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Effect of Code Coverage on Software Reliability
Measurement

Mei-Hwa Chen, Michael R. Lyu, Senior Member, IEEE, and W. Eric Wong

Abstract—Summary & Conclusions—Existing software relia-
bility-growth models often over-estimate the reliability of a given
program. Empirical studies suggest that the over-estimations exist
because the models do not account for the nature of the testing.
Every testing technique has a limit to its ability to reveal faults in a
given system. Thus, as testing continues in its region of saturation,
no more faults are discovered and inaccurate reliability-growth
phenomena are predicted from the models. This paper presents a
technique intended to solve this Problem, using both time & code
coverage measures for the prediction of software failures in opera-
tion. Coverage information collected during testing is used only to
consider the effective portion of the test data. Execution time be-
tween test cases, which neither increases code coverage nor causes
a failure, is reduced by a parameterized factor. Experiments were
conducted to evaluate this technique, on a program created in a
simulated environment with simulated faults, and on two industrial
systems that contained tenths of ordinary faults. Two well-known
reliability models, Goel-Okumoto and Musa-Okumoto, were ap-
plied to both the raw data and to the data adjusted using this tech-
nique. Results show that overestimation of reliability is properly
corrected in the cases studied. This new approach has potential,
not only to achieve more accurate applications of software relia-
bility models, but to reveal effective ways of conducting software
testing.

Index Terms—Coverage measures, software reliability estima-
tion, software testing.

ACRONYMS1

SRGM software reliability growth model
G-O Goel-Okumoto NHPP model
M-O Musa-Okumoto logarithmic Poisson model
G-O G-O using adjusted data
M-O M-O using adjusted data

random flow graph generated for the simulation ex-
periment
application program
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1The singular & plural of an acronym are always spelled the same.

cumulative test-time after executing
cumulative failures after executing
cumulative block coverage after executing

: data collected after executing
processed , using the coverage adjustment

, if
otherwise

number of test cases
compression ratio for
parallel (for vectors)

ASSUMPTIONS

1) All times are CPU time.
2) Times between failures are-independent.
3) All inputs are generated using a pre-defined operational pro-

file, for both testing and reliability measurement phases.
4) No new faults are introduced during debugging.
5) Fault repair is instantaneous: as soon as a failure is observed.
6) Each failure is caused by a single fault.

I. INTRODUCTION

T HE reliability of a program is often defined as the proba-
bility that the program does not fail in a given environment,

during a specified exposure time interval [13]. Since the late
1960s, several analytic models have been proposed for software
reliability estimation [16]. The time-domain models, also called
SRGM, have been the most popular as well as most widely
studied for the past two decades. These models use the failure
history, obtained during testing, to predict the field behavior of
the program, under the assumption that testing is performed in
accordance with a given operational profile [9]. However, there
are some fundamental difficulties with this approach, e.g., the
saturation effect of the testing process [3], and the difficulty in
obtaining an actual operational profile. To cope with this, sen-
sitivity analyzes of usage profile have to be provided for ap-
propriate test-case selection and accurate reliability assessment
[19].

Our observations, from both empirical & analytic studies,
show that predictions made by the SRGM tend to be too op-
timistic [3], [6]. Many attempts have been made to improve
the SRGM estimation. Some propose that the test data must be
pre-processed before they can be used by the SRGM [3], [8],
[11], [17]. Others postulate that coverage information should
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be used, instead of test time, to overcome the difficulty of ob-
taining an operational profile of the given program [12], [15],
[18]. However, the relation between test-coverage and defect-
coverage (and consequently the improvement of software relia-
bility) can be very complex [1]. There is no formal description
in the literature regarding how coverage information should be
used in reliability measurement.

This paper presents a technique that models the failure rate
with respect to both code-coverage and test-time. The rationale
behind this approach is given in this paragraph. When a program
is tested successfully against a suite of test cases, the software
might continue test, using the same or similar test suite, without
any failures. If the time between failures is the only consider-
ation in the reliability estimation process, then obviously, the
program reliability might be overestimated, since in practice the
operational profile can differ from that implied by the test suite.
To overcome this problem, our technique uses code coverage to
adjust the failure rate before it is applied to an SRGM. The time
intervals between failures are adjusted for any testing effort that
is redundant with respect to a chosen coverage criterion, e.g.,
repeating the same test cases, or not increasing block coverage
with new test cases. We applied this approach to G-O [7] and
M-O [14] and observed an improvement in the accurate estima-
tion for both models.

Section II describes the technique. Section III describes the
experiments & results. Section IV discusses possible future di-
rections.

II. M ETHODOLOGY

The relationship between coverage and software-reliability
has been studied by many researchers. Empirical studies show
that fault-detectability -correlates with code coverage [20],
[21]. Consequently, software reliability can also-correlate
with code coverage [5]. This experimental evidence strengthens
our belief that code-coverage information should be considered
in reliability estimation. SRGM rely on time-dependent failure
data. As testing proceeds, and faults are revealed, the test cases
generated in the later phases are less likely to cause the program
to fail than those generated in the earlier phases. Therefore, the
time between failures increases, as do the reliability estimates
made by the SRGM.

However, the reliability of the software usually increases
when the number of faults in the software is reduced. There-
fore, the more redundant a testing effort is, the greater is the
chance that reliability will be overestimated. To reduce these
overestimates, one needs to determine which test cases are re-
dundant and how much of the test effort is considered effective.
In our model, the coverage information is used to determine
the effectiveness of a given test effort. A test case that does
not ‘increase coverage of the program’ and does not ‘cause
a failure’ is considered noneffective. The execution time of
such a test case is reduced by using a compression ratio which
is based on both execution-time and code-coverage. Section
II-A describes the method that applies coverage-information to
extract the effective portion of the test data.

A. Coverage-Enhanced Data Processing Technique

A is considered to be noneffective if: and
; in other words, is noneffective if it neither increases

the coverage nor causes the program to fail on execution. The
vector describes the change in the number of failures with

respect to test-time regardless of coverage (it is a discrete partial
differential of failures with respect to time), while the vector
describes the change in the number of failures with respect to
coverage regardless of time (it is a discrete partial differential
of failures with respect to coverage). We believe that both time
& coverage are crucial factors in predicting failures; thus we
combine them to extract the effective test efforts.

If is noneffective, the is reduced using . Therefore,
the extracted execution time of , is to be used
by the SRGM. Appendix A derives . The remainder of this
paragraph illustrates the approach. Letrepresent a noneffec-
tive test case : its execution has not increased either the cov-
erage nor the number of failures observed. Let this triplet be pro-
jected onto the plane formed by the previous
and the and . The two difference-vectors are orthog-
onal to each other and they indicate partial rates of change in
failures with respect the two exposure parameters as they were
estimated after completion of test case . Together with the
test case triplet, they define a ‘no-coverage and no-failure
change’ plane at that instance of testing. For a noneffective test
case , the only actual change occurred in the direction of the
time axis. Projecting this point onto the ‘no-coverage
no-failure’ plane gives an idea of how far in this space we would
have moved. Projecting this projected point onto the time axis
gives the new or reduced exposure time. The ratio between the
new and the reduced time is, the compression ratio.

The indicates the effective portion of the execution time
of , if is noneffective. This compression ratio differs from
the compression factor, defined in [13], which is the ratio of
execution time required in the operational phase to execution
time required in the test phase to cover the input space of the
program.

Fig.1 depicts the geometrical interpretation of the projection,
where: and are test data,

are the compressed data. The adjusted data,
, can be used by the SRGM, where is the

adjusted execution time of .
The computation of is: given:

(1)

then

(2)

(3)

and given that

(4)

then

if
otherwise

(5)
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Fig. 1. Coverage-enhanced data-processing technique.

The projection process (Appendix A) yields:

if is effective

otherwise

(6)

The value of is computed from & as shown in (6).
In practice, the and parameter values are usually scaled to get
their numerical values in the range of interest to be of roughly
the same magnitude. This numerically stabilizes computation
of . The coverage measure is usually scaled to the range that
is closest to the average execution time of one test case. The
scaling can be adjusted at various phases of testing. The scaled
values of are used in computing . In the reliability estima-
tion, the raw values and the values are adjusted using the
compression ratios. Scaling of the execution time does not af-
fect the reliability estimation process.

B. Simulation

This section describes an experiment which was conducted
under the simulation environment, TRSE [4]. M-O [13] & G-O
[7] are models for reliability estimation. The procedure used in
our study is listed here.

Begin Procedure
1) Generate a program flow graphwith 1000 nodes.
2) Annotate with faults by assigning fault infection prob-

ability and fault propagation probability to each node.
3) Test by using the random testing technique with respect

to a uniform profile. Faults causing failures are removed
during the debugging.

4) Apply the data collected in step 3 to SRGM and obtain
reliability estimates.

5) Use the coverage-enhanced technique to exclude nonef-
fective testing efforts in step 3; then apply such extracted
failure data to the models for reliability estimation.

Fig. 2. Reliability observed, and reliability estimates from the G-O & M-O
models for a flow-graph with 1000 nodes.

6) Compute reliability by simulating the execution ofwith
respect to the same profile used in step 3.

End Procedure
Fig.2 shows the reliability estimates obtained by applying

the original data to the G-O & M-O models, and by applying
the extracted data to both models (G-O& M-O ). The esti-
mates were compared with the reliability computed in step 6
(labeled ). The results show that at 270 000 units of test-time
our technique reduces the overestimate of the G-O model from
0.23 (33.7%) to 0.00 (0.0%), M-O model from 0.083 (12.17%)
to 0.004 (0.55%). Similarly, at test-time of 300 000 units, the
overestimate is reduced from 0.205 (29.3%) to 0.02 (2.86%),
and from 0.087 (12.4%) to 0.01 (1.43%), respectively, for the
G-O and M-O models. The reliability overestimates made by
G-O & M-O can be appreciably reduced by considering the ef-
fective testing efforts.

III. A PPLICATIONS

To demonstrate our technique in real applications, we con-
ducted experiments on two programs:autopilot andore-
colo .

A. autopilot Project

The autopilot project was developed by multiple
independent teams at the University of Iowa and the Rock-
well/Collins Avionics Division [10]. The application program
is an ‘automatic flight control function for the landing of com-
mercial airliners’ that has been implemented by the avionics
industry. It has five redundant yet independently developed
program versions for a total of 7000 lines of code (4200
executable statements) and 30 natural faults.

1) Testing and Debugging:Flight simulation testing ofau-
topilot represents various execution scenarios in a feed-back
loop, where different flight modes are entered & exercised. The
sequence of testing & debugging is:
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TABLE I
RELIABILITY OBSERVED, AND RELIABILITY

ESTIMATES FROM THE G-O & M-O MODELS FORautopilot .

Sequence
1. Generate a test pool

2. Set the flagTEST REPEATto false

3. If (TEST REPEATis false)

Then a. Select a test casefrom according to a

uniform distribution profile

Else b. Re-use the test casesaved in 5d

End If

4. Test the program against

5. If ( fails on )

Then a. Find the fault which is responsible for the failure

b. Remove the fault detected in 5a

c. Set the flagTEST REPEATto true

d. Save for re-use in 3b

Else Set the flagTEST REPEATto false

End If

6. Go to 3

End Sequence

An important characteristic of this testing & debugging
process is that can be executed against the samemore than
once. For example, let the first execution ofon fail at time

. After the fault responsible for this failure is removed,
then is executed again on. Let it fail at time .
Because the simulation is not yet completed,is re-executed
against after debugging. This process continues until
succeeds on .

2) Reliability Estimation: Table I and Fig. 3 show the relia-
bility estimates obtained by applying the original data, collected
from the testing & debugging process in Section III-A1, and the
adjusted data, processed by using the coverage-enhanced tech-
nique, to the G-O & M-O models. The exposure time used in
the estimation process is the maximum flight time: 265 seconds.
The reliability estimates obtained from the G-O & M-O models
using the original data are labeled G-O and M-O, respectively.

Fig. 3. Reliability observed, and reliability estimates from the G-O & M-O
models forautopilot .

Similarly, G-O and M-O denote the reliability estimates ob-
tained from the G-O and the M-O models using the adjusted
data.

The , measured as the ratio of the number of successful
executions to the total number of executions, were computed
for the test-times of 5153.60, 6538.75, 8025.10 seconds. These
3 points represent 3 fault-correction activities in the 3 phases of
the test. To estimate, the program was executed against inputs
based on the same operational profile as used in the test process.
The process of reliability measurement was repeated until the
reliability measure converged to a 95%-confidence interval.

In applying the coverage-enhanced technique, we used block
coverage measurement. To compute the compression ratio, the
coverage measure and the execution time were scaled by multi-
plying each of them by a constant factor. These constant scaling
factors were set, beginning at the test-time 5153.60 seconds, the
time when reliability measurement of our interest began.

For the G-O, the differences between the reliability and its es-
timates ranged from to 0.45 ( % to 100.0%); with the
coverage-enhanced technique, they ranged from to 0.38
( % to 84.4%). For the M-O, these differences ranged from

to 0.36 ( % to 80.0%); with the coverage-enhanced
technique, they ranged from to 0.29 ( % to 64.4%).

This study shows that by adjusting the testing efforts using the
coverage-enhanced technique, the reliability estimates made by
the SRGM are much closer to the actual reliability. However, the
improvement of the two models is not as large as that obtained
from the simulation experiment in Section II-B, because the re-
liability was compared in the later phase of the testing while
there were very few faults remaining in the program.

B. Theorecolo Program

The orecolo program, was developed for the European
Space Agency, to provide a language-oriented user interface that
allows the user to describe the configuration of an array of an-
tennas by using a high level language [2]. The application con-
sists of about 10 000 lines of code (6 100 executable lines) and
33 natural faults.
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TABLE II
RELIABILITY OBSERVED, AND RELIABILITY ESTIMATES OBTAINED FROM

THE G-O & M-O MODELS FORorecolo .

Fig. 4. Reliability observed, and reliability estimates obtained from the G-O
& M-O models for theorecolo project.

1) Testing and Debugging:Testing is performed by using
the input generator,Copia , which produces input test cases
based on a pre-defined operational profile. The output of the
faulty program is compared with the output of the correct ver-
sion. If they differ, the debugging process proceeds and the cor-
responding faults are removed.

2) Reliability Estimation: The results obtained from this ex-
periment are in Table II and Fig.4. The execution unit is mea-
sured as the number of test cases, instead of the execution time,
due to the nature of the application program. Similarly, the ex-
posure time used in the estimation process is one test execution.
The were computed at the completion of 132, 156, 230, and
599 test cases.

Table III shows that, for G-O the differences between the re-
liability and its estimates ranged from 3.1% to 12.4%; for the
coverage-enhanced technique, they ranged from 0.0% to 2.1%.
For M-O, the differences ranged from 2.1% to 7.9%; for the cov-
erage-enhanced technique, they ranged from% to 0.0%. At
the end of the testing process, overestimates made by G-O were
reduced from 3.1% to 2.1%, and those made by M-O were re-
duced from 2.1% to 1.0%. The improvement of the estimation
for orecolo was not as large as that forautopilot .

IV. FUTURE PLANS

Our technique measures test-coverage in the estimation of
software reliability. This technique appears to improve the ap-
plicability & accuracy of G-O & M-O. This should give the user

TABLE III
RELIABILITY OVER-ESTIMATES OBTAINED FROM THE G-O & M-O

MODELS FORorecolo .

a better understanding of the software quality, and helps the de-
veloper conduct a more effective testing scheme. It indicates to
the tester when:

• a testing technique becomes ineffective and should be
switched to another one,

• to stop testing without overestimating the achieved relia-
bility.

Our experiments conducted by a simulated program and two
real-world projects suggest the advantages of this technique.

To investigate the relation between the ‘strength of the
coverage criteria used’ and the ‘improvement of the estimation
made by this technique’, we plan to apply stronger coverage
measurements like ‘branch, all-uses, and mutation coverage’,
for more empirical studies of this technique on industrial
projects. While reliabilities measured by SRGM are somewhat
insensitive to the fluctuations in the operational profiles, the
actual reliabilities are sensitive, and our technique captures
such a phenomenon. We plan to formulate this relationship
quantitatively by a sensitivity study. We also hope to establish
the criteria that will meet a reliability threshold specified for an
ultra high reliable software system by applying this technique
to avoid redundant test efforts.

APPENDIX

Assuming Plane is formed by

Point

Vector

(A-1)

Let the projection of

Point on be

Then,

(A-2)

(A-3)

Given (A-3) , then

(A-4)
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Given

then

(A-5)

Given (A-2) & (A-5) then

(A-6)

From (A-6), the compression ratio is computed:

(A-7)
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