Σ),

note that the map q 7→ Iq (φ) is such that mins∈S φ (s) ≤ Iq (φ) ≤ maxs∈S φ (s) for all q ∈ Q,

yielding that the map q 7→ Iq (φ) is an element of B (Q). Consider the set

M = {φ̃ ∈ B (Q) : ∃φ ∈ B0 (Σ) s.t. ∀q ∈ Q, φ̃ (q) = Iq (φ)}

Since Iq (k1S) = k for all k ∈ R, we have that M contains all the constants k1Q where k ∈ R.
Define J̃Q : M → R by J̃Q (φ̃) = IQ (φ) where φ ∈ B0 (Σ) is such that φ̃ (q) = Iq (φ) for

all q ∈ Q. Note that for each φ ∈ B0 (Σ) there exists f ∈ F such that u (f) = φ. Assume

that given φ̃ ∈ M there exist φ, ψ ∈ B0 (Σ) such that φ̃ (q) = Iq (φ) = Iq (ψ) for all q ∈ Q.

Consider f, g ∈ F such that u (f) = φ and u (g) = ψ. It follows that Iq (u (f)) = Iq (u (g))

for all q ∈ Q. By (59) and consistency, this implies that f ∼∗
Q g and f ∼Q g. By (61), it

follows that IQ (φ) = IQ (u (f)) = IQ (u (g)) = IQ (ψ), proving that J̃Q is well defined. Next,

assume that φ̃, ψ̃ ∈M are such that φ̃ ≥ ψ̃. Let φ, ψ ∈ B0 (Σ) be such that φ̃ (q) = Iq (φ) and

ψ̃ (q) = Iq (ψ) for all q ∈ Q. Consider f, g ∈ F such that u (f) = φ and u (g) = ψ. It follows

that Iq (u (f)) ≥ Iq (u (g)) for all q ∈ Q. By (59) and consistency, this implies that f ≿∗
Q g and

f ≿Q g. By (61), it follows that

J̃Q (φ̃) = IQ (φ) = IQ (u (f)) ≥ IQ (u (g)) = IQ (ψ) = J̃Q

(
ψ̃
)

proving that J̃Q is monotone. Moreover, by construction, we have J̃Q (k1Q) = IQ (k1S) = k for

all k ∈ R, proving that J̃Q is normalized. By (61) and definition of J̃Q, we can conclude that

f ≿Q g ⇐⇒ J̃Q

(
min
p∈∆

{∫
u (f) dp+ c (p, ·)

})
≥ J̃Q

(
min
p∈∆

{∫
u (g) dp+ c (p, ·)

})
(62)

We next extend J̃Q to the entire set B (Q). Define JQ : B (Q) → R by

JQ (φ̃) = sup
{
J̃Q

(
ψ̃
)
:M ∋ ψ̃ ≤ φ̃

}
∀φ̃ ∈ B (Q)

42By (59) and (61), we have that f 7→ minp∈∆

{∫
u (f) dp+ c (p, q)

}
and f 7→ IQ (u (f)) represent, respec-

tively, ≿∗
Q and ≿Q. Since ≿∗

Q and ≿Q satisfy consistency, we can conclude that there exists a (not necessarily

strictly) monotone function h : R → R such that IQ (u (f)) = h
(
minp∈∆

{∫
u (f) dp+ c (p, q)

})
for all f ∈ F .

Since IQ is normalized and Imu = R, we have that h (u (x)) = u (x) for all x ∈ X, proving that h is the identity.
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It is routine to check that JQ in both cases extends J̃Q and it is normalized and monotone.

Moreover, by (62) it satisfies (37), proving the implication. Uniqueness follows from the same

arguments of Theorem 2. ■

Proof of Corollary 1 We only prove (ii) implies (iii), being (i) implies (ii) obvious and

(iii) implies (i) an immediate consequence of Theorem 2. We keep the same notation and

terminology as in the proof and statement of Proposition 10. By Proposition 10, there exist an

onto and affine utility function u : X → R and a lower semicontinuous divergence c : ∆×∆σ →
[0,∞], convex in p, such that for each Q ∈ Q and for each f, g ∈ F

f ≿∗
Q g ⇐⇒ min

p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q

and for each x, y ∈ X

x ≿∗
Q y ⇐⇒ x ≿Q y ⇐⇒ u (x) ≥ u (y)

Moreover, for each Q ∈ Q there exists a normalized and monotone functional IQ : B0 (Σ) → R
such that f ≿Q g if and only if IQ (u (f)) ≥ IQ (u (g)). Fix Q ∈ Q. By the same arguments in

Steps 3 and 4 of Theorem 1, we have that

IQ (φ) = inf
q∈Q

min
p∈∆

{∫
φdp+ c (p, q)

}
= inf

q∈Q
inf
p∈∆

{∫
φdp+ c (p, q)

}
= inf

p∈∆
inf
q∈Q

{∫
φdp+ c (p, q)

}
= inf

p∈∆

{∫
φdp+ inf

q∈Q
c (p, q)

}
∀φ ∈ B0 (Σ)

where the infima become minima since c is lower semicontinuous. We can conclude that

f ≿Q g ⇐⇒ IQ (u (f)) ≥ IQ (u (g)) ⇐⇒ min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+min

q∈Q
c (p, q)

}
proving the implication. Uniqueness follows from Proposition 10. ■

A.2 Other proofs

Proof of Proposition 3 Consider first λ ∈ (0,∞). Note that c (·, q) = λDϕ (·||q) is Shur

convex (with respect to q) for all q ∈ Q. Consider A,B ∈ Σ. Assume that q (A) ≥ q (B) for all

q ∈ Q. Let q ∈ Q. Consider x, y ∈ X such that x ≻ y. It follows that∫
v (u (xAy)) dq ≥

∫
v (u (xBy)) dq
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for each v : R → R increasing and concave. By Theorem 2 of Cerreia-Vioglio et al. (2012) and

since q was arbitrarily chosen, it follows that

min
p∈∆

{∫
u (xAy) dp+ λDϕ (p||q)

}
≥ min

p∈∆

{∫
u (xBy) dp+ λDϕ (p||q)

}
∀q ∈ Q

yielding that xAy ≿∗ xBy and, in particular, xAy ≿ xBy. If λ = ∞ instead, as pointed out

in Section 2.1, we have that c (·, q) = λDϕ (·||q) = δ{q} (·) for all q ∈ Q. This implies that (17)

takes the max-min form over the set Q, which trivially implies bet-consistency.43 ■

Proof of Proposition 4 We prove the “only if”, the converse being obvious. Define ≳∗

by f ≳∗ g if and only if
∫
u (f) dq ≥

∫
u (g) dq for all q ∈ Q. By hypothesis, the pair (≳∗,≿)

satisfies consistency. Let f ̸≳∗ x. Then, there exists q ∈ Q such that u(xqf ) =
∫
u (f) dq < u (x).

Hence, x ≻ xqf . Since c−1
Q (0) = Q, by Lemma 3 we have that x ≻ f . So, the pair (≳∗,≿)

satisfies default to certainty. By Theorem 4 of Gilboa et al. (2010), this pair admits the

representation

f ≳∗ g ⇐⇒
∫
u (f) dq ≥

∫
u (g) dq ∀q ∈ Q

and

f ≿ g ⇐⇒ min
q∈Q

∫
u (f) dq ≥ min

q∈Q

∫
u (g) dq

Note that, in the notation of Gilboa et al. (2010), we have C = Q because C is unique up to

closure and convexity and Q is closed and convex. ■

Proof of Proposition 5 For each q ∈ Q define Iq : B0 (Σ) → R by

Iq (φ) = min
p∈∆

{∫
φdp+ c (p, q)

}
∀φ ∈ B0 (Σ)

Recall that f ≻≻∗ g if and only if for each h, l ∈ F there exists ε > 0 such that

(1− δ) f + δh ≻∗ (1− δ) g + δl ∀δ ∈ [0, ε] (63)

Moreover, given h ∈ F , define kh = infs∈S u (h (s)) and k
h = sups∈S u (h (s)).

“Only if.” Assume that f ≻≻∗ g. Let ε̂ > 0. Consider u (x) = kf − ε̂ and u (y) = kg + ε̂. By

definition, there exists ε > 0 such that (1− δ) f + δx ≻∗ (1− δ) g + δy for all δ ∈ [0, ε]. Note

that for each q ∈ Q and for each δ ∈ [0, 1]

Iq (u ((1− δ) f + δx)) = Iq ((1− δ)u (f) + δu (x)) = Iq (u (f)− δu (f) + δu (x))

≤ Iq (u (f)− δkf + δ (kf − ε̂)) = Iq (u (f))− δε̂

43The next result will indeed prove a much more general fact.

52



and

Iq (u ((1− δ) g + δy)) = Iq ((1− δ)u (g) + δu (y)) = Iq (u (g)− δu (g) + δu (y))

≥ Iq (u (g)− δkg + δ (kg + ε̂)) = Iq (u (g)) + δε̂

It follows that for each q ∈ Q and for each δ ∈ [0, ε]

Iq (u (f))− Iq (u (g))− 2δε̂ ≥ Iq (u ((1− δ) f + δx))− Iq (u ((1− δ) g + δy)) ≥ 0

If we set δ = ε > 0, then Iq (u (f)) ≥ Iq (u (g)) + 2εε̂ for all q ∈ Q, proving the statement.

“If.” Let f, g ∈ F . Assume there exists ε > 0 such that Iq (u (f)) ≥ Iq (u (g)) + ε for all

q ∈ Q. Consider h, l ∈ F . Note that for each q ∈ Q and for each δ ∈ [0, 1]

Iq (u ((1− δ) f + δh)) = Iq ((1− δ)u (f) + δu (h)) = Iq (u (f)− δu (f) + δu (h))

= Iq (u (f) + δ (u (h)− u (f)))

≥ Iq
(
u (f) + δ

(
kh − kf

))
= Iq (u (f)) + δ

(
kh − kf

)
and

Iq (u ((1− δ) g + δl)) = Iq ((1− δ)u (g) + δu (l)) = Iq (u (g)− δu (g) + δu (l))

= Iq (u (g) + δ (u (l)− u (g)))

≤ Iq
(
u (g) + δ

(
kl − kg

))
= Iq (u (g)) + δ

(
kl − kg

)
It follows that for each q ∈ Q and for each δ ∈ [0, 1]

Iq (u ((1− δ) f + δh))− Iq (u ((1− δ) g + δl)) ≥ Iq (u (f)) + δ
(
kh − kf

)
− Iq (u (g))− δ

(
kl − kg

)
≥ ε+ δε̂

where ε̂ = kh − kf − kl + kg. We have two cases:

1. ε̂ ≥ 0. In this case, Iq (u ((1− δ) f + δh))− Iq (u ((1− δ) g + δl)) > 0 for all δ ∈ [0, 1] and

all q ∈ Q, proving (63).

2. ε̂ < 0. In this case, Iq (u ((1− δ) f + δh))−Iq (u ((1− δ) g + δl)) > 0 for all δ ∈ [0,−ε/2ε̂]
and all q ∈ Q, proving (63).

This completes the proof of the result. ■

Proof of Lemma 1 “If.” Given q ∈ Q, if c (p, q) = ∞ for all p /∈ Q, then cQ (p) = ∞ for all

p /∈ Q. Since cQ (p) = 0 for all p ∈ Q, we conclude that cQ (p) = δQ (p) for all p ∈ ∆. “Only

if.” Conversely, for each q ∈ Q we have that c (p, q) ≥ cQ (p) = δQ (p) = ∞ for all p /∈ Q. ■
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Proof of Proposition 6 Before starting, we make two observations. First, observe that (i) and

(ii) of Proposition 6 are particular cases of (i) and (ii) of Theorem 1. We thus adopt the same

notation, terminology, and arguments contained in the proof of this latter theorem. Second,

consider an unbounded dominance relation ≿∗ and a rational preference ≿ that jointly satisfy

consistency and caution. By consistency, it follows that for each f ∈ F and for each x ∈ X

f ≿∗ x =⇒ f ≿ x

By caution, we have that for each f ∈ F and for each x ∈ X

f ≻ x =⇒ f ≿∗ x

Moreover, by the same arguments of Step 1 of the proof of Theorem 1, ≿ agrees with ≿∗ on

X and they are represented by an onto affine utility function u : X → R. This implies that if

f ∼ x, then there exists y ∈ X such that x ≻ αx+(1− α) y ≻ y for all α ∈ (0, 1), yielding that

f ≻ αx+ (1− α) y and f ≿∗ αx+ (1− α) y for all α ∈ (0, 1). Since ≿∗ satisfies continuity, we

have that f ≿∗ x. Thus, we can conclude that for each f ∈ F and for each x ∈ X

f ≿∗ x ⇐⇒ f ≿ x (64)

(i) implies (ii). By Theorem 1, we have that there exist an onto affine function u : X → R and

a variational pseudo-statistical distance c : ∆×Q→ [0,∞] such that, for all acts f, g ∈ F ,

f ≿∗ g ⇐⇒ min
p∈∆

{∫
u (f) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+ c (p, q)

}
∀q ∈ Q (65)

and

f ≿ g ⇐⇒ min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
≥ min

p∈∆

{∫
u (g) dp+min

q∈Q
c (p, q)

}
By (64) and since ≿∗ satisfies c-independence, we have that if f ∈ F , x, y ∈ X, and α ∈ (0, 1],

then

f ≿ x ⇐⇒ f ≿∗ x ⇐⇒ αf+(1− α) y ≿∗ αx+(1− α) y ⇐⇒ αf+(1− α) y ≿ αx+(1− α) y

proving that≿ satisfies c-independence. By Propositions 6 and 19 of Maccheroni et al. 2006 and

since u is onto, cQ : ∆ → [0,∞] is grounded, lower semicontinuous and convex and c−1
Q (0) = Q,

we have that cQ = δQ, proving (31). Since c (·, q) ≥ cQ = δQ for all q ∈ Q , we have that

c (p, q) ≥ cQ (p) = δQ (p) = ∞ for all p ̸∈ Q, yielding that the min in (65) can be restricted to

Q and proving (30).

(ii) implies (i). By the same arguments contained above and since cQ = δQ, we have that the

min in (30) can be taken over ∆. By (ii) implies (i) of Theorem 1, the implication follows with
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the exception of proving that ≿∗ satisfies c-independence. Since ≿ is represented as in (31),

≿ satisfies c-independence. Since ≿∗ is an unbounded dominance relation and ≿ is a rational

preference and jointly they satisfy consistency and caution, (64) holds, yielding that if f ∈ F ,

x, y ∈ X, and α ∈ (0, 1], then

f ≿∗ x ⇐⇒ f ≿ x ⇐⇒ αf+(1− α) y ≿ αx+(1− α) y ⇐⇒ αf+(1− α) y ≿∗ αx+(1− α) y

proving that ≿∗ satisfies c-independence and the implication.

We prove the second part of the statement independently and with a different technique in

order to dispense with the assumption of (S,Σ) being a standard Borel space. We only need

to prove the “only if” part, the “if” being trivial.

By Proposition 2 of Cerreia-Vioglio (2016) and since≿∗ is unbounded, there exists a compact

and convex set C ⊆ ∆ and an affine and onto map u : X → R such that

f ≿∗ g ⇐⇒
∫
u (f) dq ≥

∫
u (g) dq ∀q ∈ C (66)

and

f ≿ g ⇐⇒ min
q∈C

∫
u (f) dq ≥ min

q∈C

∫
u (g) dq (67)

By Lemma 3 and since ≿ is subjectively Q-coherent and ≿∗ and ≿ coincide on X, we can

conclude that C = Q. If we set c : ∆×Q→ [0,∞] to be c (p, q) = δ{q} (p) for all (p, q) ∈ ∆×Q,
then it is immediate to see that c is a variational statistical distance. By (66) and (67) and

since C = Q, the implication follows. ■

Proof of Proposition 11 We begin by making two observations. It is well known that, given

a bounded and measurable F : Q→ R,

lim
ξ→0+

ϕ−1
ξ

(∫
Q

ϕξ (F (q)) dµQ

)
= min

q∈suppµQ
F (q) = min

q∈Q
F (q) (68)

and

ϕ−1
ξ

(∫
Q

ϕξ (F (q)) dµQ

)
= min

µ≪ν

{∫
Fdν + ξR(ν||µ)

}
(69)

Fix f ∈ F and λ ∈ (0,∞]. Since c is lower semicontinuous and each f ∈ F is finitely valued,

if we set Fλ (q) = minp∈∆ {u (f) dp+ λR (p||q)} for all q ∈ Q, it is immediate to see that F is

bounded and measurable.

By (68), (42) follows. By Proposition 12 of Maccheroni et al. (2006) and (69) and since

limξ→∞ ξR (ν||µ) = ∞ if ν ̸= µ and limξ→∞ ξR (ν||µ) = ∞ if ν = µ, (43) follows. By (43), we

have that

lim
ξ→∞

V λ,ξ
Q (f) =

∫
Q

(
min
p∈∆

{∫
S

u (f (s)) dp (s) + λR (p||q)
})

dµQ (q)
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By Proposition 12 of Maccheroni et al. (2006) and since limλ→∞ λR (p||q) = ∞ if p ̸= q

and limλ→∞ λR (p||q) = ∞ if p = q, we have that limλ→∞ Fλ (q) =
∫
u (f) dq = F∞ (q) for all

q ∈ Q. By the Lebesgue Dominanted Convergence Theorem and since {Fλ}λ∈(0,∞) are uniformly

bounded, the second equality of (44) follows. The first has a similar proof and we omit it. ■

Proof of Lemma 2 (i) Let p ∈ ∆. Since c is lower semicontinuous, there exists qp ∈ Q such

that c (p, qp) = minq∈Q c (p, q), that is, p ∈ Bc (qp, Q). This proves that ∆ ⊆
⋃
q∈Q

Bc (q,Q), as

desired (the other inclusion is trivial).

(ii) For each q ∈ Q we have that 0 = c (q, q) ≥ minq̃∈Q c(q, q̃) ≥ 0. Thus, c (q, q) =

minq̃∈Q c(q, q̃) and so q ∈ Bc (q,Q). It remains to show that Bc (q,Q) ∩ Q ⊆ {q}. So, let

q̄ ∈ Bc (q,Q)∩Q. Then, c (q̄, q) = minq̃∈Q c (q̄, q̃). Since q̄ ∈ Q, we have minq̃∈Q c (q̄, q̃) = 0 and

so c (q̄, q) = 0, which implies q̄ = q, as desired.

(iii) Let q, q′ ∈ Q with q ̸= q′. In view of (ii), it is enough to consider p ∈ Bc (q,Q) ∩
Bc (q

′, Q) ∩ ∆c,Q. Since p ∈ ∆c,Q, the map c (p, ·) : Q → [0,∞] is proper and strictly convex.

Thus, c (p, q) = c (p, q′) = minq̃∈Q c(p, q̃) <∞, which leads to the contradiction q = q′. ■
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B Additional material

In this appendix, we begin by proving few relevant properties of statistical distances which we

discussed in Section 2.1. We then discuss the irrelevance of the convexity of the set Q for the

entropic model (cf. Section B.2). We conclude by providing the proofs of few ancillary facts

useful in obtaining and discussing our decision criterion (cf. Sections B.3 and B.4).

B.1 Statistical distances and divergences

We here collect few properties of statistical distances. In order to characterize variational

statistical distances, we substantially need to prove that the function cQ : ∆ → [0,∞], defined

by cQ (p) = minq∈Q c(p, q), is well defined, grounded, lower semicontinuous and convex. This

fact follows from the following version of a well-known result (see, e.g., Fiacco and Kyparisis,

1986).

Lemma 11 Let Q be a compact and convex subset of ∆σ. If c : ∆ × Q → [0,∞] is a lower

semicontinuous and convex function such that there exist p̄ ∈ ∆ and q̄ ∈ Q such that c (p̄, q̄) = 0,

then cQ : ∆ → [0,∞] defined by

cQ (p) = min
q∈Q

c (p, q) ∀p ∈ ∆

is well defined, grounded, lower semicontinuous and convex.

Proof Since c is lower semicontinuous and Q is non-empty and compact, cQ is well defined.

Moreover, we have that 0 ≥ c (p̄, q̄) ≥ cQ (p̄) ≥ 0, proving that cQ is grounded. Even though

c (p, q) might be ∞ for some (p, q) ∈ ∆×Q, by the same proof of the Maximum Theorem (see,

e.g., Lemma 17.30 in Aliprantis and Border, 2006), it follows that cQ is lower semicontinuous.

If p1, p2 ∈ ∆, then define q1, q2 ∈ Q to be such that

c (p1, q1) = min
q∈Q

c (p1, q) = cQ (p1) and c (p2, q2) = min
q∈Q

c (p2, q) = cQ (p2)

Consider λ ∈ (0, 1). Define pλ = λp1 + (1− λ) p2 and qλ = λq1 + (1− λ) q2 ∈ Q. Since c is

jointly convex, it follows that

cQ (pλ) = min
q∈Q

c (pλ, q) ≤ c (pλ, qλ) ≤ λc (p1, q1) + (1− λ) c (p2, q2)

= λcQ (p1) + (1− λ) cQ (p2)

proving convexity. ■
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Lemma 12 Let Q consist of compact and convex subsets of ∆σ. A lower semicontinuous and

convex function c : ∆×S → [0,∞] is a variational statistical distance if and only if it satisfies

the distance property:

c (p, q) = 0 ⇐⇒ p = q (70)

Proof We first prove the “If” part. By (70) and since c is lower semicontinuous, (c.i) and

(c.ii) are satisfied. Fix Q ∈ Q. By (c.i) and since c restricted to ∆ × Q is jointly lower

semicontinuous and convex, then we have that p 7→ minq∈Q c(p, q) is well defined, grounded,

lower semicontinuous and convex. By (c.i), it follows that (C.i) is satisfied. By construction

and since p 7→ minq∈Q c(p, q) is lower semicontinuous and convex and Q was arbitrarily chosen,

(C.ii), (C.iii), (C.iv) as well as (C.v) are satisfied, proving that c is a variational statistical

distance. As for the “Only if” part, it is trivial since a statistical distance, by definition,

satisfies (70). ■

The next result shows, inter alia, that restricted ϕ-divergences are variational divergences.44

A piece of notation and one of terminology: 1) we write p ∼ Q if there exists a control measure

q ∈ Q such that p ∼ q;45 2) given a function f : ∆ → [0,∞] we say it is strictly convex if, given

any distinct p, q ∈ ∆, we have f (αp+ (1− α) q) < αf (p) + (1− α) f (q) for all α ∈ (0, 1) such

that αp+ (1− α) q ∈ dom f .

Lemma 13 Let Q consist of compact and convex subsets of ∆σ. A restricted ϕ-divergence

Dϕ : ∆× S → [0,∞] is a variational divergence. Moreover, for each Q ∈ Q

(i) if q ∈ Q, then Dϕ (·||q) : ∆ → [0,∞] is strictly convex;

(ii) if p ∈ ∆σ and p ∼ Q, then Dϕ (p||·) : Q→ [0,∞] is strictly convex.

Proof It is well known that on ∆ × ∆σ the function Dϕ is jointly lower semicontinuous and

convex and satisfies the property

Dϕ (p||q) = 0 ⇐⇒ p = q

The same properties are preserved by Dϕ restricted to ∆ × S. By Lemma 12, it follows that

Dϕ : ∆ × S → [0,∞] is a variational statistical distance. Finally, by definition, we have that

Dϕ (p||q) = ∞ whenever p ̸∈ ∆σ (q), yielding that it is a variational divergence. We next prove

points (i) and (ii). Fix Q ∈ Q.

44Though a routine result, for the sake of completeness, we provide a proof since we did not find one allowing
for S being infinite (see Topsoe, 2001, p. 178 for the finite case).

45A probability q ∈ Q is a control measure of Q if q′ ≪ q for all q′ ∈ Q. When Q is a compact and convex
subset of ∆σ, Q has a control measure (see, e.g., Maccheroni and Marinacci, 2001). Such a measure might
not be unique, yet any two control measures of Q are equivalent. So, the notion p ∼ Q is well defined and
independent of the chosen control measure.
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(i). Consider q ∈ Q. Let p′, p′′ ∈ ∆ and α ∈ (0, 1) be such that p′ ̸= p′′ and Dϕ(αp
′ +

(1− α) p′′||q) < ∞. If either Dϕ (p
′||q) or Dϕ (p

′′||q) are not finite, we trivially conclude that

Dϕ(αp
′ + (1− α) p′′||q) < ∞ = αDϕ (p

′||q) + (1− α)Dϕ (p
′′||q). Let us then assume that both

Dϕ (p
′||q) and Dϕ (p

′′||q) are finite. By definition of Dϕ and since ∆σ (q) is convex, this implies

that p′, p′′ ∈ ∆σ (q) as well as αp′ + (1− α) p′′ ∈ ∆σ (q). Since p′ and p′′ are distinct, we have

that dp′/dq and dp′′/dq take different values on a set of strictly positive q-measure: call it S̃.

Since ϕ is strictly convex, it follows that

ϕ

(
α
dp′

dq
(s) + (1− α)

dp′′

dq
(s)

)
< αϕ

(
dp′

dq
(s)

)
+ (1− α)ϕ

(
dp′′

dq
(s)

)
∀s ∈ S̃

By definition of Dϕ, this implies that

Dϕ (αp
′ + (1− α) p′′||q) =

∫
S

ϕ

(
d [αp′ + (1− α) p′′]

dq
(s)

)
dq

=

∫
S

ϕ

(
α
dp′

dq
(s) + (1− α)

dp′′

dq
(s)

)
dq

=

∫
S̃

ϕ

(
α
dp′

dq
(s) + (1− α)

dp′′

dq
(s)

)
dq

+

∫
S\S̃

ϕ

(
α
dp′

dq
(s) + (1− α)

dp′′

dq
(s)

)
dq

< α

∫
S

ϕ

(
dp′

dq
(s)

)
dq + (1− α)

∫
S

ϕ

(
dp′′

dq
(s)

)
dq

= αDϕ (p
′||q) + (1− α)Dϕ (p

′′||q)

We conclude that Dϕ (·||q) : ∆ → [0,∞] is strictly convex.

(ii). Before starting, we make three observations.

a. Since Q is a non-empty, compact and convex subset of ∆σ, note that there exists q̄ ∈ Q

such that q ≪ q̄ for all q ∈ Q. Since p ∼ Q, we have that p ∼ q̄. This implies also that q ≪ p

for all q ∈ Q.

b. If q ∼ p, then (dp/dq)−1 is well defined almost everywhere (with respect to either p or q)

and can be chosen (after defining arbitrarily the function over a set of zero measure) to be the

Radon-Nikodym derivative dq/dp.

c. Since ϕ is strictly convex, if we define ϕ⋆ : (0,∞) → [0,∞) by ϕ⋆ (x) = xϕ (1/x) for all

x > 0, then also ϕ⋆ is strictly convex. By point b, if p ∈ ∆σ and q ∈ Q are such that p ∼ q and
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we define ṗ = dp/dq, then p ({ṗ = 0}) = 0 = q ({ṗ = 0}) and

Dϕ (p||q) =
∫
S

ϕ

(
dp

dq

)
dq =

∫
{ṗ=0}

ϕ

(
dp

dq

)
dq +

∫
{ṗ>0}

ϕ

(
dp

dq

)
dq

=

∫
{ṗ>0}

ϕ

 1(
dp
dq

)−1

 dq =

∫
{ṗ>0}

ϕ⋆
(
dq

dp

)
dp

dq
dq

=

∫
{ṗ>0}

ϕ⋆
(
dq

dp

)
dp

We can now prove the statement. Let q′, q′′ ∈ Q and α ∈ (0, 1) be such that q′ ̸= q′′ and

Dϕ (p||αq′ + (1− α) q′′) < ∞. If either Dϕ (p||q′) or Dϕ (p||q′′) are not finite, we trivially con-

clude that Dϕ (p||αq′ + (1− α) q′′) <∞ = αDϕ (p||q′) + (1− α)Dϕ (p||q′′). Let us then assume

that both Dϕ (p||q′) and Dϕ (p||q′′) are finite. By definition of Dϕ, we can conclude that p≪ q′

and p ≪ q′′. By point a, this yields that q′ ∼ p ∼ q′′ and p ∼ αq′ + (1− α) q′′. Since q′ and q′′

are distinct, we have that dq′/dp and dq′′/dp take different values on a set of strictly positive

p-measure. By point c, we have that

p

({
dp

d [αq′ + (1− α) q′′]
= 0

})
= p

({
dp

dq′
= 0

})
= p

({
dp

dq′′
= 0

})
= 0

Thus, by point c and since dq′/dp and dq′′/dp take different values on a set of strictly positive

p-measure and ϕ⋆ is strictly convex, there exists a p-measure 1 set S̃ such that

Dϕ (p||αq′ + (1− α) q′′) =

∫
S̃

ϕ⋆
(
d [αq′ + (1− α) q′′]

dp

)
dp

< α

∫
S̃

ϕ⋆
(
dq′

dp

)
dp+ (1− α)

∫
S̃

ϕ⋆
(
dq′′

dp

)
dp

= αDϕ (p||q′) + (1− α)Dϕ (p||q′′)

proving point (ii). ■

Consider a finite set Q = {qi}ni=1. Assume that for each q in the convex hull of Q there

exists a unique collection {µqi}
n
i=1 ⊆ Rn

+ such that
∑n

i=1 µ
q
i = 1 and q =

∑n
i=1 µ

q
i qi. Consider a

function d : ∆ × Q → [0,∞] which is lower semicontinuous and convex in the first argument

and such that d (p, q) = 0 if and only if p = q. Define c : ∆× coQ→ [0,∞] by

c (p, q) = min
(pi)

n
i=1∈∆n:p=

∑n
i=1 µ

q
i pi

n∑
i=1

d (pi, qi)µ
q
i ∀ (p, q) ∈ ∆× coQ (71)

Lemma 14 If c is defined as in (71), then c is a jointly lower semicontinuous and convex

variational statistical distance. Moreover, if d (p, q) < ∞ implies p ≪ q, then c is also a
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divergence.

Proof We endow ∆n with the product topology. Clearly, ∆n is compact. For each p ∈ ∆

and q ∈ coQ set Ψ (p, q) = {(pi)ni=1 ∈ ∆n : p =
∑n

i=1 µ
q
ipi}. Note that Ψ (p, q) is non-empty,

closed (hence, compact) and convex. Since d : ∆ × Q → [0,∞] is lower semicontinuous in

p, given q, we have that (pi)
n
i=1 7→

∑n
i=1 d (pi, qi)µ

q
i is lower semicontinuous. Since Ψ (p, q) is

compact, this implies that c is well defined. Next, observe that if p = q, then (p̄i)
n
i=1 ∈ ∆n

such that p̄i = qi for all i ∈ {1, ..., n} satisfies p = q =
∑n

i=1 µ
q
i qi =

∑n
i=1 µ

q
i p̄i, that is, (p̄i)

n
i=1 ∈

Ψ(p, q) = Ψ (q, q) and 0 ≤ c (p, q) ≤
∑n

i=1 d (p̄i, qi)µ
q
i = 0. Vice versa, since d ≥ 0, we have

that if c (p, q) = 0, then there exists (p̄i)
n
i=1 ∈ Ψ(p, q) such that c (p, q) =

∑n
i=1 d (p̄i, qi)µ

q
i = 0,

yielding that p̄i = qi for all i ∈ {1, ..., n} such that µqi > 0. Since p =
∑n

i=1 µ
q
i p̄i =

∑
i:µqi>0 µ

q
i p̄i

and q =
∑n

i=1 µ
q
i qi =

∑
i:µqi>0 µ

q
i qi, we can conclude that p = q. Consider p, r ∈ ∆ as well

as q, q′ ∈ coQ and λ ∈ (0, 1). Let (p̄i)
n
i=1 ∈ Ψ(p, q) and (r̄i)

n
i=1 ∈ Ψ(r, q′) be such that

c (p, q) =
∑n

i=1 d (p̄i, qi)µ
q
i and c (r, q

′) =
∑n

i=1 d (r̄i, qi)µ
q′

i . For each i ∈ {1, ..., n} set

αi =

{
λµqi

λµqi+(1−λ)µq
′

i

if λµqi + (1− λ)µq
′

i > 0

1
2

if λµqi + (1− λ)µq
′

i = 0

Clearly, we have that αi ∈ [0, 1] and

1− αi =


(1−λ)µq

′
i

λµqi+(1−λ)µq
′

i

if λµqi + (1− λ)µq
′

i > 0

1
2

if λµqi + (1− λ)µq
′

i = 0
∀i ∈ {1, ..., n}

Define (p̂i)
n
i=1 ∈ ∆n to be such that p̂i = αip̄i + (1− αi) r̄i for all i ∈ {1, ..., n}. Note that

λq + (1− λ) q′ = λ
n∑
i=1

µqi qi + (1− λ)
n∑
i=1

µq
′

i qi =
n∑
i=1

[
λµqi + (1− λ)µq

′

i

]
qi

yielding that µλq+(1−λ)q′ = λµq + (1− λ)µq
′
. Moreover, since λµqi + (1− λ)µq

′

i = 0 if and only

if µqi = µq
′

i = 0, we have that

n∑
i=1

µ
λq+(1−λ)q′
i p̂i =

n∑
i=1

µ
λq+(1−λ)q′
i (αip̄i + (1− αi) r̄i)

=
n∑
i=1

µ
λq+(1−λ)q′
i αip̄i +

n∑
i=1

µ
λq+(1−λ)q′
i (1− αi) r̄i

= λ
n∑
i=1

µqi p̄i + (1− λ)
n∑
i=1

µq
′

i r̄i = λp+ (1− λ) r

proving that (p̂i)
n
i=1 ∈ Ψ(λp+ (1− λ) r, λq + (1− λ) q′). Since d is convex in p, this implies
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that

λc (p, q) + (1− λ) c (r, q′) = λ
n∑
i=1

d (p̄i, qi)µ
q
i + (1− λ)

n∑
i=1

d (r̄i, qi)µ
q′

i

=
n∑
i=1

αid (p̄i, qi)µ
λq+(1−λ)q′
i +

n∑
i=1

(1− αi) d (r̄i, qi)µ
λq+(1−λ)q′
i

=
n∑
i=1

[αid (p̄i, qi) + (1− αi) d (r̄i, qi)]µ
λq+(1−λ)q′
i

≥
n∑
i=1

d (αip̄i + (1− αi) r̄i, qi)µ
λq+(1−λ)q′
i =

n∑
i=1

d (p̂i, qi)µ
λq+(1−λ)q′
i

≥ c (λp+ (1− λ) r, λq + (1− λ) q′)

yielding that c is jointly convex. Next, consider the map Γ : ∆n × coQ→ [0,∞] defined by

Γ ((pi)
n
i=1 , q) =

n∑
i=1

d (pi, qi)µ
q
i ∀ ((pi)ni=1 , q) ∈ ∆n × coQ

We endow ∆n × coQ with the product topology. Consider a net
{(

(pi,α)
n
i=1 , qα

)}
α∈A which

converges to ((pi)
n
i=1 , q). Observe that {(µqαi )ni=1}α∈A converges pointwise to (µqi )

n
i=1, otherwise

there would exist a subnet
{(
µ
qαβ

i

)n
i=1

}
β∈B

which converges to (µ̄i)
n
i=1 ̸= (µqi )

n
i=1. Since {qα}α∈A

converges to q, this would yield that

n∑
i=1

µqi qi = q = lim
β
qαβ

= lim
β

n∑
i=1

µ
qαβ

i qi =
n∑
i=1

µ̄iqi

Since
∑n

i=1 µ̄i = 1, it follows that µqi = µ̄i for all i ∈ {1, ..., n}, a contradiction. Since d is lower

semicontinuous, we can conclude that

Γ ((pi)
n
i=1 , q) =

n∑
i=1

d (pi, qi)µ
q
i ≤

n∑
i=1

lim inf
α

d (pi,α, qi) lim
α
µqαi

=
n∑
i=1

lim inf
α

d (pi,α, qi)µ
qα
i ≤ lim inf

α

n∑
i=1

d (pi,α, qi)µ
qα
i

= lim inf
α

Γ
(
(pi,α)

n
i=1 , qα

)
proving that Γ is lower semicontinuous. Let t ∈ R. Consider a net {(pα, qα)}α∈A ∈ ∆×coQ that

converges to (p, q) and such that c (pα, qα) ≤ t for all α ∈ A. For each α ∈ A, consider (p̄i,α)
n
i=1 ∈

Ψ(pα, qα) such that c (pα, qα) =
∑n

i=1 d (p̄i,α, qi)µ
qα
i = Γ

(
(p̄i,α)

n
i=1 , qα

)
. Since ∆n is compact

and the previous part of the proof, there exists a subnet
{(
p̄i,αβ

)n
i=1

}
β∈B which converges to
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(p̄i)
n
i=1 ∈ ∆n while

{(
µ
qαβ

i

)n
i=1

}
β∈B

converges to (µqi )
n
i=1. Since

{
pαβ

}
β∈B converges to p, it

follows that p = limβ pαβ
= limβ

∑n
i=1 µ

qαβ

i p̄i,αβ
=

∑n
i=1 µ

q
i p̄i, yielding that (p̄i)

n
i=1 ∈ Ψ(p, q).

By definition of c and since Γ is lower semicontinuous, this implies that

c (p, q) ≤
n∑
i=1

d (p̄i, qi)µ
q
i = Γ ((p̄i)

n
i=1 , q) ≤ lim inf

β
Γ
((
p̄i,αβ

)n
i=1

, qαβ

)
= lim inf

β
c
(
pαβ

, qαβ

)
≤ t

proving that c is jointly lower semicontinuous. By Lemma 12, if Q is a collection of compact

and convex subsets of ∆σ such that S = coQ, then we can conclude that c is a variational

statistical distance. Finally, assume that d (p, q) <∞ implies p≪ q. Consider (p, q) ∈ ∆×coQ

and assume that c (p, q) < ∞. Let (p̄i)
n
i=1 ∈ Ψ(p, q) be such that c (p, q) =

∑n
i=1 d (p̄i, qi)µ

q
i .

Since c (p, q) < ∞, we have that d (p̄i, qi) < ∞ for all i ∈ {1, ..., n} such that µqi > 0, proving

that p̄i ≪ qi for all i ∈ {1, ..., n} such that µqi > 0. Next, consider A ∈ Σ such that q (A) = 0.

Since q =
∑n

i=1 µ
q
i qi, we have that qi (A) = 0 for all i ∈ {1, ..., n} such that µqi > 0, yielding

that p̄i (A) = 0 for all i ∈ {1, ..., n} such that µqi > 0. Since p =
∑n

i=1 µ
q
i p̄i =

∑
i:µqi>0 µ

q
i p̄i, this

implies that p (A) = 0, that is, p≪ q, yielding that c is a divergence. ■

B.2 Non-convex set of structured models

Let us consider two decision makers who adopt criterion (19), the first one posits a, possibly

non-convex, set of structured models Q and the second one posits its closed convex hull coQ.

So, the second decision maker considers also all the mixtures of structured models posited by

the first decision maker. Next we show that their preferences over acts actually agree. We deal

with the case λ ∈ (0,∞), being λ = ∞ trivial. It is thus without loss of generality to assume

that the set of posited structured models is convex, as it was assumed in mostly of the main

text. Before doing so we prove formula (20). Observe that given a compact subset Q ⊆ ∆σ, be

that convex or not, we have

min
p∈∆

{∫
u (f) dp+ λmin

q∈Q
R (p||q)

}
= min

p∈∆
min
q∈Q

{∫
u (f) dp+ λR (p||q)

}
= min

q∈Q
min
p∈∆

{∫
u (f) dp+ λR (p||q)

}
= min

q∈Q
ϕ−1
λ

(∫
ϕλ (u (f)) dq

)
where ϕλ (t) = −e− 1

λ
t for all t ∈ R where λ > 0.

66



Proposition 14 If Q ⊆ ∆σ is compact, then for each f ∈ F

min
p∈∆

{∫
u (f) dp+ λmin

q∈Q
R (p||q)

}
= min

p∈∆

{∫
u (f) dp+ λ min

q∈coQ
R (p||q)

}
Proof First observe that coQ ⊆ ∆σ. Indeed, since Q is a compact subset of ∆σ, the set

function ν : Σ → [0, 1], defined by ν (E) = minq∈Q q (E) for all E ∈ Σ is an exact capacity

which is continuous at S. This implies that Q ⊆ core ν ⊆ ∆σ, yielding that coQ ⊆ core ν ⊆ ∆σ.

Given what we have shown before we can conclude that

min
p∈∆

{∫
u (f) dp+ λmin

q∈Q
R (p||q)

}
= min

q∈Q
ϕ−1
λ

(∫
ϕλ (u (f)) dq

)
= ϕ−1

λ

(
min
q∈Q

(∫
ϕλ (u (f)) dq

))
= ϕ−1

λ

(
min
q∈coQ

(∫
ϕλ (u (f)) dq

))
= min

q∈coQ
ϕ−1
λ

(∫
ϕλ (u (f)) dq

)
= min

p∈∆

{∫
u (f) dp+ λ min

q∈coQ
R (p||q)

}
proving the statement. ■

After (22), we claimed that the Gini criterion is a monotone version of the max-min mean-

variance criterion. To be more precise, given a probability q ∈ ∆σ and a weight 1/2λ > 0

for the variance, the mean-variance criterion is not monotone over its entire domain, but it is

normalized, translation invariant, and monotone in an area containing the constant functions

(see Theorem 24 of Maccheroni et al., 2006). At the same time, the variational preference

with cost function the Gini index λχ2(·||q) is monotone and coincides with the mean-variance

criterion over such an area. A similar argument, mutatis mutandis, holds for the max-min mean-

variance criterion and our formula (21). This allows us to see the corresponding variational

criteria as a monotonization of the corresponding mean-variance ones.

B.3 Main theorems: ancillary results

We begin by proving the two ancillary variational lemmas.

Proof of Lemma 3 We actually prove that (i)=⇒(ii)⇐⇒(iii), with equivalence when ≿ is

unbounded.

(i) implies (ii). Let f ∈ F . It is enough to observe that c (p̄) = 0 implies

V
(
xp̄f

)
= u

(
xp̄f

)
=

∫
u (f) dp̄+ c (p̄) ≥ min

p∈∆

{∫
u (f) dp+ c (p)

}
= V (f)
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yielding that xp̄f ≿ f .

(ii) implies (iii). Assume that xp̄f ≿ f for all f ∈ F . Since ≿ is complete and transitive, it

follows that if x ≻ xp̄f , then x ≻ f .

(iii) implies (ii). By contradiction, suppose that there exists f ∈ F such that f ≻ xp̄f . Let

xf ∈ X be such that xf ∼ f . This implies that xf ≻ xp̄f and so xf ≻ f , a contradiction.

(ii) implies (i). Let ≿ be unbounded. Assume that xp̄f ≿ f for all f ∈ F , i.e., V (f) ≤∫
u (f) dp̄ for all f ∈ F . So, p̄ corresponds to a SEU preference that is less ambiguity averse

than ≿. By Lemma 32 of Maccheroni et al. (2006), we can conclude that c (p̄) = 0. ■

Proof of Lemma 4 We begin by observing that in proving the two implications, Q being

either compact or convex plays no role.

(i) implies (ii). Let p ∈ ∆\∆≪ (Q). It follows that there exists A ∈ Σ such that q (A) = 0

for all q ∈ Q as well as p (A) > 0. Define I : B0 (Σ) → R by I (φ) = minp∈∆
{∫

φdp+ c (p)
}
for

all φ ∈ B0 (Σ). Since u is unbounded, for each λ ∈ R there exists xλ ∈ X such that u (xλ) = λ.

Similarly, there exists y ∈ X such that u (y) = 0. For each λ ∈ R define fλ = xλAy. By

construction, we have that fλ
Q
= y for all λ ∈ R. This implies that I (λ1A) = V (fλ) = V (y) =

I (0) = 0 for all λ ∈ R. By Maccheroni et al. (2006) and since u is unbounded and p (A) > 0,

we have that

c (p) = sup
φ∈B0(Σ)

{
I (φ)−

∫
φdp

}
≥ sup

λ∈R
{I (λ1A)− λp (A)} = ∞

Since p was arbitrarily chosen, it follows that dom c ⊆ ∆≪ (Q).

(ii) implies (i). Assume that dom c ⊆ ∆≪ (Q). If f
Q
= g, then u (f)

Q
= u (g). This implies

that u (f)
p
= u (g) for all p ∈ ∆≪ (Q) and, in particular,

V (f) = min
p∈∆

{∫
u (f) dp+ c (p)

}
= min

p∈∆≪(Q)

{∫
u (f) dp+ c (p)

}
= min

p∈∆≪(Q)

{∫
u (g) dp+ c (p)

}
= min

p∈∆

{∫
u (g) dp+ c (p)

}
= V (g)

proving that f ∼ g. ■

Proof of Lemma 7 We begin by showing that ⪰∗ is well defined and does not depend on the

representing elements of ψ and φ. Assume that f1, f2, g1, g2 ∈ F are such that u (fi) = φ and

u (gi) = ψ for all i ∈ {1, 2}. It follows that u (f1 (s)) = u (f2 (s)) and u (g1 (s)) = u (g2 (s)) for

all s ∈ S. By Lemma 6, this implies that f1 (s) ∼∗ f2 (s) and g1 (s) ∼∗ g2 (s) for all s ∈ S. Since

≿∗ is a preorder that satisfies monotonicity, this implies that f1 ∼∗ f2 and g1 ∼∗ g2. Since ≿∗

is a preorder, if f1 ≿∗ g1, then

f2 ≿
∗ f1 ≿

∗ g1 ≿
∗ g2 =⇒ f2 ≿

∗ g2
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that is, f1 ≿∗ g1 implies f2 ≿∗ g2. Similarly, we can prove that f2 ≿∗ g2 implies f1 ≿∗ g1.

In other words, f1 ≿∗ g1 if and only if f2 ≿∗ g2, proving that ⪰∗ is well defined and does not

depend on the representing elements of ψ and φ. It is immediate to prove that ⪰∗ is a preorder.

We next prove properties 1–5.

1. Consider φ, ψ ∈ B0 (Σ) and k ∈ R. Assume that φ ⪰∗ ψ. Let f, g ∈ F and x, y ∈ X be

such that u (f) = 2φ, u (g) = 2ψ, u (x) = 0 and u (y) = 2k. Since u is affine, it follows

that

u

(
1

2
f +

1

2
x

)
=

1

2
u (f) +

1

2
u (x) = φ ⪰∗ ψ

=
1

2
u (g) +

1

2
u (x) = u

(
1

2
g +

1

2
x

)
proving that 1

2
f + 1

2
x ≿∗ 1

2
g+ 1

2
x. Since ≿∗ satisfies weak c-independence and u is affine,

we have that 1
2
f + 1

2
y ≿∗ 1

2
g + 1

2
y, yielding that

φ+ k =
1

2
u (f) +

1

2
u (y) = u

(
1

2
f +

1

2
y

)
⪰∗ u

(
1

2
g +

1

2
y

)
=

1

2
u (g) +

1

2
u (y) = ψ + k

2. Consider φ, ψ ∈ B0 (Σ) and {kn}n∈N ⊆ R such that kn ↑ k and φ− kn ⪰∗ ψ for all n ∈ N.
We have two cases:

(a) k > 0. Consider f, g, h ∈ F such that

u (f) = φ, u (g) = φ− k and u (h) = ψ

Since k > 0 and kn ↑ k, there exists n̄ ∈ N such that kn > 0 for all n ≥ n̄. Define

λn = 1 − kn/k for all n ∈ N. It follows that λn ∈ [0, 1] for all n ≥ n̄. Since u is

affine, for each n ≥ n̄

u (λnf + (1− λn) g) = λnu (f) + (1− λn)u (g) = φ− kn ⪰∗ ψ = u (h)

yielding that λnf + (1− λn) g ≿∗ h for all n ≥ n̄. Since ≿∗ satisfies continuity and

λn → 0, we have that g ≿∗ h, that is,

φ− k = u (g) ⪰∗ u (h) = ψ

(b) k ≤ 0. Since {kn}n∈N is convergent, {kn}n∈N is bounded. Thus, there exists h > 0

such that kn + h > 0 for all n ∈ N. Moreover, kn + h ↑ k + h > 0. By point 1, we
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also have that φ− (kn + h) = (φ− kn)− h ⪰∗ ψ − h for all n ∈ N. By subpoint a,

we can conclude that (φ− k) − h = φ − (k + h) ⪰∗ ψ − h. By point 1, we obtain

that φ− k ⪰∗ ψ.

3. Consider φ, ψ ∈ B0 (Σ) such that φ ≥ ψ. Let f, g ∈ F be such that u (f) = φ and

u (g) = ψ. It follows that u (f (s)) ≥ u (g (s)) for all s ∈ S. By Lemma 6, this implies

that f (s) ≿∗ g (s) for all s ∈ S. Since ≿∗ satisfies monotonicity, this implies that f ≿∗ g,

yielding that φ = u (f) ⪰∗ u (g) = ψ.

4. Consider k, h ∈ R and φ ∈ B0 (Σ). We first assume that k > h and k = 0. By point

3, we have that φ = φ + k ⪰∗ φ + h. By contradiction, assume that φ ̸≻∗ φ + h. It

follows that φ ∼∗ φ+h, yielding that I = {w ∈ R : φ ∼∗ φ+ w} is a non-empty set which

contains 0 and h. We next prove that I is an unbounded interval, that is, I = R. First,

consider w1, w2 ∈ I. Without loss of generality, assume that w1 ≥ w2. By point 3 and

since w1, w2 ∈ I, we have that for each λ ∈ (0, 1)

φ ⪰∗ φ+ w1 ⪰∗ φ+ (λw1 + (1− λ)w2) ⪰∗ φ+ w2 ⪰∗ φ

proving that φ ∼∗ φ + (λw1 + (1− λ)w2), that is, λw1 + (1− λ)w2 ∈ I. Next, we

observe that I ∩ (−∞, 0) ̸= ∅ ̸= I ∩ (0,∞). Since h ∈ I and h < 0, we have that

I ∩ (−∞, 0) ̸= ∅. Since I is an interval and 0, h ∈ I, we have that h/2 ∈ I. By point 1

and since φ ∼∗ φ+ h/2, we have that φ− h/2 ∼∗ (φ+ h/2)− h/2 = φ, proving that 0 <

−h/2 ∈ I ∩ (0,∞). By definition of I, note that if w ∈ I\ {0}, then φ+w ∼∗ φ. By point

1 and since w/2 ∈ I and ⪰∗ is a preorder, we have that (φ+ w) +w/2 ∼∗ φ+w/2 ∼∗ φ,

that is, 3
2
w, 1

2
w ∈ I. Since I is an interval, we have that either

[
3
2
w, 1

2
w
]
⊆ I if w < 0

or
[
1
2
w, 3

2
w
]
⊆ I if w > 0. This will help us in proving that I is unbounded from below

and above. By contradiction, assume that I is bounded from below and define m = inf I.

Since I ∩ (−∞, 0) ̸= ∅, we have that m < 0. Consider {wn}n∈N ⊆ I ∩ (−∞, 0) such that

wn ↓ m. Since
[
3
2
wn,

1
2
wn

]
⊆ I for all n ∈ N, it follows that m ≤ 3

2
wn for all n ∈ N.

By passing to the limit, we obtain that m ≤ 3
2
m < 0, a contradiction. By contradiction,

assume that I is bounded from above and defineM = sup I. Since I∩(0,∞) ̸= ∅, we have
that M > 0. Consider {wn}n∈N ⊆ I ∩ (0,∞) such that wn ↑M . Since

[
1
2
wn,

3
2
wn

]
⊆ I for

all n ∈ N, it follows that M ≥ 3
2
wn for all n ∈ N. By passing to the limit, we obtain that

M ≥ 3
2
M > 0, a contradiction. To sum up, I is a non-empty unbounded interval, that is,

I = R. This implies that φ ∼∗ φ+ w for all w ∈ R. In particular, select w1 = ∥φ∥∞ + 1

and w2 = −∥φ∥∞− 1. Since ⪰∗ is a preorder, we have that φ+w1 ∼∗ φ+w2. Moreover,

φ+ w1 ≥ 1 > −1 ≥ φ+ w2. By point 3, this implies that φ+ w1 ⪰∗ 1 ⪰∗ −1 ⪰∗ φ+ w2.

Since ⪰∗ is a preorder and φ + w1 ∼∗ φ + w2, we can conclude that 1 ∼∗ −1. Note also

that there exist x, y ∈ X such that u (x) = 1 and u (y) = −1. By Lemma 6, this implies

that x ≻∗ y. By definition of ⪰∗ and since u (x) = 1 ∼∗ −1 = u (y), we also have that
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y ≿∗ x, a contradiction. Thus, we proved that if k > h and k = 0, then φ+ k ≻∗ φ+ h.

Assume simply that k > h. This implies that 0 > h− k and φ ≻∗ φ+ (h− k). By point

1, we can conclude that φ+ k ≻∗ φ+ (h− k) + k = φ+ h.

5. Consider φ, ψ, ξ ∈ B0 (Σ) and λ ∈ (0, 1). Assume that φ ⪰∗ ξ and ψ ⪰∗ ξ. Let f, g, h ∈ F
be such that u (f) = φ, u (g) = ψ and u (h) = ξ. By assumption and definition of ⪰∗,

we have that f ≿∗ h and g ≿∗ h. Since ≿∗ satisfies convexity and u is affine, this

implies that λf + (1− λ) g ≿∗ h, yielding that λφ+ (1− λ)ψ = λu (f) + (1− λ)u (g) =

u (λf + (1− λ) g) ⪰∗ u (h) = ξ.

Points 1–5 prove the first part of the statement. Finally, consider φ, ψ ∈ B0 (Σ). Note that

there exist a partition {Ai}ni=1 ⊆ Σ of S and {αi}ni=1 and {βi}ni=1 in R such that

φ =
n∑
i=1

αi1Ai
and ψ =

n∑
i=1

βi1Ai

Note that {s ∈ S : φ (s) ̸= ψ (s)} = ∪i∈{1,...,n}:αi ̸=βiAi. Since φ
Q
= ψ, we have that q (Ai) = 0 for

all q ∈ Q and for all i ∈ {1, ..., n} such that αi ̸= βi. Since u is unbounded, define {xi}ni=1 ⊆ X

to be such that u (xi) = αi for all i ∈ {1, ..., n}. Since u is unbounded, define {yi}ni=1 ⊆ X to

be such that yi = xi for all i ∈ {1, ..., n} such that αi = βi and u (yi) = βi otherwise. Define

f, g : S → X by f (s) = xi and g (s) = yi for all s ∈ Ai and for all i ∈ {1, ..., n}. It is immediate

to see that f
Q
= g as well as u (f) = φ and u (g) = ψ. Since ≿∗ is objectively Q-coherent, we

have that f ∼∗ g, yielding that φ ∼∗ ψ and proving the second part of the statement. ■

Proof of Lemma 9 Consider φ ∈ B0 (Σ). Define Cφ = {k ∈ R : φ− k ∈ U (ψ)}. Note

that Cφ is non-empty. Indeed, if we set k = −∥φ∥∞ − ∥ψ∥∞, then we obtain that φ − k =

φ+ ∥φ∥∞ + ∥ψ∥∞ ≥ 0+ ∥ψ∥∞ ≥ ψ ∈ U (ψ). By property 4 of Lemma 8, we can conclude that

φ − k ∈ U (ψ), that is, k ∈ Cφ. Since U (ψ) is convex, it follows that Cφ is an interval. Since

φ ∈ B0 (Σ), note that there exists k̂ ∈ R such that ψ ≥ φ − k̂. It follows that ψ ⪰∗ φ − k̂.

In particular, we can conclude that ψ ≻∗ φ −
(
k̂ + ε

)
for all ε > 0. This yields that Cφ is

bounded from above. Finally, assume that {kn}n∈N ⊆ Cφ and kn ↑ k. By property 2 of Lemma

8, we can conclude that k ∈ Cφ. To sum up, Cφ is a non-empty bounded from above interval

of R that satisfies the property

{kn}n∈N ⊆ Cφ and kn ↑ k =⇒ k ∈ Cφ (72)

The first part yields that sup {k ∈ R : φ− k ∈ U (ψ)} = supCφ ∈ R is well defined. By (72), we

also have that supCφ ∈ Cφ, that is, supCφ = maxCφ, proving that Iψ is well defined. Next, we

prove that Iψ is a concave niveloid. We first show that Iψ is monotone and translation invariant.

By Proposition 2 of Cerreia-Vioglio et al. (2014), this implies that Iψ is a niveloid. Rather than
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proving monotonicity, we prove that Iψ is ⪰∗-consistent.46 Consider φ1, φ2 ∈ B0 (Σ) such that

φ1 ⪰∗ φ2. By the properties of ⪰∗ and definition of Iψ, we have that

φ1 − Iψ (φ2) ⪰∗ φ2 − Iψ (φ2) and φ2 − Iψ (φ2) ∈ U (ψ)

and, in particular, φ2−Iψ (φ2) ⪰∗ ψ. Since ⪰∗ is a preorder, this implies that φ1−Iψ (φ2) ⪰∗ ψ,

that is, φ1 − Iψ (φ2) ∈ U (ψ) and Iψ (φ2) ∈ Cφ1 , proving that Iψ (φ1) ≥ Iψ (φ2). We next prove

translation invariance. Consider φ ∈ B0 (Σ) and k ∈ R. By definition of Iψ, we can conclude

that

(φ+ k)− (Iψ (φ) + k) = φ− Iψ (φ) ∈ U (ψ)

This implies that Iψ (φ) + k ∈ Cφ+k and, in particular, Iψ (φ+ k) ≥ Iψ (φ) + k. Since k and φ

were arbitrarily chosen, we have that

Iψ (φ+ k) ≥ Iψ (φ) + k ∀φ ∈ B0 (Σ) ,∀k ∈ R

This yields that Iψ (φ+ k) = Iψ (φ) + k for all φ ∈ B0 (Σ) and for all k ∈ R.47

We move to prove that Iψ is concave. Consider φ1, φ2 ∈ B0 (Σ) and λ ∈ (0, 1). By definition

of Iψ, we have that

φ1 − Iψ (φ1) ∈ U (ψ) and φ2 − Iψ (φ2) ∈ U (ψ)

Since U (ψ) is convex, we have that

(λφ1 + (1− λ)φ2)− (λIψ (φ1) + (1− λ) Iψ (φ2))

= λ (φ1 − Iψ (φ1)) + (1− λ) (φ2 − Iψ (φ2)) ∈ U (ψ)

yielding that λIψ (φ1)+(1− λ) Iψ (φ2) ∈ Cλφ1+(1−λ)φ2 and, in particular, Iψ (λφ1 + (1− λ)φ2) ≥
λIψ (φ1) + (1− λ) Iψ (φ2).

Finally, since ψ ∈ U (ψ), note that 0 ∈ Cψ and Iψ (ψ) ≥ 0. By definition of Iψ, if Iψ (ψ) > 0,

then ψ − Iψ (ψ) ∈ U (ψ), a contradiction with property 3 of Lemma 8.

1. It is routine to check that Īψ is a normalized concave niveloid which is ⪰∗-consistent.

2. Clearly, we have that if ψ ∼∗ ψ′, then U (ψ) = U (ψ′), yielding that Iψ = Iψ′ and, in

particular, Iψ (0) = Iψ′ (0) as well as Īψ = Īψ′ . The point trivially follows. ■

Proof of Proposition 13 We begin by observing that:

|ca (Σ)| ≤ |ca+ (Σ)× ca+ (Σ)| = |ca+ (Σ)| = |(0,∞)×∆σ| = |∆σ|
46Since if φ1 ≥ φ2, then φ1 ⪰∗ φ2, it follows that ⪰∗-consistency implies monotonicity.
47Observe that if φ ∈ B0 (Σ) and k ∈ R, then −k ∈ R and

Iψ (φ) = Iψ ((φ+ k)− k) ≥ Iψ (φ+ k)− k

yielding that Iψ (φ+ k) ≤ Iψ (φ) + k.
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The first inequality holds because the map g : ca (Σ) → ca+ (Σ) × ca+ (Σ), defined by µ 7→
(µ+, µ−), is injective. By Theorem 1.4.5 of Srivastava (1998) and since Σ is non-trivial, we have

that ca+ (Σ) is infinite, yielding that a bijection justifying the first equality exists. As to the

second equality, the map g : ca+ (Σ) \ {0} → (0,∞) × ∆σ, defined by µ 7→ (µ (S) , µ/µ (S)),

is a bijection and so |ca+ (Σ) \ {0}| = |(0,∞)×∆σ|. By Theorem 1.3.1 of Srivastava (1998),

we can conclude that |ca+ (Σ)| = |ca+ (Σ) \ {0}| = |(0,∞)×∆σ|. As to the last equality, by

Theorem 1.4.5 and Exercise 1.5.1 of Srivastava (1998), being |(0,∞)| = |(0, 1)| ≤ |∆σ|, we have
|∆σ| ≤ |(0,∞)×∆σ| = |(0, 1)×∆σ| ≤ |∆σ ×∆σ| = |∆σ|, yielding that |(0,∞)×∆σ| = |∆σ|.

We conclude that |ca (Σ)| ≤ |∆σ|, that is, there exists an injective map g : ca (Σ) → ∆σ.

Since Q is a compact and convex subset of ∆σ, there exists q̄ ∈ Q such that q ≪ q̄ for all q ∈ Q.

We define h : V → ca (Σ) by

h ([ψ]) (A) =

∫
A

ψdq̄ ∀A ∈ Σ

Note that h is well defined. For, if ψ′ ∈ [ψ], that is, ψ
Q
= ψ′, then ψ

q̄
= ψ′, yielding that∫

A
ψdq̄ =

∫
A
ψ′dq̄ for all A ∈ Σ. Similarly, h ([ψ]) = h ([ψ′]) implies that ψ

q̄
= ψ′. Since

q ≪ q̄ for all q ∈ Q, this implies that ψ
Q
= ψ′ and [ψ] = [ψ′], proving h is injective. This

implies that f̃ = g ◦ h is a well defined injective function from V to ∆σ. Clearly, we have that

|∆σ| ≥
∣∣∣f̃ (V )

∣∣∣ ≥ |[0, 1]|. Since (S,Σ) is a standard Borel space and Q is convex and |Q| ≥ 2,

we also have that |[0, 1]| ≥ |∆σ| ≥ |Q| ≥ |[0, 1]|. This implies that |V | =
∣∣∣f̃ (V )

∣∣∣ = |Q|, proving
the statement. ■

B.4 Analysis of the decision criterion: missing proofs

The proof of Proposition 1 follows from the following lemma. Here, as usual, ϕ is extended to

R by setting ϕ (t) = +∞ if t /∈ [0,∞). In particular, ϕ∗ is non-decreasing.

Lemma 15 For each Q ⊆ ∆σ and each λ ∈ (0,∞),

inf
p∈∆

{∫
u (f) dp+ λ inf

q∈Q
Dϕ(p||q)

}
= λ inf

q∈Q
sup
η∈R

{
η −

∫
ϕ∗

(
η − u (f)

λ

)
dq

}
for all u : X → R and all f : S → X such that u ◦ f is bounded and Σ-measurable.

Proof By Theorem 4.2 of Ben-Tal and Teboulle (2007), for each q ∈ ∆σ it holds

inf
p∈∆

{∫
ξdp+Dϕ(p||q)

}
= sup

η∈R

{
η −

∫
ϕ∗ (η − ξ) dq

}
for all ξ ∈ L∞ (q). Then, if u◦f is bounded and measurable, from u◦f ∈ L∞ (q) for all q ∈ ∆σ,
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it follows that

inf
p∈∆

{∫
u (f) dp+ λDϕ(p||q)

}
= λ inf

p∈∆

{∫
u (f)

λ
dp+Dϕ(p||q)

}
= λ sup

η∈R

{
η −

∫
ϕ∗

(
η − u (f)

λ

)
dq

}
for all λ > 0, as desired. By taking the inf over Q on both sides of the equation, the statement

follows. ■

Proof of Proposition 1 In view of the last lemma, it is enough to observe that, if f : S → X

is simple and measurable, then u ◦ f is simple and Σ-measurable for all u : X → R and the

infima are achieved. ■

Proof of Proposition 2 First, note that minq∈QR (p||q) = 0 if and only if p ∈ Q. Indeed, we

have that

min
q∈Q

R (p||q) = 0 ⇐⇒ ∃q̄ ∈ Q s.t. R (p||q̄) = 0 ⇐⇒ ∃q̄ ∈ Q s.t. p = q̄

Define λn = n for all n ∈ N. For each n ∈ N, we have λnminq∈QR (p||q) = 0 if and only if

p ∈ Q. So, for each p ∈ ∆,

lim
n
λnmin

q∈Q
R (p||q) =

{
0 if p ∈ Q

+∞ if p ̸∈ Q

Since λnminq∈QR (p||q) = 0 for each n ∈ N if and only if p ∈ Q, by Proposition 12 of Maccheroni

et al. (2006) we have

lim
n

min
p∈∆

{∫
u (f) dp+ λnmin

q∈Q
R (p||q)

}
= min

q∈Q

∫
u (f) dq ∀f ∈ F

Finally, by (23), we have that for each f ∈ F

min
q∈Q

∫
u (f) dq ≤ lim

n
min
p∈∆

{∫
u (f) dp+ λnmin

q∈Q
R (p||q)

}
≤ lim

λ↑∞
min
p∈∆

{∫
u (f) dp+ λmin

q∈Q
R (p||q)

}
≤ min

q∈Q

∫
u (f) dq

yielding the statement. ■

Proof of Proposition 8 (i) Let f̂ ∈ F be optimal. By (28), if there is g ∈ F such that

g ≻≻∗
Q f̂ , then g ≻Q f̂ , a contradiction with f̂ being optimal. We conclude that f̂ is weakly

admissible. A similar argument proves that there is no g ∈ F such that g ≻∗
Q f̂ when (29)

holds.
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(ii) Suppose f̂ ∈ F is the unique optimal act, that is, f̂ ≻Q f for all f ∈ F\
{
f̂
}
. If g ∈ F is

such that g ≻∗
Q f̂ , then g ̸= f̂ and g ≿Q f̂ . In turn, this implies g ≿Q f̂ ≻Q g, a contradiction.

We conclude that f̂ is admissible. ■

Proof of Proposition 9 Since Q ⊆ Q′, it follows that minq∈Q c (p, q) ≥ minq∈Q′ c (p, q) for all

p ∈ ∆. We thus have

min
p∈∆

{∫
u (f) dp+min

q∈Q
c (p, q)

}
≥ min

p∈∆

{∫
u (f) dp+min

q∈Q′
c (p, q)

}
∀f ∈ F

yielding that v (Q) ≥ v (Q′). Next, fix Q and assume that the sup in (34) is achieved. Let

f̄ ∈ F be such that

min
p∈∆

{∫
u
(
f̄
)
dp+min

q∈Q
c (p, q)

}
= v (Q)

By contradiction, assume that f̄ ∈ F/F ∗
Q. By Proposition 5 and since f̄ ̸∈ F ∗

Q and f̄ ∈ F , there

exists g ∈ F such that g ≻≻∗
Q f̄ , that is, there exists ε > 0 such that

min
p∈∆

{∫
u (g) dp+ c (p, q)

}
≥ min

p∈∆

{∫
u
(
f̄
)
dp+ c (p, q)

}
+ ε ∀q ∈ Q

Since g is finite-valued, this implies that v (Q) <∞ and

v (Q) ≥ min
p∈∆

{∫
u (g) dp+min

q∈Q
c (p, q)

}
= min

p∈∆
min
q∈Q

{∫
u (g) dp+ c (p, q)

}
≥ inf

q∈Q
min
p∈∆

{∫
u (g) dp+ c (p, q)

}
≥ inf

q∈Q
min
p∈∆

{∫
u
(
f̄
)
dp+ c (p, q)

}
+ ε

≥ min
p∈∆

min
q∈Q

{∫
u
(
f̄
)
dp+ c (p, q)

}
+ ε = min

p∈∆

{∫
u
(
f̄
)
dp+min

q∈Q
c (p, q)

}
+ ε

= v (Q) + ε

a contradiction. ■
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